在物联网典型体系架构中云计算平台属于什么层

在物联网典型体系架构中云计算平台属于什么层,第1张

云计算的层次架构为应用层、中间层、基础设施层。

1、应用层

应用层是以友好的用户界面为用户提供所需的各项应用软件和服务,应用层直接面向客户需求,向企业客户提供CRM、ERP、OA等企业应用。

2、中间层

中间层是承上启下的一层,它在基础设施层所提供资源的基础上为用户提供服务,包括了访问控制、资源管理、数据库和中间件等集群,同时可通过集成API为客户提供定制开发接口。

3、基础设施层

基础设施层是为中间层或者用户提供其所需的计算和存储等资源,并通过虚拟化等技术奖资源池化,以实现资源的按需分配和快速部署。

所谓三层体系结构,是在客户端与数据库之间加入了一个中间层。三层体系不是指物理上的三层,不是简单地放置三台机器就是三层体系,三层是指逻辑上的三层,即使这三个层放置到一台机器上。三层体系结构的应用程序将业务规则、数据访问、合法性校验等工作放到了中间层进行处理。通常情况下,客户端不直接与数据库进行交互,而是通过与中间层通讯建立连接,再经由中间层与数据库进行交互。
在基于B/S的三层体系结构中,表示层、中间层、数据层被分割成三个相对独立的单元。
表示层(Browser)位于客户端,一般没有应用程序,借助于Javaapplet、Actives、Javascript、vbscript等技术可以处理一些简单的客户端处理逻辑。它负责由Web浏览器向网络上的Web服务器(即中间层)发出服务请求,把接受传来的运行结果显示在Web浏览器上。
中间层(WebServer)是用户服务和数据服务的逻辑桥梁。它负责接受远程或本地的用户请求,对用户身份和数据库存取权限进行验证,运用服务器脚本,借助于中间件把请求发送到数据库服务器(即数据层),把数据库服务器返回的数据经过逻辑处理并转换成HTML及各种脚本传回客户端。
数据层(DBServer)位于最底层,它负责管理数据库,接受Web服务器对数据库 *** 纵的请求,实现对数据库查询、修改、更新等功能及相关服务,并把结果数据提交给Web服务器。
在三层结构中,数据计算与业务处理集中在中间层,只有中间层实现正式的进程和逻辑规则。

简而言之,数据库是面向事务的设计,数据仓库是面向主题设计的。
数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。
数据库设计是尽量避免冗余,一般采用符合范式的规则来设计,数据仓库在设计是有意引入冗余,采用反范式的方式来设计。
数据库是为捕获数据而设计,数据仓库是为分析数据而设计,它的两个基本的元素是维表和事实表。维是看问题的角度,比如时间,部门,维表放的就是这些东西的定义,事实表里放着要查询的数据,同时有维的ID。
单从概念上讲,有些晦涩。任何技术都是为应用服务的,结合应用可以很容易地理解。以银行业务为例。数据库是事务系统的数据平台,客户在银行做的每笔交易都会写入数据库,被记录下来,这里,可以简单地理解为用数据库记帐。数据仓库是分析系统的数据平台,它从事务系统获取数据,并做汇总、加工,为决策者提供决策的依据。比如,某银行某分行一个月发生多少交易,该分行当前存款余额是多少。如果存款又多,消费交易又多,那么该地区就有必要设立ATM了。
显然,银行的交易量是巨大的,通常以百万甚至千万次来计算。事务系统是实时的,这就要求时效性,客户存一笔钱需要几十秒是无法忍受的,这就要求数据库只能存储很短一段时间的数据。而分析系统是事后的,它要提供关注时间段内所有的有效数据。这些数据是海量的,汇总计算起来也要慢一些,但是,只要能够提供有效的分析数据就达到目的了。
数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它决不是所谓的“大型数据库”。那么,数据仓库与传统数据库比较,有哪些不同呢让我们先看看WHInmon关于数据仓库的定义:面向主题的、集成的、与时间相关且不可修改的数据集合。
“面向主题的”:传统数据库主要是为应用程序进行数据处理,未必按照同一主题存储数据;数据仓库侧重于数据分析工作,是按照主题存储的。这一点,类似于传统农贸市场与超市的区别—市场里面,白菜、萝卜、香菜会在一个摊位上,如果它们是一个小贩卖的;而超市里,白菜、萝卜、香菜则各自一块。也就是说,市场里的菜(数据)是按照小贩(应用程序)归堆(存储)的,超市里面则是按照菜的类型(同主题)归堆的。
“与时间相关”:数据库保存信息的时候,并不强调一定有时间信息。数据仓库则不同,出于决策的需要,数据仓库中的数据都要标明时间属性。决策中,时间属性很重要。同样都是累计购买过九车产品的顾客,一位是最近三个月购买九车,一位是最近一年从未买过,这对于决策者意义是不同的。
“不可修改”:数据仓库中的数据并不是最新的,而是来源于其它数据源。数据仓库反映的是历史信息,并不是很多数据库处理的那种日常事务数据(有的数据库例如电信计费数据库甚至处理实时信息)。因此,数据仓库中的数据是极少或根本不修改的;当然,向数据仓库添加数据是允许的。
数据仓库的出现,并不是要取代数据库。目前,大部分数据仓库还是用关系数据库管理系统来管理的。可以说,数据库、数据仓库相辅相成、各有千秋。
补充一下,数据仓库的方案建设的目的,是为前端查询和分析作为基础,由于有较大的冗余,所以需要的存储也较大。为了更好地为前端应用服务,数据仓库必须有如下几点优点,否则是失败的数据仓库方案。
1效率足够高。客户要求的分析数据一般分为日、周、月、季、年等,可以看出,日为周期的数据要求的效率最高,要求24小时甚至12小时内,客户能看到昨天的数据分析。由于有的企业每日的数据量很大,设计不好的数据仓库经常会出问题,延迟1-3日才能给出数据,显然不行的。
2数据质量。客户要看各种信息,肯定要准确的数据,但由于数据仓库流程至少分为3步,2次ETL,复杂的架构会更多层次,那么由于数据源有脏数据或者代码不严谨,都可以导致数据失真,客户看到错误的信息就可能导致分析出错误的决策,造成损失,而不是效益。
3扩展性。之所以有的大型数据仓库系统架构设计复杂,是因为考虑到了未来3-5年的扩展性,这样的话,客户不用太快花钱去重建数据仓库系统,就能很稳定运行。主要体现在数据建模的合理性,数据仓库方案中多出一些中间层,使海量数据流有足够的缓冲,不至于数据量大很多,就运行不起来了。

传感器网络技术是物联网技术的核心

传感器技术是计算机应用中的一项关键技术。它将传输线上的模拟信号转换成可处理的数字信号,并将其交给计算机进行处理。

它主要将传感器、数据处理单元组件和通信组件集成在需要随机分布的信息采集和传输的区域,形成一个网络结构(即传感器网络)。节点数量相对较多,可以适应复杂多变的环境。作为物联网技术的核心,它在物联网与信息交换和传输之间起着非常重要的作用。

在物联网技术中,以物联网卡片为载体。通过在设备中插入物联网卡来实现身份识别和承载服务的功能,可以实现物联网的各种技术。

物联网时代,大量的数据从不同的设备传感器产生,单机数据库系统肯定无法存储这么大量的数据,在选择数据库方面,肯定要选择具有分布式能力存储的数据库。

在物联网时代,数据之间还有一个非常重要的特性,那就是数据之间的关联性。不同的数据从相互连接的互联网设备传感器中产生,由于不同的传感器相互连接,协同工作和采集数据,如何将大量具有相互关联的数据保存在数据库,这里我推荐使用图数据库来进行存储。

图数据库相对于其他数据库来说,最大的优势就是查询数据之间的关联性会更加快速,消耗的时间会更短。打个比方,在社交网络中,我们想要查询在用户A的粉丝中,粉丝关注了B的用户。如果使用传统关系型数据库来存储用户的关注关系,在上面的数据统计中,要使用两层Join才能算出结果,而关系型数据库Join *** 作会很慢。使用图型数据库存储数据的话,图中的点为用户,边为用户的关注关系,在查询A的粉丝,同时粉丝也关注B的用户,只需要遍历两层关注关系就能很快查询到结果。

图数据库也属于NoSql数据库的一种,常用的图形数据库有,JanusGraph、Neo4j、Cayley、dgraph。不同的图数据库,底层实现也不尽相同。

JanusGraph是一种分布式图数据库,由Java语言开发,可以使用Hadoop生态存储系统作为数据源,构建出数据大图。是TiTan图数据库的开源版本,支持事务的ACID。

Neo4j是一种单机的图数据库,其优势就是能够快速安装并且使用,便于新同学上手。你的数据量一般不大的话,我推荐使用Neo4j,直接使用Neo4j相关的API就可以将数据模型图构建而出,然后使用Neo4jCypher查询语言,就可以分析数据,Cypher是一种类SQL的语言。

Cayley和Dgraph都是使用Go语言实现的图数据库,Go语言的最大特性就是其编译速度和开发便捷性,Cayley和Dgraph都支持分布式存储,不过都不支持SQL语言查询数据,Dgraph不支持事务,而Cayley支持事务,不过在开源社区,Dgraph比Cayley更加活跃,这里优先建议使用Dgraph作为物联网的存储数据库。

总体来说,在物联网时代,一定要学会使用图数据库,在分析大量数据之间的关联性时,图数据库就能够派上用场,图数据库最大的优势就是分析不同数据之间的关联性。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12983602.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存