01 无线电池管理的设计优势
通用这次直接是和Analog Devices, Inc进行联合开发,从系统角度来看,目前通用有基于软包、方壳电池两种模组设计,而且整个产品线覆盖多个品牌以及从皮卡到性能车的多个细分市场,对比下iX3和Ultium电池,整个线束布局根本看不到采样线等。 我们可以看到Ultium虽然采用类似590模组的设计,但是有很大的区别:
1)不管是和集中式的iX3、还是和MEB的半分布式的相比,整个模组上去基本看不到线,基本形成了全覆盖
2)两个模组的上盖采用一体化的设计,从上面来看,整包几乎看不到任何线束和高压铜排,特别是中间连接处,对比来看就是真正达到我们想要的,装上去模组固定拧下螺丝就可以了,这里通用没有展示模组之间的处理过程,按照这个设计,可能直接上快插就可以,反正整体模组都是有遮盖的
3)无线 BMS的最大的好处,还是每个电池模块之间不再有传输的通信线了,可以这样理解配置了专门的管理系统以后,单个模组都能拿出来直接做全生命周期管理都可以获得监控和管理 如果在芯片架构上,能够做一些信息存储,也就是可以把电池管理系统的使用情况往回达到模块里面,那样等于电池模块里面就有一个电池记录器,一方面可以把温度、电压往外发,一方面记录每次使用的时间和信息情况,每个模组都可以拆开来单独使用,不考虑重新配置电池管理,换言之这种方式能更好的支持车电分离。电池不适合车用,直接读取和配置即可,通过无线收发器就可以。
02ADI的方案
在通用宣布以前,ADI就一家开始宣传自己的方案是在之前这套东西,当然由于没有车企官宣背书,而且目前分布式、半分布式、集中式大家都在用,无线电池管理是分布式演变的一个变种。
这块其实不少企业都在尝试,最早和方武他们开发的是一个分支方向,而ADI是基于IEEE 802154 24GHz的方案。根据我们之前的信息了解,这是基于SmartMesh嵌入式无线网路在工业物联网(IoT)应用中经过了现场验证,通过路径和频率分集来实现冗余。对于 汽车 的恶劣环境下的可靠性,从厂家来看似乎很好,较早之前在BMW i3 车型中整合了LTC6811电池组监控器和ADI SmartMesh网路技术做了一些尝试。
小结:从2年前来看确实有点超前,但是从2020年来看,随着车电分离还有不同领域应用的灵活性来看,这种方案有GM带头,大家也要跟着看看吧,万一真大规模推广,带来的变化确实挺大的SmartMesh项目是一个基于区块链的物联网底层协议,能让智能手机、智能设备等不通过互联网就可以相互连接的协议,SmartMesh内置区块链轻节点,扩展闪电与雷电等区块链二级架构网络协议实现代币的无网微支付。基于区块链代币的激励,SmartMesh可以自组织形成一个具有d性、去中心化、能够自我修复的Mesh Network,提供比互联网更高的近场速度和带宽,并且它通常是免费的。SmartMesh让区块链突破互联网边界进入IoT物联网与IoE万物互联时代。
二战期间,本应该凭借美貌吃饭的好莱坞女演员 Hedy Lamarr,却偏要凭实力与钢琴家 George Antheil 联手,研究跳频扩频(FHSS)技术。据相关资料记载,这项技术于1942 年8月被申请为专利。在此后近半个世纪的岁月中,这项技术一直未被重视,直到 20 世纪 80 年代,FHSS技术才被军方用于战场上的无线通讯系统。而后,FHSS技术下沉到大众市场,也影响到了蓝牙、WiFi等无线技术的发展。
时移世易,当初以FHSS为基础的蓝牙技术也发生了巨大的变化——其标准从蓝牙10升级到了蓝牙50再到LE Audio,在这场技术变迁的过程当中,蓝牙到底改变了什么?
蓝牙技术的起源
蓝牙技术最早可以追溯至 199 4年,当初,爱立信投身于蓝牙技术的研究是将其当做是RS-232数据线的替代方案。RS-232是常用的串行通信接口标准之一,它是由美国电子工业协会(EIA)联合贝尔系统公司、调制解调器厂家及计算机终端生产厂家于1970年共同制定。RS-232总线规定了25条线,包含了两个信号通道,即第一通道(称为主通道)和第二通道(称为副通道)。RS-232采用的是点对点连接,通常一个串口只能连接一个外设。而采用蓝牙技术则可以连接多个设备,从而克服了数据同步的难题。因此,蓝牙技术被视为是移动 电话 和其他配件间进行低功耗、低成本无线通信连接的方法。
199 7年,爱立信公司借此概念接触了移动设备制造商,讨论其项目合作发展并获得支持。 199 8年,爱立信、诺基亚、东芝、IBM和英特尔公司等五家企业成立了蓝牙技术联盟的前身——“特别兴趣小组”(Special Interest Group,SIG),其目标是开发一个成本低、效益高、可以在短距离范围内随意无线连接的蓝牙技术标准。在这当中,关于蓝牙的命名也发生了一件趣事。当时SIG的合同框架已经接近完成,但关于这项短据无线连接技术却还没有确定正式的名称,其备选名称PAN因偏向流行语,在当时的互联网搜索引擎中已经拥有很高的流量,因此,商标搜索没通过。英特尔的Jim Kardach建议使用蓝牙作为临时代号。后来有人引用Kardach的话说:“哈拉尔德国王蓝牙,以团结斯堪的纳维亚半岛而出名,正如我们打算通过短距离无线链路将PC和蜂窝产业结合在一起一样。”
07版是蓝牙的首个标准版本,其支持Baseband与LMP通讯协定两部分。 而后,SIG成立,又先后发布了蓝牙08版,09版、10 Draft版、10a版以及10B版。 199 9年下半年,微软、摩托罗拉、三星、朗讯与蓝牙特别小组的五家公司共同发起成立了蓝牙技术推广组织,从而在全球范围内掀起了一股蓝牙热潮。
蓝牙标准的演进推动终端应用变化
在这股蓝牙的热潮之下,蓝牙标准也伴随着技术终端应用的需求发生了改变。
199 9年所推出的蓝牙10版本,因为技术上存在着数据泄露的问题,所以,蓝牙并未立即受到广泛的应用。此外,当时对应蓝牙功能的电子设备种类少,蓝牙装置也十分昂贵,也是蓝牙未被大规模采用的原因之一。直到2001年,蓝牙11才做为首个正式商用的版本开始面向市场。该版蓝牙标准也被正式列入IEEE标准,也被称为IEEE 802151。同年,SIG成员公司超过2000家。
过了几年之后,蓝牙成为了电子产品的必备功能,其售价也因技术的成熟而大幅下降。为了扩宽蓝牙的应用层面和传输速度,SIG于2003和2004年先后推出了12(该版本为了解决容易受干扰的问题,加上了抗干扰跳频功能)、20版,并附加了很多新功能。据维基百科资料显示,20版本中增加了例如EDR(Enhanced Data Rate,配合20的技术标准,将最大传输速度提高到3Mbps)、A2DP(Advanced Audio Distribution Profile,一个控音轨分配技术,主要应用于立体声耳机)、AVRCP(A/V Remote Control Profile)等。Bluetooth 20将传输率提升至2Mbps、3Mbps,远大于1x版的1Mbps(实际约7232kbps)。蓝牙20版开始支持双工模式——即一面作语音通讯,同时也可以传输数据。也是从这个版本开始,蓝牙才被市场所认可。随后,在2007年中,SIG针对存在的问题进行了改进,并发布了蓝牙21版。此时,蓝牙技术的出现,让手机实现了可互相传输音视频以及等功能。但当时手机之间通过蓝牙连接的方式比较繁琐,配对双方都显示一个6位的数字,由用户来核对数字是否一致,并输入Yes/No,两端Yes表示一致即可配对。这种当时虽然繁琐,但却可以防止中间人攻击。
2009年,蓝牙 30 也开始面向市场,采用了全新的交替射频技术,并取消了UMB应用。在本年4月,蓝牙技术联盟颁布了蓝牙核心规范 30 版( 30 +HS),是一种全新的交替射频技术。蓝牙 30 +HS提高了数据传输速率,集成80211PAL最高速度可达24Mbps,是蓝牙20速度的8倍。此外,引入了增强电源控制,实际空闲功耗明显降低。这一特性还添加了闭环功率控制,意味着RSSI过滤可于收到回复的同时展开。此外,该版本中还增加了“直接开到最大功率(go straight to ma xi mum power)”的请求,旨在应对耳机的链路损耗,传统蓝牙耳机也逐渐流入市场。
2010年, 三位一体 蓝牙40的发布再次变革了蓝牙技术。在该版本发布之时,SIG还提出了“低功耗蓝牙”、“传统蓝牙”和“高速蓝牙”三种模式。其中,高速蓝牙主攻数据交换与传输;传统蓝牙则以信息沟通、设备连接为重点;蓝牙低功耗顾名思义,以不需占用太多带宽的设备连接为主。前身其实是NOKIA开发的Wibree技术,本是作为一项专为移动设备开发的极低功耗的移动无线通信技术,在被SIG接纳并规范化之后重命名为Bluetooth Low Energy(后简称低功耗蓝牙)。这三种协议规范还能够互相组合搭配、从而实现更广泛的应用模式,此外,Bluetooth 40还把蓝牙的传输距离提升到100米以上(低功耗模式条件下)。至此,通过蓝牙40的发布,也为接下来物联网的发展奠定了基础。
而后,2013年底,蓝牙技术联盟推出了蓝牙41规范,其目的是为了让 Bluetooth Smart技术最终成为物联网发展的核心动力。该版本提升了对LTE和批量数据交换率共存的支持,以及通过允许设备同时支持多重角色帮助开发者实现创新。通过蓝牙41版本,使得支持该标准的耳机、手表、键鼠,可以不用通过 PC、平板、手机等数据枢纽,实现自主收发数据。例如智能手表和计步器可以绕过智能手机,直接实现对话。2014年,SIG又更新了蓝牙标准,推出了蓝牙42,不但速度提升25倍,隐私性更高,还可以通过IPv6连接网络。这一技术允许多个蓝牙设备通过一个终端接入互联网或者局域网,这样,大部分智能家居产品可以抛弃相对复杂的 WiFi 连接,改用蓝牙传输,让个人传感器和家庭间的互联更加便捷快速。
2016年,蓝牙标准伴随着物联网应用的爆发也进行了继续演进,在此期间,SIG发布了蓝牙50版本,相比蓝牙40版本,50在传输速度提升了两倍,传输距离增加了四倍,数据传输量提升八倍,同时可以与 Wi-Fi 共存,不互相干扰。2019年,SIG又推出了蓝牙51,新增寻向功能,将蓝牙定位的精准度提升到厘米级,功耗更低、传输更快、距离更远、定位更精准。伴随着蓝牙51标准的推出,也让业界看到了将蓝牙技术应用于室内定位的前景,这也是目前蓝牙技术的未来发展前景之一。
此外,伴随着万物互联时代的来临,蓝牙技术也进行了吸收和扩展。除蓝牙1、2、3、4、5系列标准以外,蓝牙技术联盟于2017年7月正式宣布,蓝牙技术开始全面支持Mesh网状网络,据悉,蓝牙Mesh将兼容蓝牙 4 和 5 系列的协议。全新的Mesh功能提供设备间多对多传输,并特别提高构建大范围网络覆盖的通信能力,适用于楼宇自动化、无线传感器网络等需要让数以万计个设备在可靠、安全的环境下传输的物联网解决方案。伴随着蓝牙Mesh的推出,智能家居得到了极大的发展,该领域也被视为是蓝牙未来发展的又一方向。在2018年的国际消费电子展上,阿里巴巴与联发科宣布携手推动蓝牙Mesh技术,签署合作协议,打造了首款支持蓝牙Mesh技术的Smartmesh无线连接方案。
蓝牙新标准将再次对终端应用进行改革
2020年1月,蓝牙技术联盟在拉斯维加斯举办的CES2020上发布了其新一代蓝牙音频技术标准——低功耗音频LE Audio。该方案伴随着TWS耳机的爆发而被受 关注 ,因此,有业内人士认为,LE Audio蓝牙标准将再次对终端应用产生重大影响。
众所周知,此前传统蓝牙耳机没有得到广泛的使用,是因为其音质和续航时间并不令人满意。而采用了LE Audio蓝牙标准的TWS耳机,可以在低能耗下实现在更长的距离上传输更好的声音。据SIG官方网站介绍,在提升音质方面,LE Audio蓝牙标准中包括一个新的高质量,低功耗音频编解码器,即低复杂度通信编解码器(LC3)。LC3即使在低数据速率下也能提供高质量,它将为开发人员带来巨大的灵活性,使他们能够在关键产品属性(例如音频质量和功耗)之间进行更好的设计折衷。据相关报道显示,LC3的质量提高了三倍,传输音频时的能耗却降低了三倍。
据相关报道显示,SIG将于今年推出LE Audio的独立功能,SIG期望芯片制造商能够在明年至18个月的时间内发布支持LE Audio的新设计。这是因为LE Audio需要手机端先支持LE Audio标准后,TWS耳机才更有意义。因此,在这种情况下,TWS耳机还距离其真正的爆发时期还有一段距离。
同时,SIG在其官网中还介绍道,LE Audio将不仅为TWS耳机带来发展机会,这项标准也将推动其他音频产品的发展。例如,LE Audio将推动蓝牙助听器的开发,从而为越来越多的听力损失者带来蓝牙音频的所有好处。LE Audio还将添加广播音频,使音频源设备可以将一个或多个音频流广播到无限数量的音频接收器设备。广播音频为创新提供了重要的新机遇,其中包括启用新的蓝牙用例“音频共享”。蓝牙音频共享可以是个人的或基于位置的。通过个人音频共享,人们将能够与周围的其他人共享蓝牙音频体验;例如,与家人和朋友共享智能手机中的音乐。通过基于位置的音频共享,机场,酒吧, 体育 馆,**院和会议中心等公共场所现在可以共享蓝牙音频,从而增强访问者的体验。
结语
通过上述资料显示,蓝牙从最初的音频传输、图文传输、视频传输,演变成为了物联网传输的主角。尤其是在去年当中,蓝牙技术的发展也带动了TWS耳机市场变革。从蓝牙技术的变迁中看,它的发展对下游终端产品影响巨大。伴随着近几年来,终端产品的多样化趋势,也为蓝牙的发展带来了新的机会。
同时,蓝牙作为无线通信中的一员,蓝牙技术还需要与WiFi等其他无线传输技术进行竞争,蓝牙技术如何在这场竞争中保持优势,是值得业界所 关注 的。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)