公钥和私钥加密主要算法有哪些,其基本思想是什么

公钥和私钥加密主要算法有哪些,其基本思想是什么,第1张

加密算法
加密技术是对信息进行编码和解码的技术,编码是把原来可读信息(又称明文)译成代码形式(又称密文),其逆过程就是解码(解密)。加密技术的要点是加密算法,加密算法可以分为对称加密、不对称加密和不可逆加密三类算法。
对称加密算法 对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。不足之处是,交易双方都使用同样钥匙,安全性得不到保证。此外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量成几何级数增长,密钥管理成为用户的负担。对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。在计算机专网系统中广泛使用的对称加密算法有DES和IDEA等。美国国家标准局倡导的AES即将作为新标准取代DES。
不对称加密算法不对称加密算法使用两把完全不同但又是完全匹配的一对钥匙—公钥和私钥。在使用不对称加密算法加密文件时,只有使用匹配的一对公钥和私钥,才能完成对明文的加密和解密过程。加密明文时采用公钥加密,解密密文时使用私钥才能完成,而且发信方(加密者)知道收信方的公钥,只有收信方(解密者)才是唯一知道自己私钥的人。不对称加密算法的基本原理是,如果发信方想发送只有收信方才能解读的加密信息,发信方必须首先知道收信方的公钥,然后利用收信方的公钥来加密原文;收信方收到加密密文后,使用自己的私钥才能解密密文。显然,采用不对称加密算法,收发信双方在通信之前,收信方必须将自己早已随机生成的公钥送给发信方,而自己保留私钥。由于不对称算法拥有两个密钥,因而特别适用于分布式系统中的数据加密。广泛应用的不对称加密算法有RSA算法和美国国家标准局提出的DSA。以不对称加密算法为基础的加密技术应用非常广泛。
不可逆加密算法 不可逆加密算法的特征是加密过程中不需要使用密钥,输入明文后由系统直接经过加密算法处理成密文,这种加密后的数据是无法被解密的,只有重新输入明文,并再次经过同样不可逆的加密算法处理,得到相同的加密密文并被系统重新识别后,才能真正解密。显然,在这类加密过程中,加密是自己,解密还得是自己,而所谓解密,实际上就是重新加一次密,所应用的“密码”也就是输入的明文。不可逆加密算法不存在密钥保管和分发问题,非常适合在分布式网络系统上使用,但因加密计算复杂,工作量相当繁重,通常只在数据量有限的情形下使用,如广泛应用在计算机系统中的口令加密,利用的就是不可逆加密算法。近年来,随着计算机系统性能的不断提高,不可逆加密的应用领域正在逐渐增大。在计算机网络中应用较多不可逆加密算法的有RSA公司发明的MD5算法和由美国国家标准局建议的不可逆加密标准SHS(Secure Hash Standard:安全杂乱信息标准)等。
加密技术
加密算法是加密技术的基础,任何一种成熟的加密技术都是建立多种加密算法组合,或者加密算法和其他应用软件有机结合的基础之上的。下面我们介绍几种在计算机网络应用领域广泛应用的加密技术。
非否认(Non-repudiation)技术 该技术的核心是不对称加密算法的公钥技术,通过产生一个与用户认证数据有关的数字签名来完成。当用户执行某一交易时,这种签名能够保证用户今后无法否认该交易发生的事实。由于非否认技术的 *** 作过程简单,而且直接包含在用户的某类正常的电子交易中,因而成为当前用户进行电子商务、取得商务信任的重要保证。
PGP(Pretty Good Privacy)技术 PGP技术是一个基于不对称加密算法RSA公钥体系的邮件加密技术,也是一种 *** 作简单、使用方便、普及程度较高的加密软件。PGP技术不但可以对电子邮件加密,防止非授权者阅读信件;还能对电子邮件附加数字签名,使收信人能明确了解发信人的真实身份;也可以在不需要通过任何保密渠道传递密钥的情况下,使人们安全地进行保密通信。PGP技术创造性地把RSA不对称加密算法的方便性和传统加密体系结合起来,在数字签名和密钥认证管理机制方面采用了无缝结合的巧妙设计,使其几乎成为最为流行的公钥加密软件包。
数字签名(Digital Signature)技术 数字签名技术是不对称加密算法的典型应用。数字签名的应用过程是,数据源发送方使用自己的私钥对数据校验和或其他与数据内容有关的变量进行加密处理,完成对数据的合法“签名”,数据接收方则利用对方的公钥来解读收到的“数字签名”,并将解读结果用于对数据完整性的检验,以确认签名的合法性。数字签名技术是在网络系统虚拟环境中确认身份的重要技术,完全可以代替现实过程中的“亲笔签字”,在技术和法律上有保证。在公钥与私钥管理方面,数字签名应用与加密邮件PGP技术正好相反。在数字签名应用中,发送者的公钥可以很方便地得到,但他的私钥则需要严格保密。
PKI(Public Key Infrastructure)技术 PKI技术是一种以不对称加密技术为核心、可以为网络提供安全服务的公钥基础设施。PKI技术最初主要应用在Internet环境中,为复杂的互联网系统提供统一的身份认证、数据加密和完整性保障机制。由于PKI技术在网络安全领域所表现出的巨大优势,因而受到银行、证券、政府等核心应用系统的青睐。PKI技术既是信息安全技术的核心,也是电子商务的关键和基础技术。由于通过网络进行的电子商务、电子政务等活动缺少物理接触,因而使得利用电子方式验证信任关系变得至关重要,PKI技术恰好能够有效解决电子商务应用中的机密性、真实性、完整性、不可否认性和存取控制等安全问题。一个实用的PKI体系还必须充分考虑互 *** 作性和可扩展性。PKI体系所包含的认证中心(CA)、注册中心(RA)、策略管理、密钥与证书管理、密钥备份与恢复、撤销系统等功能模块应该有机地结合在一起。
加密的未来趋势
尽管双钥密码体制比单钥密码体制更为可靠,但由于计算过于复杂,双钥密码体制在进行大信息量通信时,加密速率仅为单钥体制的1/100,甚至是 1/1000。正是由于不同体制的加密算法各有所长,所以在今后相当长的一段时期内,各类加密体制将会共同发展。而在由IBM等公司于1996年联合推出的用于电子商务的协议标准SET(Secure Electronic Transaction)中和1992年由多国联合开发的PGP技术中,均采用了包含单钥密码、双钥密码、单向杂凑算法和随机数生成算法在内的混合密码系统的动向来看,这似乎从一个侧面展示了今后密码技术应用的未来。
在单钥密码领域,一次一密被认为是最为可靠的机制,但是由于流密码体制中的密钥流生成器在算法上未能突破有限循环,故一直未被广泛应用。如果找到一个在算法上接近无限循环的密钥流生成器,该体制将会有一个质的飞跃。近年来,混沌学理论的研究给在这一方向产生突破带来了曙光。此外,充满生气的量子密码被认为是一个潜在的发展方向,因为它是基于光学和量子力学理论的。该理论对于在光纤通信中加强信息安全、对付拥有量子计算能力的破译无疑是一种理想的解决方法。
由于电子商务等民用系统的应用需求,认证加密算法也将有较大发展。此外,在传统密码体制中,还将会产生类似于IDEA这样的新成员,新成员的一个主要特征就是在算法上有创新和突破,而不仅仅是对传统算法进行修正或改进。密码学是一个正在不断发展的年轻学科,任何未被认识的加/解密机制都有可能在其中占有一席之地。
目前,对信息系统或电子邮件的安全问题,还没有一个非常有效的解决方案,其主要原因是由于互联网固有的异构性,没有一个单一的信任机构可以满足互联网全程异构性的所有需要,也没有一个单一的协议能够适用于互联网全程异构性的所有情况。解决的办法只有依靠软件代理了,即采用软件代理来自动管理用户所持有的证书(即用户所属的信任结构)以及用户所有的行为。每当用户要发送一则消息或一封电子邮件时,代理就会自动与对方的代理协商,找出一个共同信任的机构或一个通用协议来进行通信。在互联网环境中,下一代的安全信息系统会自动为用户发送加密邮件,同样当用户要向某人发送电子邮件时,用户的本地代理首先将与对方的代理交互,协商一个适合双方的认证机构。当然,电子邮件也需要不同的技术支持,因为电子邮件不是端到端的通信,而是通过多个中间机构把电子邮件分程传递到各自的通信机器上,最后到达目的地。

物联网把计算技术带入了与国家基础设施、人们日常生活密切相关的领域,小如心脏起搏器,大如国家电网

CPS大部分应用领域是与食品卫生一样的安全敏感的领域,CPS的技术和产品需要经过政府严格的安全监督和认证

CPS技术和产品必须成为高可靠的、行为确定的产品,由此需要可靠和确定的嵌入式系统

嵌入系统在提供便利和带来增值效益的同时,也向外界敞开了系统,从而增加了来自外部攻击的风险

这些风险真实存在并日益增长,企业急需应对措施,用于防止知识产权的流失,防止恶意代码篡改

什么是嵌入式系统的安全保护从嵌入式系统安全保护的角度来看,可分为完整性保护、机密性保护及可鉴别性保护

什么是完整性保护“完整性保护”包括各种安全保障措施,即保护系统资源、程序代码和数据内容等信息,防止非法篡改及未经授权的身份

保证数据的完整性,即使不能完全实现,也要确保整个系统进入安全模式,并停止执行任何功能

最好的完整性保护解决方案是基于加密技术即诸如数字签名、消息认证等相关安全机制而产生的

什么是机密性保护“机密性保护”是指要构建整体的加密体系来保护嵌入式系统代码安全和数据隐私

防止整个机器或设备被非法伪造,通过防止逆向工程保护企业自主研发的专有算法或方法;通过数据保护确保生产数据不被非法篡改,保证生产安全

什么是身份认证保护“身份认证保护”要构建完整的信任体系来保证所有的行为、来源、数据的完整性等都是真实可信的

用户在与某个安全的嵌入式系统交互之前,必须经过一个认证过程来核实他们的身份

认证方案可能包括秘密口令、生理特征(如指纹)或安全设置(如智能卡或密钥)三者的各种组合

CodeMeter是德国威步公司研发的加密解决方案,采用强大的加密算法及安全的嵌入式硬件元器件(智能卡安全芯片),可用于完整性保护、软件版权、数据保护及身份认证保护

下面我们看看完整性加密流程:通过AxProtector加密工具,未经加密的原程序需要按以下步骤进行设计和加密:1

计算原程序中的Hash值;2

采用开发商的私钥对Hash值签名;3

采用原程序种子码生成的密钥、开发商的私钥及其他一些公开的参数,对原程序进行加密;4

加载用于加密软件签名证书的公钥部分

CodeMeter完整性检验流程:检验包括以下步骤:当程序加载时,按下列步骤执行

同时执行的应用程序被加载

此时需要借助系统集成工具—威步信息系统加解密引擎AxEngine

1

如验证到当前有效许可,则加密的软件进行解密2

公用根密钥检验授权过程中的证书以及证书链3

计算解密后的原始软件的HASH值4

使用公钥验证HASH签名

CodeMeter嵌入式系统软件版权及数据加密方案基于CodeMeter技术的解决方案,完全不用任何代码开发,即可全自动实现以下功能:1

加密程序代码,防止静态代码分析和逆向工程2

签名程序代码,包括应用程序和 *** 作系统图像3

存储私钥用于解密4

存储供应商的签名私钥5

加载和运行系统过程中进行签名和HASH验证,用于防伪6

采用先进的ECC和RSA非对称算法,实现身份认证功能CodeMeter产品,基于大容量的安全智能卡芯片,存储和管理安全密钥

为嵌入式系统提供有效的防护措施,以免遭受恶意攻击,并保护敏感数据和密钥

CodeMeter硬件产品可提供多种工业接口形式,诸如USB、CF卡、SD卡及TF卡等等用于满足不同的工业应用

CodeMeter软授权产品可以采用绑定硬件设备硬件指纹的方式,为嵌入式系统加密及授权提供更多的选择

CodeMeter支持Windows,MacOSX,Linux,Unix等多种 *** 作系统,以及WindowsEmbedded,Linux,VxWorks以及诸如CODESYS的PLC也同样适用

CodeMeter软件保护解决方案采用了先进的对称和非对称加密算法(AES,RSA,ECC),同时使用了哈希函数(SHA-256),椭圆曲线数字签名方案(ECDSA)以及随机数生成器

CodeMeter凭借上述多种加密方法,用于防止盗版、逆向工程以及非法入侵,有效的保护专业知识产权不被侵犯;并且可以有效防止代码篡改及非法身份登陆,确保嵌入式 *** 作系统和应用程序安全地启动和运行

您好,联通物联卡业务是中国联通面向物联网用户提供的采用物联网专用号段作为通信接入业务,通过专用网元设备支持短信和流量等基础通信服务,并提供通信状态管理和通信鉴权等智能通道服务,默认开通物联网专用的短信接入服务号和物联网专用APN。根据国家《电话用户真实身份信息登记规定》、《中华人民共和国反恐怖主义法》等要求所有电话用户需依法登记真实身份信息,因此现在三大运营商针对所有号码入网都需实名制登记和认证。物联网卡是通过装置在各类物体上的SIM卡、传感器、二维码等,经过接口与无线网络连接,可以实现人与物体和物体与物体间的沟通和对话,这种将物体连起来的网络称为物联网。谢谢。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12983419.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存