所有物联网都是为了实现万物互联,特别是物与物的互联,但是工业物联网又有其专有属性,原因是与工业物联网相对的消费物联网本身的联网密度、联网的实时性、联网物的异质化要求都不高,而工业物联网的要求主要表现在联网密度、联网实时性及联网异质化三个方面。
思考所有问题都需要从宏观到微观的细化过程,工业物联网也不能例外,我认为对工业物联网进行深度思考,需要从以下五个维度进行分析,否则将会要么带来一叶障目,要么带来好高骛远。
首先需要我们思考的问题是,工业物联网的价值、意义和目的是什么;第二个是工业物联网需要连什么的问题,这是一个范围的概念;第三个需要我们思考的是连入物联网的物的层级问题,也就是深度的问题;第四个需要我们思考的是实现物联的价值成本分析;第五个需要我们思考的是如何建设工业物联网。
互联网实现了计算机与计算机的连接,或者说实现了人与人的连接,这个连接带来了人的交互的便利,在这个基础上涌现出很多全新的、颠覆性的商业模式,例如,电子商务、即时通讯,社交媒体等等;而物联网将实现人与物、物与物的连接,同样我们也期望带来全新的、颠覆性的商业模式,甚至更进一步,期望带来人类生活、生产方式的全新的颠覆性的模式。
作为物联网主战场的工业物联网,人们对其的期许是在工业设计、制造、流通环节带来革命性的变革,为传统工业注入新的活力,提供新的势能,驱动工业在更高维度上发展、创新、乃至变革。随着计算、存储能力的提升,特别是大数据、人工智能的发展,任何行业对数据获取手段都提出了前所未有的要求。对数据获取手段的要求主要表现在四个特征,第一是高效性;第二是准确性;第三是实时性;第四是经济型;在当前技术能力下,能够同时满足这四个特征的就是工业物联网,首先,芯片技术已经发展到一个具有较强计算能力的MCU在美元以下,RFID芯片价格甚至已经到美分这个量级,使得工业物联网有了物质基础,同时满足了经济性要求;近三十年的通讯技术的发展,从模拟到数字,从简单调制到复杂调制技术的商用化,使无线通讯可以很廉价地覆盖几百米甚至数公里的范围,满足了数据获取的密集部署要求,同时由于工业物联网的永久在线的特征,使工业物联网满足数据获取的高效性、实时性要求;微电子技术在近年也发生了突飞猛进的发展,不论在价格上还是在进度上都有了长足的突破,满足了数据获取的准确性。
总而言之,工业物联网的出现是在以下几个条件成熟时涌现出来的不可逆转的趋势:
1、快速变化的市场需要数据支撑,产生了市场对数据获取的急切要求;
2、MCU的发展使得计算能力快速提升;
3、以调制技术为核心的通讯技术发展为联网建立的管道基础;
4、传感技术,特别是以MEMS为标志的微电子技术的发展给予感知世界提供的保证;
工业物联网不是规划出来的,是各种技术与需求发展进化的产物,是生活、生产、经济发展到一定高度后自然而然出现的,是在需求的驱动下,众多行业创新带了的自然产物。
通过工业物联网,可以把传统经济中不可数字化之物数字化,可以把传统不可数字化之行为数字化,可以把传统不可能变为可能,甚至变为容易获得、解决的方案。
这个问题是第一个问题的延续,如果不考虑经济性,那么我们可以说工业物联网连接一切可连接之物,但是,当我们在做一个务实的、有价值的方案时就不能不考虑可行性及经济性,那么工业物联网连什么呢?我们认为这是一个从哪里来到哪里去的问题,我们通过上面对价值、意义和目的分析可知,我们应该从目的反推,一切从目的出发,时刻盯紧企业需要弥补的最关键环节,例如,如果对量化OEE有需求,那么我们就要连接设备状态;如果要减少在制品,那么我们就要对在制品进行追踪;如果能源消耗对企业是重中之重,那么我们就要把能效物联化,等等。世界上不存在同样的两片树叶,同样地,世界上也不存在同样的两个企业,我们只能对企业本身进行深入分析,紧紧聚焦于企业价值,在保证经济性的基础上,确定工业物联网的实施范围方案。联网范围一个核心点是连入物的属性,也就是说我们通过分析连入物的属性与企业建设工业物联网目标的耦合度,决定需要实施工业物联网的广度。
通过分析工业物联网连什么后,我们得到了连入物的内容,接下来需要我们决定是对每个/每类连入物我们该数字化哪些属性,这里遇到工业物联网特有的一个障碍,需要连入工业物联网的物的可连通性问题, 特别是在设备互联时,可连通性表现的特别突出,例如,有的设备具有开放的通讯协议和可用的通讯接口,有的设备不开放协议等等,那么可连通性就是对方案供应商的很大的考验,我们的经验是有四种方案可供选择:
1、使用设备开放的协议;
2、使用设备自带的传感器;
3、添加新的传感器;
4、改变观察侧面及维度,使用全新的采集模式;
其中第四条,改变观察的侧面和维度,使用全新的连接方式是使用第一性原理,避开设备不开放协议或接口的阻碍,避开被设备供应商牵着鼻子走的方向,从本质上获取数据。例如:通过能效检测获得设备的使用状态,通过震动传感分析设备部件的故障、甚至是转速等,只要通过第一性原理从你需要的信息入手,而不是被动地从设备可以提供的数据入手来提供物联解决方案的方式。直接把我们需要的信息做为目标,观察除了直接连接设备外,我们还能够如何获得需要的信息,因为只有我们获得的数据能够与设备提供的数据在信息上能够“同构”即可。例如,我们可以在我们的物联设备上安装一个震动传感器,从传感器获得的数据中,我们即得到了设备是否开机,又得到了是否启动工作,同时还得到设备的转速。如果不用第一性原理,而是硬要跟设备互联,那至少要采集三个数据,并且未必设备能够给你。这就是典型的边缘计算的案例,边缘计算的计算规则一定要具有定制能力,可以说边缘计算一定是一个知识容器,可以方便地把客户、厂家,甚至是第三方的知识融入的容器,我们开发的支持脚本的设备已经具有了初步的边缘计算的功能,我们需要在这个方面继续加大支持力度。
所以,通过分析企业价值和物的可连通性,我们就可以明确定义需要连入物层级,也就明确了连入物的连接深度;
在连入物联网的物的层级中一个重要的概念是管理粒度,对于制造业来说,连入物的管理粒度大概分为如下几个层级:
1、传感级;
2、设备级;
3、产线级;
4、车间级;
5、企业级;
也就是说我们要在经济性可行的前提下定义数据获取的粒度。理论上讲,细粒度一定比粗粒度更好,更有价值,但是当加入成本分析后,可能并不一定粒度越细越好,需要按照各种制约因素找到一个平衡点。
价值成本永远在企业行为中持有权值最高的赞同或者否决的一票,通过前三项分析,我们仅剩下最后一个问题没有解决,这也是关乎价值成本的关键:管理粒度问题,我们到底需要在多细的粒度下进行管理?这带来了一个哲学问题:世界是不是需要黑盒子。什么意思呢?当我们确定一个管理粒度后,比管理粒度更细的信息将被隐藏在黑盒子中,这个黑盒子将成为我们分析深度或者认知深度的制约因素和约束条件。我们可以通过价值成本分析来找到这个平衡点,从而明确黑盒子的大小,并最终确定连入工业物联网的物的特性。
我们的期许是工业物联网建设的价值观,其他一起都是方法论。首先,我们在规划物联网时要本着既要有高瞻远瞩,又要有务实可行的精神。在思考黑盒子的大小时我们要高瞻远瞩,设计方案尽可能地以黑盒子尽量小为目标,而实施方案则按照价值成本分析选择合适的黑盒子的大小,也就是选择合适的管理粒度,从而保证投入收益的平衡,甚至我们可以把黑盒子尽量定义的大些,用以验证工业物联网的可行性,最大可能地降低工业物联网实施的风险。
总之,我们应该从以几个方案来确定工业物联网的建设原则:
1、期望获得什么结果?
2、期望用什么方式获得想要的结果?
3、需要信息基础提供什么?
4、工业物联网是否能够获得这些信息?
5、工业物联网如何获得这些信息?
6、获得这些信息的性价比如何?
7、回归分析,评估预期结果是否符合经济利益?
8、落地实施。
1、工业物联网设备基于工业环境制造,要求比消费物联网高。
工业物联网的设备位于工业环境中,或许是在工厂车间内,也有可能在高速运行的铁路系统里,或者在酒店餐厅里,或市政照明系统里面,也有可能在电网里面。相比消费级物联网,工业物联网有着更加严格的要求,包括无时无刻的控制,坚如磐石的安全性能,复杂环境下(无论是极热或极冷,多尘,潮湿,嘈杂,不方便)运行的能力,以及无人自动化的 *** 作能力。不像大多数近期设计的消费者级别的设备,现有的很多工业设备已经运行了很长一段时间,通常以几十年衡量。
2、工业物联网系统必须具有可扩展性。
由于工业物联网应用环境更为复杂,使得工业物联网对扩展性的要求较高,比消费者家庭自动化项目复杂得多。工业物联网系统会产生数十亿个数据点,必须考虑将信息从传感器传输到最终目的地的方式 ——通常是工业控制系统,如SCADA(监控和数据采集) 平台。而消费者物联网应用涉及较少的设备和数据点,如何最大限度地减少中央服务器的吞吐量,并不算什么大问题。
3、工业物联网安全要求更高。
根据Hewlett Packard研究,有70%的物联网设备存在安全漏洞。如攻击者获得了客户财产相关的实时视频资料,那么对智能家居进行黑客攻击可能会对个人隐私造成重大影响,但网络入侵的影响是局部的。而工业物联网中就不同,这些系统通常要将传感器连接到关键的基础设施资源,如发电厂和水资源管理设施,那么其潜在的影响要严重得多。因此,工业物联网必须满足更严苛的网络安全要求,才能获得批准使用。
物联网是指通过各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实时采集任何需要监控、 连接、互动的物体或过程,采集其声、光、热、电、力学、化学、生物、位置等各种需要的信息,通过各类可能的网络接入,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。物联网是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络。
物联网市场增长很快,近三年来数量增长每年翻番,其中以云平台构建市场成为主流形式,在疫情推动市场集中度进一步提升的大环境下,物联网平台市场前 10 平台市占率预计突破 60%。
物联网集中度高主要由于头部平台企业市场资源丰富,增长迅速;平台能力强大,易吸引大客户;虽然平台市场整体盈利能力不强,基本上大平台都脱胎于大公司,有着强大的资金续航能力。
目前全球有超过 600 多家物联网平台公司,主要可以区分为通信厂商、互联网厂商、IT 厂商、工业厂商、物联网厂商、新锐企业。
通信厂商主要包括运营商和通信设备供应商。如ctwing物联网市场,联通物联,中移物联,主要特点是汇聚电信能力和互联能力,向合作伙伴提供统一规范的服务。以ctwing为例,将物联网与5G、AI 、边缘计算、区块链、大数据等新技术深度融合,并基于中国电信CTWing50打造的物联网一站式购物平台,成为中国电信物联网产业生态的汇集地,提供丰富的5G、芯片模组、应急消防、安防监控、追踪定位、智慧能源、智慧农业、智慧养老等细分行业的产品服务,为合作伙伴提供产品快速上架通达省市的渠道。
互联网厂商主要包括阿里巴巴、腾讯、百度、京东等企业,这类企业在生态构筑和 AI 技术上有优势。如阿里云 提供云管边端等基础产品接入及技术赋能、行业解决方案合作与实施、软硬件销售、营销推广、需求对接等快速商业变现通道。
IT 厂商主要包括浪潮、IBM、中国通服等企业,这类企业在 IT 方面有深刻理解。如用友利用物联网、AI、数字孪生等技术搭建的平台,拥有精智物联平台、精智云盒、精智时序数据库YonTimesDB+流式计算引擎、精智数据魔方、精智工业大脑等产品。
工业厂商则包括富士康、三一集团、施耐德电气、西门子、徐工集团等工业企业为主,平台以工业垂直能力为主。如通用电气是连接机器、数据、人员以及其他资产,使用分布式计算、大数据分析、资产数据管理和 M2M 通信的领先技术,提供广泛的工业微服务,使企业能够提供生产力。
物联网厂商平台主要根植于物联网时代,为物联网而生的平台企业,主要包括创通联达、联想懂的通信、涂鸦智能、小匠物联、萤石云等。如联想采用互联网云平台架构设计,依托物联网、机器视觉识别等技术,接入感知设备采集用户侧数据,建立统一的数据中心和设备管理中心,形成统一的应用服务中台,提升了设备状态感知。
新锐企业大多由 IT、OT、CT 领域经验丰富的专家建立,往往专注在某个领域。如瀚云工业物联网平台面向制造业数字化、网络化、智能化需求,构建基于海量数据采集、汇聚、分析的服务体系,支撑制造资源泛在连接、d性供给、高效配置。
一、将真实的加工制造连接到工业40如果使用了工业40技术,一个新的加工制造生产线可以实现多达25种的产品变化,同时将产量提高10%,库存减少30%。工业40架构的应用让制造商在生产过程中可以获得更丰厚的投资回报率。
工业40是一场工业的革命,目的是将信息技术(IT)的虚拟世界、机器的物理世界以及互联网合为一体。其中心是将具有IT功能的所有工业领域都整合起来。这些科技提高了灵活度和速度,能够使产品更具有个性化,生产更高效且规模可扩展,以及在生产控制方面具有更高的可变性。机器与机器之间的通讯和先进的机器智能化,提高了工艺的自动化水平,并带来了更多的自我监控以及实时数据。开放的基于Web的平台会增加制造企业的竞争力。
1分布式智能
这里说的分布式智能是指在智能传动和控制技术网络的机器设备中,加入尽可能多的智能和控制功能、或者单独的传动轴,而不是从一个中央处理单元(CPU)来处理所有的动作。
拥有机器层面的过程数据并决定用它做什么,反映出了人们相信一台机器可以经过装备使用过程数据做一些事情并且独自改善工艺流程,诸如实现调整产量、更加有效率的利用能源等目标,而不是依赖“云”来处理所有这些任务。
联网的机器可以与更高的生产线级别、工厂级别以及企业级别的网络进行通讯,从而能够实现对特定事件或特定产品的实时调节。集成了传动的伺服马达和无机柜传动系统将传动组件和运动逻辑顺序放到了单独的轴向上。
2快速连接
那些允许数据在整个企业架构中自由流动的系统,往往需要持续的投资和改进。一家工业40工厂车间所产生的大数据和信息流,可能会让公司的网络不堪重负。我们该如何改进自动化系统中的硬件和软件的功能,使这种设计流程更简单、花费更少的时间以及更加开放?通讯路径随着其创建和实施而变得更加流畅。在决定应该使用现场总线的什么功能时,应该看一下生产平台是否支持例如OPC
UA(来自于OPC基金会)这样的标准。消除不同供应商系统的障碍,而且对通讯和控制平台采取一种更加开放的方式很重要。
3开放标准和系统
重点是要思考系统到底“开放”到什么程度,是否支持新兴的通讯协议和软件标准,以及开放的独立组件如何让工业40成为现实。
开放标准允许基于软件的解决方案可以更加灵活地集成,并有可能将新的技术移植进现有的自动化架构中。开放的控制和工程软件也沿着这个方向将自动化和IT软件程序之间的间隙弥合。一个开放的控制器核心能够使用常用的高级IT语言(例如Java和C++)来创建自动化应用程序。
一台机器的 *** 作应该支持与智能手机或平板电脑进行简单的连接。软件可以借助控制器与3D模型软件的连接来加快自动化系统的设计和调试。一个运动控制器可以与模型之间发送指令以及接收反馈,使得机器的功能性在机械设计阶段通过运动控制就得到优化。这也让机器测试和编程可以在调试之前进行。在部件订货、组装机器之前,虚拟机器可以用来进行测试并完善设计。
4实时数据整合
在工业40的工厂里,可能利用实时的机器和工厂性能数据来改变自动化系统和生产工艺的管理方式。不用捕捉并分析数月以来有价值的关于生产率、机器停机时间或者能源消耗的数据,支持工业40的平台能够将数据整合到常规的工厂管理报告之中。这会让制造商和机器具备详细的信息来执行快速的工艺和生产变更,以实现产品满足特定客户需求的愿景。
5自适应性
现实世界中的主动性可以让生产更加连贯并以需求为导向。科技帮助生产线变得主动。目标就是让工作站和模块可以适应个性化的客户或产品需求。
在一个制造液压阀的工厂里,一套新的自适应组装生产线在每一件被加工件上都使用射频识别芯片。生产线上的9个智能站会识别出最终产品是如何被装配的,以及哪些工具设置和 *** 作步骤是必须的。每个相关加工件都带有蓝牙标签,会自动将信息传送给装配站。装配步骤信息会根据不同的产品以及相关加工件的技术水平不同而显示出来。该生产线可以生产一批相同尺寸的液压阀,也可以不需要人工干预就能生产25种不同产品型号。不再需要设定时间或者多余的库存。这使得生产线的产量增加了10%,库存减少了30%。
二、让工业40和IIoT在智能工厂里运行
工业40和工业物联网(IIoT)能够为设备(从传感器到大规模控制系统)、数据和分析之间提供更好的连接性,Beckhoff自动化的TwinCAT产品专家Daymon
Thompson这样认为。传感器和系统需要网络连接来共享数据,分析有助于做出更明智的决策。
物联网主要包括4个基本元素:实体的设备、与设备之间的双向连接、数据以及分析。设备可以是小到一个传感器大到一个大规模控制系统中的任何一种。传感器和系统需要与更大的网络进行连接,以共享由传感器或系统产生的数据。对此数据进行的分析会产生可执行的信息,其结果是让人们做出精明的决策。
在IIoT的实际应用中,
企业通过将设备或资产连接到云或者本地信息技术(IT)设施上来进行数据的采集和传送。然后对采集到的数据进行分析,可以发现设备或资产更多的潜在信息,防患于未然。
例如
,监控机械组件运行温度的传感器可以追踪任何异常状况或者偏离底线的情况。这使公司可以主动地处理不希望发生的行为,从而在可能造成有害危险的系统故障加剧之前进行预测性维护,否则这些系统故障可能会导致工厂停机以及生产收益损失。这种类型的信息有助于企业新产品的设计、系统性能效率的提高以及实现利润的最大化。
工业40让加工制造更灵活
在一个生产制造流程,甚至是整个供应链中,通过连接性推动更多的新发现和系统优化,这是工业40的核心概念之一,这种科技进步也被称为第四次工业革命。
工业40工作组成员、德国国家科学与工程院Acatech,将18世纪蒸汽机的发明和广泛使用定义为第一次工业革命。第二次革命是20世纪早期在装配线上使用传送带。第三次革命是在20世纪中叶开发出来的微电子学、PC和可编程逻辑控制器(PLC)。第四次革命是将PC和机器连接到互联网,并启用信息物理系统(CPS)。
工业40要求传统的生产制造工业实现计算机化。使用物联网和信息物理系统的概念会帮助实现“智能工厂”的目标,使生产制造具有前所未有的灵活性和非常高的精益生产效率。在生产制造中,一个显着的特点是重点关注的领域从产品本身扩展到了生产这些产品的工艺上。
制造商需要灵活的生产线来适应快速变化的客户需求。灵活的机器运行能够生产很多类型的产品,通过调整批量大小来获得更高的生产利润,这使得同一个生产线可以运行更复杂的混合产品以适应客户不断变化的需求。1 GE
Predix是第一个被认为是世界上最大的工业互联网平台,但推广不尽人意。
2西门子
2019年西门子一直在推动其MindSphere,在国内进行了多次的产品推广会,希望超越GE Digital的Predix。西门子是一家庞大的跨国公司,只需将其自己的设备连接到MindSphere,即可使其成为世界上最大的IIoT网络。
3施耐德电气(WonderWare)
施耐德电气主要提供能源管理系统和工业自动化解决方案,两者都非常适合IIoT网络。借助像施耐德电气的WonderWare这样的IIoT网络,可以对所有电机和机器人以及诸如此类的东西进行集中监控和管理。未来,只有一个人坐在控制室中的计算机上,可以直接访问故障机器并查看传感器参数,并且机器知道如何解决。
4 SAP
物联网工程师需要学习一下几个方面:
1、物联网产业与技术导论:全面了解物联网之RFID、M2M、传感网、两化融合等技术与应用。
2、C语言程序设计:物联网涉及底层编程,C语言为必修课,同时需要了解OSGi,OPC,Silverlight等技术标准。
3、单片机原理及应用:物联网的底层单片机及其相关应用技术,包括控制、多媒体等。
4、Java程序设计:物联网应用层,服务器端集成技术,开放Java培训技术也是必修课,同时需要了解Eclipse,SWT,Flash,HTML5等技术使用。
5、物联网工程概论:全面了解物联网基本知识、技术体系以及相关理论,对物联网的关键技术,如EPC和RFID技术、传感器技术、无线传感器网络技术、M2M技术等。同时应对与物联网密切相关的云计算、智能技术、安全技术也进行论述。
6、无线传感网络概论:学习各种无线RF通讯技术与标准,Zigbee,蓝牙,WiFi,GPRS,CDMA,3G,4G,5G等等。
7、TCP/IP网络与协议:TCP/IP以及OSI网络分层协议标准是所有有线和无线网络协议的基础,Socket编程技术也是基础技能。
8、嵌入式系统技术:嵌入式系统是物联网感知层和通讯层重要技术。
9、传感器技术概论:物联网专业学生需要对传感器技术与发展,尤其是在应用中如何选用有所了解,但不一定需要了解传感器的设计与生产,对相关的材料科学,生物技术等有深入了解。
10、RFID技术概论:RFID作为物联网主要技术之一,需要了解。
11、工业信息化及现场总线技术:工业信息化也是物联网主要应用领域,需要了解。
物联网软件、标准、与中间件技术:物联网产业发展的关键在于应用,软件是灵魂,中间件是产业化的基石,需要学习和了解。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)