解决方法:
1、请确认板卡安装是否正常。在设备管理器里面查看声音视频游戏控制器。是否找到未知设备。
如果无未知设备,那么肯定电脑没有识别到视频压缩卡的硬件信息,请用橡皮擦一下金手指。或是查下压缩卡与主板PCI槽是否接触良好。
2 如果经第一步骤,还是无硬件,则请确认一下主板是否与视频压缩卡不兼容(可能不兼容的主板芯片为SIS和VIA)。
或者,主板及视频压缩卡本身存在质量问题。建议更换主板或是视频压缩卡,再测试。
3、如果设备管理器里面存在未知设备,但是依然无法安装驱动,则请检查一下视频压缩卡背面的产品条码号。条码前三位是视频压缩卡型号。按该型号从中维网站上下载相应的软件,然后安装驱动。
4、如果按第三步的 *** 作,还是无法安装驱动,则建议联系中维技术客服人员4006307888,由技术人员提供解决办法。
海康GQ35设置方法是主菜单,录像设置开启录像打勾,设置,全天录像打勾,复制该设置至整个星期,复制确认,复制该设置至全部,复制确认重启。假如是想把录像机的视频信号输出到电视机,由电视机来接收视频信号播放,把录像机的av输出端子和电视的视频输入端子用相应的信号线连接好,调节电视的输入信号设置即可接收。
海康的介绍
海康是全球领先的以视频为核心的物联网解决方案提供商,致力于不断提升视频处理技术和视频分析技术,面向全球提供领先的监控产品和技术解决方案。
海康威视的营销及服务网络覆盖全球,目前在中国大陆34个城市已设立分公司,在香港,美国洛杉矶和印度也已设立了全资和合资子公司,并正在全球筹建更多的分支机构。
市场上海康产品可见的有很多,尤其是海康威视,海康威视数字技术股份有限公司,拥有业内领先的自主核心技术和可持续研发能力,提供摄像机,智能球机,光端机,DVR,DVS,板卡,网络存储,视频综合平台,中心管理软件等安防产品。
机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。
一个典型的工业机器视觉应用系统包括如下部分:光源,镜头,CCD照相机,图像处理单元(或图像捕获卡),图像处理软件,监视器,通讯/输入输出单元等。首先采用摄像机获得被测目标的图像信号, 然后通过A/ D 转换变成数字信号传送给专用的图像处理系统,根据像素分布、亮度和颜色等信息,进行各种运算来抽取目标的特征,然后再根据预设的判别准则输出判断结果,去控制驱动执行机构进行相应处理。机器视觉是一项综合技术,其中包括数字图像处理技术、机械工程技术、控制技术、光源照明技术,光学成像技术、传感器技术、模拟与数字视频技术、计算机软硬件技术、人机接口技术等。 机器视觉强调实用性,要求能够适应工业现场恶劣的环境,要有合理的性价比、通用的工业接口、较高的容错能力和安全性,并具有较强的通用性和可移植性。 它更强调实时性,要求高速度和高精度。
视觉系统的输出并非图像视频信号,而是经过运算处理之后的检测结果,如尺寸数据。上位机如PC和PLC实时获得检测结果后,指挥运动系统或I/O系统执行相应的控制动作,如定位和分选。从视觉系统的运行环境分类,可分为PC-BASED系统和PLC-BASED系统。基于PC的系统利用了其开放性,高度的编程灵活性和良好的Windows界面,同时系统总体成本较低。以美国DATA TRANSLATION公司为例,系统内含高性能图像捕获卡,一般可接多个镜头,配套软件方面,从低到高有几个层次,如Windows95/98/NT环境下C/C++编程用DLL,可视化控件activeX提供VB和VC++下的图形化编程环境,甚至Windows下的面向对象的机器视觉组态软件,用户可用它快速开发复杂高级的应用。在基于PLC的系统中,视觉的作用更像一个智能化的传感器,图像处理单元独立于系统,通过串行总线和I/O与PLC交换数据。系统硬件一般利用高速专用ASIC或嵌入式计算机进行图像处理,系统软件固化在图像处理器中,通过类似于游戏键盘的简单装置对显示在监视器中的菜单进行配置,或在PC上开发软件然后下载。基于PLC的系统体现了可靠性高、集成化,小型化、高速化、低成本的特点,代表厂商为日本松下、德国Siemens等。
德国Siemens公司在工业图像处理方面拥有超过20年经验积累,SIMATIC VIDEOMAT是第一个高性能的单色和彩色图像处理系统,并成为SIMATIC自动化系统中极重要的产品。而99年推出的SIMATIC VS710是业内第一个智能化的、一体化的、带PROFIBUS接口的、分布式的灰度级工业视觉系统,它将图像处理器、CCD、I/O集成在一个小型机箱内,提供PROFIBUS的联网方式(通讯速率达12Mbps)或集成的I/O和RS232接口。更重要的,通过PC WINDOWS下的Pro Vision参数化软件进行组态,VS 710第一次将PC的灵活性,PLC的可靠性、分布式网络技术,和一体化设计结合在一起,使得西门子在PC和PLC体系之间找到了完美的平衡。机器视觉系统在印刷包装中的应用 自动印刷品质量检测设备采用的检测系统多是先利用高清晰度、高速摄像镜头拍摄标准图像,在此基础上设定一定标准;然后拍摄被检测的图像,再将两者进行对比。CCD线性传感器将每一个像素的光量变化转换成电子信号,对比之后只要发现被检测图像与标准图像有不同之处,系统就认为这个被检测图像为不合格品。印刷过程中产生的各种错误,对电脑来说只是标准图像与被检测图像对比后的不同,如污迹、墨点色差等缺陷都包含在其中。
最早用于印刷品质量检测的是将标准影像与被检测影像进行灰度对比的技术,较先进的技术是以RGB三原色为基础进行对比。全自动机器检测与人眼检测相比,区别在哪里以人的目视为例,当我们聚精会神地注视某印刷品时,如果印刷品的对比色比较强烈,则人眼可以发现的、最小的缺陷,是对比色明显、不小于03mm的缺陷;但依靠人的能力很难保持持续的、稳定的视觉效果。可是换一种情况,如果是在同一色系的印刷品中寻找缺陷,尤其是在一淡色系中寻找质量缺陷的话,人眼能够发现的缺陷至少需要有20个灰度级差。而自动化的机器则能够轻而易举地发现010mm大小的缺陷,即使这种缺陷与标准图像仅有一个灰度级的区别。
但是从实际使用上来说,即便是同样的全色对比系统,其辨别色差的能力也不同。有些系统能够发现轮廓部分及色差变化较大的缺陷,而有些系统则能识别极微小的缺陷。对于白卡纸和一些简约风格的印刷品来说,如日本的KENT烟标、美国的万宝路烟标,简单地检测或许已经足够了,而国内的多数印刷品,特别是各种标签,具有许多特点,带有太多的闪光元素,如金、银卡纸,烫印、压凹凸或上光印刷品,这就要求质量检测设备必须具备足够的发现极小灰度级差的能力,也许是5个灰度级差,也许是更严格的1个灰度级差。这一点对国内标签市场是至关紧要的。
标准影像与被检印刷品影像的对比精确是检测设备的关键问题,通常情况下,检测设备是通过镜头采集影像,在镜头范围内的中间部分,影像非常清晰,但边缘部分的影像可能会产生虚影,而虚影部分的检测结果会直接影响到整个检测的准确性。从这一点来说,如果仅仅是全幅区域的对比并不适合于某些精细印刷品。如果能够将所得到的图像再次细分,比如将影像分为1024dpi X 4096dpi或2048dpi X 4096dpi,则检测精度将大幅提高,同时因为避免了边缘部分的虚影,从而使检测的结果更加稳定。
采用检测设备进行质量检测可提供检测全过程的实时报告和详尽、完善的分析报告。现场 *** 作者可以凭借全自动检测设备的及时报警,根据实时分析报告,及时对工作中的问题进行调整,或许减少的将不仅仅是一个百分点的废品率,管理者可以依据检测结果的分析报告,对生产过程进行跟踪,更有利于生产技术的管理。因为客户所要求的,高质量的检测设备,不仅仅是停留在检出印刷品的好与坏,还要求具备事后的分析能力。某些质量检测设备所能做的不仅可以提升成品的合格率,还能协助生产商改进工艺流程,建立质量管理体系,达到一个长期稳定的质量标准。
凹版印刷机位置控制及产品检测
由设置在生产线上的摄像机连续摄取印制品的视频图像,摄像的速度在30 帧/s 以下且可调。摄像机采集到的图像,首先进行量化,将模拟信号转化成数字信号,从中抽取一张有效代表镜头内容的关键帧,并将其显示在显示器上。对于一帧图像,可采用对静止图像的分析方法来处理,通过尺寸测量和多光谱分析可识别出视频图像上各色标,得出色标间距和色标的颜色参数以及一些其他相关。
由于各种因素影响,会出现各种各样的噪声,如高斯噪声、椒盐噪声及随机噪声等。噪声给图像处理带来很多困难,它对图像分割,特征提取,图像识别,具有直接的影响,因此实时采集的图像需进行滤波处理。图像滤波要求能去除图像以外的噪声,同时又要保持图像的细节。当噪声为高斯噪声时,最常使用的是线性滤波器,易于分析和实现;但线性滤波器对椒盐噪声的滤波效果很差,传统的中值滤波器能减少图像中的椒盐噪声,但效果不算理想,即充分分散的噪声被去掉,而彼此靠近的噪声会被保留下来,所以当椒盐噪声比较严重时,它的滤波效果明显变坏。本系统改进型中值滤波法。该方法首先求得噪声图像窗口中去除最大和最小灰度值像素后的中值,然后计算该中值与对应的像素灰度值的差,再与阈值相比较以确定是否用求得的值代替该像素的灰度值。
图像分割在该阶段中检测出各色标并与背景分离,物体的边缘是由灰度不连续性所反映的L 边缘种类可分为两种,其一是阶跃性边缘,它两边的像素的灰度值有显著不同;其二是屋顶状边缘,它位于灰度值从增加到减小的变化转折点L对于阶跃性边缘,其二阶方向导数在边缘处呈零交叉,因而可用微分算子来做边缘检测算子。微分算子类边缘检测法类似于高空间域的高通滤波,有增加高频分量的作用,这类算子对噪声相当敏感,对于阶跃性边缘,通常可用的算子有梯度算子Sobel 算子和Kirsh 算子。对于屋顶状边缘可用拉普拉斯变换和Kirsh 算子。由于色标为长方形,且相邻边缘灰度级相差较大,故采用边缘检测来分割图像。这里采用Sobert 边缘子来进行边缘检测,它是利用局部差分算子来寻找边缘,能较好的将色标分离出来。在实际的检测过程中,采用彩色图像边缘检测方法,选择合适的彩色基(如强度、色度、饱和度等)来进行检测。根据印刷机的类型特点,即印刷机各色的颜色和版图的特点,进行多阈值处理,得到各色的二值图。
将分割后的图像进行测量,通过测量值来识别物体,由于色标为形状规则的矩形,所以可对下述特征进行提取:(1) 由像素计算矩形面积,(2) 矩形度,(3) 色度(H ) 和饱和度(S ),然后根据各色标的间隔的像素点数量得到色标间的间距,与设定值比较,得到两者的差值,共进行m 次测量,取平均差值,给数字交流伺服调节部分提供相应的调节信号。以调节色辊的相对位置,从而消除或减少印刷错位。在特征提取时,对图像进行多光谱图像分析,可以定量地表示色标,如彩色数图像中像素的颜色,采用HIS 格式得到各色标颜色信息的两个参数:色度和饱和度,以此来检测油墨的质量。对各色二值图再进行统计计算或与标准图形进行样板匹配,测量印刷过程中墨屑等参数。
印刷机由开卷机放卷运行依次经过各印刷单元,进行各色的印刷和烘干,由收卷机进行收卷L 每色印刷都会在印料的边沿印上以供套色用的色标,该色标线水平10mm,宽1 mm ,每个相邻颜色的标志线在套印精确时应相互平行,垂直(纵向)相巨20 mm,由设置在生产线上的摄影机连续摄取印制品的视频图像,通过尺寸测量和多光谱分析可识别出视频图像上各色标,得出色标间距和色标的颜色参数L如果相邻两色色标间隔大于或小于20 mm ,则说明套印出现了偏差。将该偏差信号送给伺服变频驱动单元,驱动交流伺服电机,使相应的套色修正辊ML上下移动来延长或缩短印料自上一单元印刷版辊到该单元印刷版辊的行程来动态修正。 在现代包装工业自动化生产中,涉及到各种各样的检查、测量,比如饮料瓶盖的印刷质量检查,产品包装上的条码和字符识别等。这类应用的共同特点是连续大批量生产、对外观质量的要求非常高。通常这种带有高度重复性和智能性的工作只能靠人工检测来完成,我们经常在一些工厂的现代化流水线后面看到数以百计甚至逾千的检测工人来执行这道工序,在给工厂增加巨大的人工成本和管理成本的同时,仍然不能保证100%的检验合格率(即零缺陷),而当今企业之间的竞争,已经不允许哪怕是0。1%的缺陷存在。有些时候,如微小尺寸的精确快速测量,形状匹配,颜色辨识等,用人眼根本无法连续稳定地进行,其它物理量传感器也难有用武之地。这时,人们开始考虑把计算机的快速性、可靠性、结果的可重复性,从而引入了机器人视觉技术。
一般地说,首先采用CCD照相机将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,如:面积、长度、数量、位置等;最后,根据预设的容许度和其他条件输出结果,如:尺寸、角度、偏移量、个数、合格/不合格、有/无等。机器视觉的特点是自动化、客观、非接触和高精度,与一般意义上的图像处理系统相比,机器视觉强调的是精度和速度,以及工业现场环境下的可靠性。 机器视觉极适用于大批量生产过程中的测量、检查和辨识,如:对IC表面印字符的辨识,食品包装上面对生产日期的辨识,对标签贴放位置的检查。 在机器视觉系统中;关键技术有光源照明技术、光学镜头、摄像机、图像采集卡、图像处理卡和快速准确的执行机构等方面。在机器视觉应用系统中;好的光源与照明方案往往是整个系统成败的关键;起着非常重要的作用;它并不是简单的照亮物体而已。 光源与照明方案的配合应尽可能地突出物体特征量;在物体需要检测的部分与那些不重要部份之间应尽可能地产生明显的区别;增加对比度;同时还应保证足够的整体亮度;物体位置的变化不应该影响成像的质量。在机器视觉应用系统中一般使用透射光和反射光。 对于反射光情况应充分考虑光源和光学镜头的相对位置、物体表面的纹理;物体的几何形状、背景等要素。光源的选择必须符合所需的几何形状、照明亮度、均匀度、发光的光谱特性等;同时还要考虑光源的发光效率和使用寿命。光学镜头相当于人眼的晶状体;在机器视觉系统中非常重要。 一个镜头的成像质量优劣;即其对像差校正的优良与否;可通过像差大小来衡量;常见的像差有球差、彗差、像散、场曲、畸变、色差等六种。
摄像机和图像采集卡共同完成对物料图像的采集与数字化。 高质量的图像信息是系统正确判断和决策的原始依据;是整个系统成功与否的又一关键所在。 在机器视觉系统中;CCD 摄像机以其体积小巧、性能可靠、清晰度高等优点得到了广泛使用。 CCD 摄像机按照其使用的CCD 器件可以分为线阵式和面阵式两大类。 线阵CCD 摄像机一次只能获得图像的一行信息;被拍摄的物体必须以直线形式从摄像机前移过;才能获得完整的图像;因此非常适合对以一定速度匀速运动的物料流的图像检测;而面阵CCD 摄像机则可以一次获得整幅图像的信息。图像信号的处理是机器视觉系统的核心;它相当于人的大脑。 如何对图像进行处理和运算;即算法都体现在这里;是机器视觉系统开发中的重点和难点所在。 随着计算机技术、微电子技术和大规模集成电路技术的快速发展;为了提高系统的实时性;对图像处理的很多工作都可以借助硬件完成;如DSP、专用图像信号处理卡等;软件则主要完成算法中非常复杂、不太成熟、尚需不断探索和改变的部分。
从产品本身看,机器视觉会越来越趋于依靠PC技术,并且与数据采集等其他控制和测量的集成会更紧密。且基于嵌入式的产品将逐渐取代板卡式产品,这是一个不断增长的趋势。主要原因是随着计算机技术和微电子技术的迅速发展,嵌入式系统应用领域越来越广泛,尤其是其具备低功耗技术的特点得到人们的重视。另外,嵌入式 *** 作系统绝大部分是以C语言为基础的,因此使用C高级语言进行嵌入式系统开发是一项带有基础性的工作,使用高级语言的优点是可以提高工作效率,缩短开发周期,更主要的是开发出的产品可靠性高、可维护性好、便于不断完善和升级换代等。因此,嵌入式产品将会取代板卡式产品。
由于机器视觉是自动化的一部分,没有自动化就不会有机器视觉,机器视觉软硬件产品正逐渐成为协作生产制造过程中不同阶段的核心系统,无论是用户还是硬件供应商都将机器视觉产品作为生产线上信息收集的工具,这就要求机器视觉产品大量采用标准化技术,直观的说就是要随着自动化的开放而逐渐开放,可以根据用户的需求进行二次开发。当今,自动化企业正在倡导软硬一体化解决方案,机器视觉的厂商在未来5-6年内也应该不单纯是只提供产品的供应商,而是逐渐向一体化解决方案的系统集成商迈进。
在未来的几年内,随着中国加工制造业的发展,对于机器视觉的需求也逐渐增多;随着机器视觉产品的增多,技术的提高,国内机器视觉的应用状况将由初期的低端转向高端。由于机器视觉的介入,自动化将朝着更智能、更快速的方向发展。
晶振用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。高级的精度更高。有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。
晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。
晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。
扩展资料
晶振是石英晶体谐振器(quartz crystal oscillator)的简称,也称有源晶振,它能够产生中央处理器(CPU)执行指令所必须的时钟频率信号,CPU一切指令的执行都是建立在这个基础上的,时钟信号频率越高,通常CPU的运行速度也就越快。
只要是包含CPU的电子产品,都至少包含一个时钟源,就算外面看不到实际的振荡电路,也是在芯片内部被集成,它被称为电路系统的心脏。
参考资料百度百科——晶振
● 自动驾驶芯片是干什么用的?
虽然目前L3级别有条件自动驾驶车辆在中国尚未落地,但从一些带有高阶L2驾驶辅助系统的车辆上我们可以发现,这些车辆都带有数量不少的传感器用以检测车辆周围的障碍物,从而为控制系统决策提供数据支持。这些传感器包括毫米波雷达、超声波雷达、摄像头等。这些传感器每秒钟会产生数GB(1GB=1024MB=10242KB)的数据,自动驾驶芯片需要流畅地处理这些数据才能保证系统及时作出正确的决策,从而确保车辆的行驶安全。
可能大家对每秒数GB的数据没有概念,这里举一个生活中的例子。普通的USB30接口U盘,其读取速度峰值接近200MB/s,要从这个U盘中读取1GB的文件大约需要5秒左右的时间,足见每秒数GB的数据量是相当大的。
自动驾驶系统除了需要解决大流量数据传输问题,还需要解决的就是如何能快速处理这些海量数据,而强大的自动驾驶芯片正是那把正确的钥匙。
● 国外的自动驾驶芯片处在怎样的水平?
虽然本文主要是讲中国自动驾驶芯片的,但知己知彼,百战百胜,在审视本土状况之前,我们还是先要来简单了解国外的情况。国外自动驾驶芯片真正能够大规模进入量产车市场的无非三家,英伟达、Mobileye(现已被英特尔收购)、特斯拉。
其中,走实用路线的Mobileye目前市场占有率在70%以上,市场上的产品主要是应用于L2驾驶辅助系统的EyeQ3芯片(算力0256TOPS,“TOPS”是每秒万亿次运算的意思,详细介绍请看这篇文章相关介绍,本文标注的算力如无特别说明均指的是8位整数计算能力)以及具备L3级别自动驾驶能力的EyeQ4芯片(算力25TOPS)。像是小鹏G3、蔚来ES6/ES8、广汽新能源Aion LX就采用了EyeQ4芯片作为其驾驶辅助系统的核心。
相较于英伟达上代自动驾驶平台旗舰之作DRIVE PX Pegasus 320TOPS的算力,新的DRIVE AGX Orin平台的旗舰配置实现了成倍的性能增长。此外,DRIVE AGX Orin平台的扩展柔性化程度相比以往平台进一步提升,能够通过硬件配置的增减,满足从一般驾驶辅助到L5级别完全自动驾驶等不同级别车辆的需求。
特斯拉Autopilot 10系统采用的是1颗英伟达Tegra3芯片+1颗Mobileye EyeQ3芯片;Autopilot 20系统采用的是1颗英伟达Tegra Parker芯片+1颗Pascal架构GPU芯片;Autopilot 25系统采用的是2颗英伟达Tegra Parker芯片+1颗Pascal架构GPU芯片。
已经搭载在最新下线特斯拉车型上的自研FSD芯片,单颗芯片算力为72TOPS,Full Self-Driving Computer集成有两颗独立工作的FSD芯片,一颗“挂了”,另外一颗马上“顶上”,提升了整套系统的安全性和稳定性。
当然了,除了上面三家锋芒毕露的企业,还有不少企业在垂涎自动驾驶芯片这块蛋糕,其中包括高通、赛灵思、恩智浦等,但这些企业真正走向量产车的自动驾驶芯片还不成规模,限于篇幅,这里就不作介绍了。
● 迅速崛起的中国自动驾驶芯片企业
好了,看完国外的情况,我们目光回到国内。自动驾驶芯片市场火爆,国外科技巨头抢滩登陆,中国企业究竟实力怎么样呢?下面我们一起来看看。
◆ 寒武纪
中科寒武纪科技股份有限公司(下称“寒武纪”)的前身是中国科学院计算技术研究所下,由陈云霁和陈天石两兄弟领导的一个课题组。该课题组在2008年开始研究神经网络算法和芯片,并在2012年开始陆续发表研究成果。
2016年,上述课题组提出的深度学习处理器指令集DianNaoYu被ISCA2016所接受,实验表明搭载该指令集的芯片相较于传统执行X86指令集的芯片,在神经网络计算方面有两个数量级的性能优势。随着课题组的研究成果趋于成熟,中科寒武纪科技股份有限公司正式成立,并着手将其芯片和指令集向商业领域转化。也是在2016年,寒武纪发布了首款商用深度学习处理器寒武纪1A。
聊完这家公司的身世,下面我们来看看它的产品。目前寒武纪有两款最新的人工智能芯片IP授权,分别是Cambricon-1M和Cambricon-1H。性能指标最强的Cambricon-1M-4K在1GHz时钟频率下拥有8TOPS的算力;性能指标最弱的Cambricon-1H8mini在1GHz时钟频率下拥有05TOPS的算力。所有型号的详细算力参数可以参看下表。
Cambricon-1M和Cambricon-1H被定义为终端智能处理器IP。我们在手机或者汽车这些终端上出现的人脸识别、指纹识别、障碍物识别、路标识别等应用都能通过在芯片中集成上述处理器IP实现加速。
上面提到的“边缘”一词来自于“边缘计算”。 边缘计算是指在靠近智能设备(终端)或数据源头(云端)的一端,提供网络、存储、计算、应用等能力,达到更快的网络服务响应,更安全的本地数据传输。边缘计算可以满足系统在实时业务、智能应用、安全隐私保护等方面的要求,为用户提供本地的智能服务。思元220在边缘计算中扮演着提高数据安全、降低处理延时以及优化带宽利用的角色。
目前寒武纪高算力芯片产品被定义为智能加速卡,可用于服务器中加速人工智能运算。谷歌的AlphaGo人工智能机器人打败韩国世界围棋冠军李世石的新闻相信各位有所耳闻,AlphaGo人工智能机器人的背后其实是谷歌自研的TPU芯片。寒武纪的高算力芯片产品的特性和应用也与谷歌TPU类似,当然它们之间也可以算是竞争对手了。
所不同的是思元270-S4采用的是被动散热设计,最大热设计功耗为70W,定位为高能效比人工智能推理设计的数据中心加速卡。这也意味着该卡会有“功耗墙”设定,即当加速卡功耗达到阈值上限时会降低算力以保证较低的功耗和发热。
思元270-F4相当于是“满血版” 思元270-S4,最大热设计功耗150W,采用涡轮风扇进行主动散热。良好的散热和充足的供电使得思元270-F4能够发挥出思元270芯片的全部性能。该卡定位是为桌面环境提供数据中心级人工智能计算力,简而言之就是为台式机配的高性能人工智能加速卡。
虽然思元270在制造工艺上只采用了台积电的16nm工艺,但整体能耗比还是做得比较不错的。虽然单卡算力不及最新的英伟达旗舰计算卡,但5张思元270-S4/思元270-F4并行的话,峰值算力也能达到英伟达A100的水平。只是英伟达A100更先进的工艺应该在能耗比上面会有一定的优势。
其中思元100-C搭载了视频和图像解码单元,采用被动散热方式,最大热设计功耗为110W;思元100-D不搭载视频和图像解码单元,采用被动散热方式,最大热设计功耗为75W。目前思元100系列产品已经于2019年在滴滴云和金山云上得到应用。其中滴滴云采用思元100板卡加速d性推理服务,该服务用于深度学习推理任务;而金山云则采用思元100板卡加速语音、图像、视频等人工智能应用。
前面讲的尽是服务器级的计算卡,这是不是偏离了我们应该聊的自动驾驶芯片话题呢?其实不然。前面也提到了,寒武纪目前是一家专注于人工智能芯片开发的企业,自动驾驶领域确实涉足不深,但通过和其他国内友商的联合还是有一些建树的。
WiseADCU CN1自动驾驶运算域控制器提供了L3或以上级别自动驾驶系统所需的算力以及传感器连接数量需求,实现了仿真、模型、系统、架构、编码、加速、算法七个关键控制点的自主可控。
实际上威盛集团由于处理器产品性能竞争力弱,早就退出了主流X86处理器市场的竞争,市场中就剩下英特尔和AMD在角力。兆芯成立后,吃透了威盛的X86技术,并在威盛当时最新的处理器架构基础上进行全面的改进和优化,先后推出了ZX-A、ZX-C以及ZX-C+等处理器产品。
6月2日,科创板上市委发布2020年第33次审议会议结果公告,寒武纪上市获得通过,从受理到审批通过,寒武纪只用了68天,刷新了科创板审核速度。寒武纪上市后成为A股中唯一一家人工智能芯片公司,该领域的市场空间在2022年有望超过500亿美元,发展潜力巨大。打通了A股融资渠道的寒武纪究竟能否凭借其独特的技术优势进一步发展壮大呢?这谁都说不准,但可以确定的是,寒武纪的成功上市让很多投身于该领域的公司赢得了信心,看到了希望,中国人工智能芯片时代或将由此开启。
◆ 地平线机器人
好了,聊完寒武纪,我们来聊聊另外一家人工智能芯片企业——地平线机器人技术研发有限公司(下简称“地平线”)。地平线是由前百度深度学习研究院常务副院长余凯于2015年创立的,专注于自动驾驶与人工智能芯片的一家公司。余凯也是百度自动驾驶的发起人。
余凯建立的地平线,一直以来坚持的是软件和硬件相结合的方向。他认为,算法、芯片和云计算将构成自动驾驶的三个核心支点。相比起前面介绍的寒武纪注重打造高性能硬件芯片,地平线的商业模式是把以“算法+芯片”为核心的嵌入式人工智能解决方案,提供给下游厂商。打个比方比较好理解,如果说寒武纪卖的是处理器芯片,那么地平线卖的就是安装了 *** 作系统的整机。产品方面,相较寒武纪从终端到云端的芯片产品布局,地平线虽然自研芯片,但更偏重的是以产品功能来划分产品线。
硬件上,征程二代芯片内部集成了两个Cortex A53核心、两个自研的BPU(Brain Processing Unit,可用于加速人工智能算法)核心、DDR4内存控制器以及输入输出控制器,算力达到4TOPS,典型功耗为2W,这比起目前主流的Mobileye EyeQ4芯片的算力和能耗比都更优秀。
这些智能音箱有较强的自然语义识别功能,能够识别人们发出的语音命令,结合物联网技术,人们通过简单的语音命令除了能够让音箱播放在线音频资源外,还能够控制各种家电,如开关、灯泡、风扇、空调等。这就是AIoT的一个最简单的应用例子。
从硬件方面看,旭日二代芯片内部集成了两个ARM Cortex A53核心、两个自研的BPU核心、DDR4内存控制器以及输入输出控制器,算力达到4TOPS,典型功耗为2W。从参数上看,旭日二代和征程二代好像没什么差别,实际上征程二代可以看做是旭日二代的车规版,它满足AEC-Q100标准,在工作温度、电磁辐射等标准上会更高一些。虽然征程二代和旭日二代均采用台积电28nm工艺制造,但旭日二代芯片尺寸为14x14mm,比征程二代芯片17x17mm的尺寸更小,更有利于内嵌到AIoT设备当中。
和寒武纪一样,地平线同样拥有自研的人工智能加速芯片技术。所不同的是,地平线更注重软件和硬件的整合,从而为下游厂商提供成熟的解决方案。在资本市场,地平线同样受到追捧,其投资者众多,其中包括了世界半导体行业巨头英特尔和SK海力士以及国内的一线汽车集团等。未来地平线是否会和寒武纪一样登录科创板目前还不得而知,但CEO余凯对于在科创板上市是持积极态度的。我个人是支持有更多像地平线这样的企业登录科创板,更充分的竞争可以避免垄断同时促进该领域的加速发展。
◆ 西井科技
西井科技创办于2015年,它起初是一家做类脑芯片的厂商。所谓的类脑芯片简单来说就是以人脑的工作方式设计制造出来的芯片。目前大行其道的冯诺依曼结构处理器芯片,其计算模块和存储单元是分离的,芯片工作的过程中需要通过数据总线来连接计算模块和存储单元,数据传输上的开销太大从而限制着这类芯片的工作效率和能耗比的提升。
类脑芯片模仿的是大脑神经元的工作形式,大脑的处理单元是神经元,内存就是突触。神经元和突触是物理相连的,所以每个神经元计算都是本地的,而从全局来看神经元们是分布式在工作。类脑芯片由于具有本地计算和分布式工作的特点,所以在工作效率和能耗上相比冯诺依曼结构处理器芯片更有优势。
虽然这种类脑芯片看着和普通的处理器芯片在外观上没有什么不同,但其实内部运作原理与传统的处理器芯片有着本质的区别。国内除了西井科技开发出了类脑芯片,像是清华开发的天机(TianJic)芯片和浙大开发的达尔文(DARWIN)芯片都是类脑芯片。所不同的是,西井科技的DeepSouth芯片是全球首块可商用5000万类脑“神经元”芯片。
西井科技这艘大船拿着投资人动辄过亿的投资款,肯定是要追求盈利的。不管公司的技术有多超前,无法商业化在逐利的资本市场必然是无法接受的。随着人工智能和自动驾驶产业的兴起,西井科技找到了技术商业化的契机。
相比起我们前面两个厂商动辄上百TOPS算力的产品,西井这两款产品的算力确实有点拿不出手。但西井科技的这两款芯片能够实现片上学习,可以随时新增样本进行增量训练来提升推理准确率。
可能大家看到这里还是没看懂西井科技这两块芯片的优势所在,我在这里稍微解析一下大家就能够明白。目前的自动驾驶算法都是通过高性能服务器进行模型训练(让计算机去看摄像头或激光雷达等传感器获取的环境数据,学习目标判断方法),然后将训练好的模型再部署到车载硬件之中(把机器学习到的高效目标判断方法固化到车载自动驾驶系统之中)。
在实际应用方面,西井科技并没有一头冲进乘用车自动驾驶系统领域,而是在智能港口和智能矿场干出了自己的一片天地,并把触角伸向了智慧医疗和智慧物流领域。2017年10月,公司与全球知名港机巨头振华重工建立长期合作伙伴关系,这是西井科技进军智能港口的重要一步。
自动驾驶卡车要在港区自动装卸集装箱,需要自动驾驶系统精细的车辆控制、敏锐的环境识别以及准确的定位,这些都需要港区高清地图配合。西井科技的无人集装箱卡车定位精度在5cm以内,这是实现集装箱自动装卸的关键。全球首辆港区作业无人集装箱卡车作业成功,充分展现了西井科技在卡车自动驾驶系统以及高精度地图绘制领域的实力。
除了自动驾驶和高清地图绘制外,西井科技还为企业打包了一整套智能港口和智能矿场解决方案,利用人工智能技术提升港口和矿场的运作效率,同时能够进一步降低其运营成本。深挖行业中存在的机遇,逐步筑起行业壁垒是西井科技面对人工智能芯片市场激烈竞争的重要策略。
作为全球最早落地行业应用的自动驾驶团队,西井科技旗下自动驾驶品牌Qomolo逐路目前涵盖了无人驾驶跨运车、无人驾驶新能源集卡和无人驾驶矿卡三大项目。
面对乘用车自动驾驶芯片领域的激烈竞争,我认为短期内西井科技不会进入该领域。相反它会通过深耕已有的智能港口、智能矿场以及无人驾驶重卡市场,进一步筑高上述市场的壁垒,扩大自身的行业影响力和竞争力。但不能忽视的是,西井科技掌握的类脑芯片技术或有可能成为未来自动驾驶芯片领域的一个风口。
上文详细介绍中国3家知名自动驾驶芯片公司及其产品,相信大家应该对目前国内自动驾驶芯片现状有了一个更深了解。除了这三家公司,数字地图供应商四维图新通过收购杰发科技也布局自动驾驶芯片市场,但量产芯片目前尚未落地。百度的昆仑芯片以150W的功耗实现了260TOPS的算力,竞争力很强,但其定位为云端全功能人工智能芯片,主要用在服务器之上。百度在自动驾驶领域的亮点还是在于其Apollo自动驾驶软件平台。
● 全文总结:
寒武纪、地平线、西井科技这三家公司都有着各自的特色和亮点。寒武纪专注于芯片研发,产品算力最强;地平线除了研发芯片,还提供完整的自动驾驶软件方案,对主机厂开发更友好;西井科技掌握独特的类脑芯片设计,在智能港口、智能矿场以及无人驾驶卡车领域已经站稳了阵脚。整体来看,中国自动驾驶芯片在性能和功耗上和外国芯片相比并不差,如何在中国开放L3级别有条件自动驾驶车辆落地这个时间节点用产品和服务先发制人是中国自动驾驶芯片企业的制胜关键。究竟鹿死谁手,让我们拭目以待吧,好戏即将上演!(图/文/汽车之家 常庆林部分源于网络)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)