一、用于票务管理。目前国内大部分景区依然使用纸质门票,而纸质门票具有防伪能力差、易损坏、验票时间长等缺点。在客流量比较集中的时段,会给游客的购票、检票带来很大的压力,耽误游客大量的时间。为了解决这些问题,我们可以利用RFID电子标签技术建立一个景区电子门票系统,实现计算机售票、验票、查询、汇总以及统计和报表等门票控制管理功能。RFID标签门票具有以下技术特点:支持特殊信息的写入和读取,可以回收利用,满足了低碳环保和降低成本的要求;超高频技术带有一定的穿透性,读取速度快,不用通过激光或红外线瞄准就能获取数据,达到高效的人性化验票效果;在堆叠的情况下依然能够读取信息,满足大流量识别,识别距离可以达到10米左右,能满足景区内对游客和车辆的管理。
电子门票实际上就是景区内的“一卡通”,游客在对门票充值以后,可以将其用于景区内的乘车、住宿,餐饮、娱乐活动及购物等景区内一切消费活动。在每次的消费中,扣除相应的消费金额,而剩余的金额可在游客离开酒店时返还。应用完整的景区RFID应用系统,将景区门票、餐饮、酒店以及交通等进行有效整合,为客户提供一条龙服务,不仅能提高对游客的服务水平,更能提高景区的管理水平。
二、用于资源管理。在旅游景区内,无论是自然旅游资源还是人文旅游资源随着时间的流逝都会因为各种自然因素或人为因素受到损害。更为严重的是,一些恶劣的气候现象甚至会导致旅游景观的消失。当然,旅游资源遭到破坏的原因也与旅游区超负荷开放、游人过多等人为原因有关。
采取必要措施对各类旅游资源进行保护迫在眉睫。目前,各个景区一般是通过在各处设置摄像装置,对景区内的资源实行视频监控。而物联网不仅仅是从视觉上对各个资源进行监控,而是通过射频识别、红外感应器、全球定位系统、激光扫描等技术对旅游资源的温度、湿度、负重程度、色泽度等各个方面进行监测,使得管理者可以对有需要的资源进行及时维护,对于已经受到损害的旅游资源可以直接将监测到的相关信息传送到互联网上进行分析,从而获取相对具有科学依据的解决办法。而设置在景点附近的识别系统及预警系统可以向试图破坏旅游资源的游客发出警告。在使用物联网之后可以将景区内的各个资源连接为一个整体,并形成相对完善、科学的监测管理系统,使得旅游资源具有更长久的生命力。
三、用于客流管理。影响旅游景区可持续发展的因素之一是景区内的游客数量超过了景区所能容纳的最大承载量,因此对旅游景区的客流量控制显得十分重要。旅游景区的客流量控制包括区内游客总量的控制和景区内各个景点的客流量控制,前者直接通过电子门票技术就可以轻松获取当前景区内游客总数量,当超过景区最大承载量时就可以采取停止售票、放缓售票等方式进行相应控制。对于后者而言,可以根据景区内各个景点的分布情况,将景区划分为相对独立的小区域,在小区域一些关键的位置点设置RFID读写器,配置多对天线,将天线配置在门(或是其他关键点)的位置,覆盖关键点。当游客通过关键点时,RFID读写器通过不同的天线获取游客的ID号,这样,经过位置点的所有RFID标签都可以通过读写器获取,并在第一时间将数据发送到数据中心。系统根据读取信息的结果判定游客的进出,实时了解景点的游客分布情况,做到系统的实时监控。一台高性能的RFID读写器能够每秒处理数百张的电子门票,完全可以满足大量的游客数据处理工作。
这样一来,可以通过了解景点游客的实时分布情况调整游客量,当景区内游客分布不均匀时就可以通过工作人员的适当引导来缓解那些“人气较高”景点的压力。
四、用于安全管理。通过物联网的应用在景区内形成一套完善的游客安全保障体系。根据不同类型的旅游景区,物联网在安全管理方面的应用形式也有所区别。对于森林公园、山岳等范围较大的景区,经常会出现游客走散、失踪等现象。对于这些地貌环境多变复杂的地区,在有限的人手下,如何合理调配人手,以最快的速度进行现场的救护工作显得非常重要,也很有必要。当游客走失或遇到危险时可以通过游客携带的电子门票利用GPS技术定位,然后通知距离最近的救护人员配置一台带GPS的RFID手持设备第一时间前往现场救护;对于那些面积范围相对较小,游客密集的景区,很容易成为恐怖分子袭击的目标,因此需要在景区入口处利用射频识别技术进行严格的安全检查,避免恐怖分子将危险物品带入景区内;对于一些危险系数较高的旅游项目的景区,一方面要在事故易发段安排救护人员,另一方面可以通过物联网的全方位监测来预防各种事故的发生。
五、用于员工管理。旅游景区的可持续发展离不开每一个员工的辛勤努力。对于十分注重服务质量的旅游景区来说,任何一个员工的失误都可能给景区的形象带来巨大损害。因此景区需要不断加强对员工的管理,以提高景区的经营效率、维护景区的良好形象。
物联网对于景区员工管理方面的应用原理与前面所提到的票务管理十分类似,只是应用形式有所差别。RFID标签具有唯一的ID号,通过给每位员工配备一个带有RFID的工作卡,就可以实现对员工的对点管理,确保他们在适当的时间出现在适当的位置并为游客提供良好的服务。其次,可以利用RFID工作卡的读写功能与信息储存功能让游客直接对工作人员的服务进行打分评价,形成一套以游客满意程度为基础的旅游景区员工评价体系,并以此作为员工薪酬发放的重要参考依据。
物联网技术的重点在于识别,识别出连接于网络上的任何智能终端和可以与之互动的物件或设备,允许非电脑的其他设备间的通讯与连接,比如一台冰箱,可以和你的电脑或手机通信,而冰箱内的食品都带有RFID标签,冰箱可以知道你储存的食品的类别,数量,来源,保质期等等,如果东西少了,或者某些事物块过期了,它就能通知到你,通过手机或电脑,如果吃了什么吃出问题了,也可以追溯到食品提供方,等等。
将来物联网可以无处不在,家庭也会朝着越来越智能的方向发展,就目前而未来十几年内它会是网络技术发展的重头戏,但无论如何,技术为人服务,且是不断发展的,尤其是网络技术这一发展迅速的前沿技术上,很难遇见长久之后的发展方向,好比20年前,没人会想到目前网络发展的现状一样物联网需要哪些技术支撑
物联网的范围很大,它是实现生活数字化的一个总称,在应用到各个行业时需要的技术支援有所不同。
如果非要说共同需要的技术支援的话:感测器技术,通讯技术,程式设计技术,微电子技术以及能源技术(主要是感测器要用的电力,这还是感测器待改善的一个问题)。
物联网是以电脑科学为基础,包括网路、电子、鞥射频、感应、无线、人工智慧、条码、云端计算、自动化、嵌入式等技术为一体的综合性技术及应用,它要让孤立的物品(冰箱、汽车、装置、家俱、货品等等)接入网路世界,让它们之间能相互交流、让我们可以通过软体系统 *** 纵himer、让himer鲜活起来。
科技创新改变生活,物联网以及延伸的人工智慧必将为未来带来自便利的美好生活。
人类总是在追求自便利的美好生活,物联网很有前瞻性。
下一波的IT浪潮就是云端计算、物联网、人工智慧、生物技术。
目前物联网是新新事物,教学资源紧张是正常的,新新事物风险和机遇并存。
请相信机遇的东西确实是过了这个村,没了这个店,物联网目前就像初期的计算机专业一样,
等它成熟了,等你看到它的发展了,那时候你就落后,只能在前人后面捡菸头。
好好把握学习这个专业的机会,目前物联网处于发展初期,等你毕业刚好是大展拳脚的好时机!
请特别关注:
1、智慧家居 2、智慧交通 3、智慧医疗 4、智慧电网 5、
智慧物流 6、智慧农业 7、智慧电力 8、智慧工业 9、质量追溯
相信选择这个新新行业有风险,但机会总是给第一个敢吃螃蟹的人。
当然你可以选择传统保守的行业,那是另一种人生态度,开心就好!
一一一一
来自:广州溯源—物联网、云端计算、人工智慧---绿色未来
物联网在不同领域需要技术不一样,以下就我的行业(工业领域)做大概分析。
物联网在工业领域主要用于生产执行管理系统(MES),通过让死物(生产装置)联网,将各个部分的资讯孤岛连线(物料、仓储、生产、计划、订单等),将资料经过云端大资料分析呈现在手机端,使使用者做到统筹兼顾,实现柔性生产!
其中涉及技术:
资料采集:嵌入式系统、PLC、RFID、各种感测器等等
资料分析:伺服器,后端程式设计师
资料呈现:APP/PC,前端程式设计师
总结:物联网+云端+大资料+移动互联
工业物联网生产执行系统了解更多可考虑我。
网际网路技术与教育结合开发的线上教育平台是线上教育最需要的支撑点。
云朵课堂的线上教育系统让教育机构、教师更好的进行线上教育。
从物联网的层次划分,列举物联网的技术:
感知层:包括感测器技术、RFID、近距离通讯技术、视讯分析与识别、智慧终端,等等;
网路层:包括有线与无线通讯技术、通讯工程、计算机通讯、TCP/IP等等;
应用层:主要是资料处理、各行各业的专属技术
物联网主要技术有哪些
终端接入技术
物联网终端的种类非常多,包括物联网闸道器、通讯模组以及大量的行业终端,其中尤以行业终端的种类最为丰富。从终端接入的角度来看,物联网闸道器、通讯模组和智慧终端是目前关注的重点。
物联网闸道器:它是连线感测网与通讯网路的关键装置,其主要功能有资料汇聚、资料传输、协议适配、节点管理等。物联网环境下,物联网闸道器是一个标准的网元装置,它一方面汇聚各种采用不同技术的异构感测网,将感测网的资料通过通讯网路远端传输;另一方面,物联网闸道器与远端运营平台对接,为使用者提供可管理、有保障的服务。
通讯模组:它是安装在终端内的独立元件,用来进行资讯的远距离传输,是终端进行资料通讯的独立功能块。通讯模组是物联网应用终端的基础。物联网的行业终端种类繁多,体积、处理能力、对外介面等各不相同,通讯模组将成为物联网智慧服务通道的统一承载体,嵌入各种行业终端,为各行各业提供物联网的智慧通道服务。
智慧终端:它满足了物联网的各类智慧化应用需求,具备一定资料处理能力的终端节点,除资料采集外,还具有一定运算、处理与执行能力。智慧终端与应用需求紧密相关,比如在电梯监控领域应用的智慧监控终端,除具备电梯执行引数采集功能外,还具备实时分析预警功能,智慧监控终端能在电梯执行过程中对电梯状况进行实时分析,在电梯故障发生前将警报资讯传送到远端管理员手中,起到远端智慧管理的作用。
平台服务技术
一个理想的物联网应用体系架构,应当有一套共效能力平台,共同为各行各业提供通用的服务能力,如资料集中管理、通讯管理、基本能力呼叫(如定位等)、业务流程定制、装置维护服务等。
M2M平台:它是提供对终端进行管理和监控,并为行业应用系统提供行业应用资料转发等功能的中间平台。平台将实现终端接入控制、终端监测控制、终端私有协议适配、行业应用系统接入、行业应用私有协议适配、行业应用资料转发、应用生成环境、应用执行环境、业务运营管理等功能。M2M平台是为机器对机器通讯提供智慧管道的运营平台,能够控制终端合理使用网路,监控终端流量和分布预警,提供辅助快速定位故障,提供方便的终端远端维护 *** 作工具。
云服务平台:以云端计算技术为基础,搭建物联网云服务平台,为各种不同的物联网应用提供统一的服务交付平台,提供海量的计算和储存资源,提供统一的资料储存格式和资料处理及分析手段,大大简化应用的交付过程,降低交付成本。随着云端计算与物联网的融合,将会使物联网呈现出多样化的资料采集端、无处不在的传输网路、智慧的后台处理的特征。
将来,每一位网路使用者都独享一个类似于电话号码的标识。这个标识可以稳定且精准地区别各个使用者并直接对其进行定位。一般来讲,电脑、手机、路由器和网咖都是这个网路的组成部分。目前,我们已拥有43亿个IP地址。这个看起来庞大的数字其实远不能满足未来的需求。随着网际网路协议第6版的生效,包括洗衣机、供暖系统、衣服、门窗,以及风力涡轮机、包装机械和电表在内的一切事物都可获得属于自己的IP地址并实现彼此互联。
物联网突破技术有哪些业内专家认为,物联网一方面可以提高经济效益,大大节约成本;另一方面可以为全球经济的复苏提供技术动力。美国、欧盟等都在投入巨资深入研究探索物联网。我国也正在高度关注、重视物联网的研究,工业和资讯化部会同有关部门,在新一代资讯科技方面正在开展研究,以形成支援新一代资讯科技发展的政策措施。
滴灌施肥系统设计都需要哪些技术支撑?这个你是想自己研发了还是找人做啊 ?自己研发代价 很高,找托普物联网这样的方案商建设会省力不少。不过你也可以先去咨询一下这方面的专家,然后再做决定的。
物联网感知技术有哪些是的,物联网是指通过各种资讯感测装置,实时采集任何需要监控、连线、互动的物体或过程等各种需要的资讯,与网际网路结合形成的一个巨大网路。物联网有三项关键技术,1,感测器技术,2,RFID技术,3,嵌入式应用技术。所以各种感知技术应用是物联网的一部分。
简述Inter,物联网,云端计算之间的区别以及联络 因特网(Inter),物联网都是通讯网路,将装置进行连线,就好比物联网是高速公路与英特网是大马路,大马路可以走人走脚踏车走汽车,高速路只走汽车。云端计算是区别于本地计算的一种概念,是分散式计算的一种技术名称。
云端计算和物联网两者之间本没有什么特殊的关系,物联网只是今后云端计算平台的一个普通应用,物联网和云端计算之间是应用与平台的关系。
物联网的发展依赖于云端计算系统的完善,从而为海量物联资讯的处理和整合提供可能的平台条件,云端计算的集中资料处理和管理能力将有效的解决海量物联资讯储存和处理问题。
人工智慧是程式演算法和大资料结合的产物。
而云计算是程式的演算法部分,物联网是收集大资料的根系的一部分。
可以简单的认为:人工智慧=云端计算+大资料(一部分来自物联网)
随着物联网在生活中的铺开,它将成为大资料最大,最精准的来源。
云端计算通俗理解:1、通过网路上传到云储存东西,无需储存装置有网路便可读取。像银行
2、可以通过云端计算,有些软体无需安装便可使用,比如直接通过云写文件,不用安装word。像家里用电不用自己发电,通过电网购买。
云的使用对自己电脑的配置实用减少,而物联网是本地电脑和伺服器资讯互换,处理资讯使用的是本地电脑的资源处理东西。
物联网是客观世界在Inter上的一种应用;云端计算是建立在Inter上的一种分散式技术服务模式;三网融合是将Inter、电信网、广电网业务融合在一起的应用技术及业务模式。
希望对你有用。
随着社会迅速发展,人类逐渐进入大资料的时代,而物联网与云端计算作为近年来的热点,受到了业内不少人士的关注。据业界人士分析,大资料的前景与物联网以及云端计算这两者之间的关系非常密切,那么,真像业界人士所说的那样它们之间存在着不一样的关系呢?下面,我们就来了解一下大资料与物联网、云端计算之间的关系吧。
大资料概念
巨量资料(big data),或称大资料、海量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软体工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。“大资料”是由数量巨大、结构复杂、型别众多资料构成的资料集合,是基于云端计算的资料处理与应用模式,通过资料的整合共享,交叉复用,形成的智力资源和知识服务能力。
大资料市场格局
具体意义上来讲,早在20世纪90年代“资料仓库之父”的Bill Inmon便提出了“大资料”的概念。大资料之所以在最近走红,主要归结于网际网路、移动装置、物联网和云端计算等快速崛起,全球资料量大大提升。可以说,移动网际网路、物联网以及云端计算等热点崛起在很大程度上是大资料产生的原因。
我们通过分析,形象的知道大资料与移动网际网路、物联网以及传统网际网路的关系。物联网,移动网际网路再加上传统网际网路,每天都在产生海量资料,而大资料又通过云端计算的形式,将这些资料筛选处理分析,提前出有用的资讯,这就是大资料分析。
大资料与云端计算
云端计算(cloud puting)是基于网际网路的相关服务的增加、使用和交付模式,通常涉及通过网际网路来提供动态易扩充套件且经常是虚拟化的资源。近几年,云端计算的概念受到了学术界、商界,甚至 的热捧,一时间云端计算无处不在,这真让同时代其他的IT技术相形见绌,无地自容。
本质上,云端计算与大资料的关系是静与动的关系;云端计算强调的是计算,这是动的概念;而资料则是计算的物件,是静的概念。如果结合实际的应用,前者强调的是计算能力,或者看重的储存能力;但是这样说,并不意味着两个概念就如此泾渭分明。大资料需要处理大资料的能力(资料获取、清洁、转换、统计等能力),其实就是强大的计算能力;另一方面,云端计算的动也是相对而言,比如基础设施即服务中的储存装置提供的主要是资料储存能力,所以可谓是动中有静。
如果资料是财富,那么大资料就是宝藏,而云计算就是挖掘和利用宝藏的利器!没有强大的计算能力,资料宝藏终究是镜中花;没有大资料的积淀,云端计算也只能是杀鸡用的宰牛刀。
大资料与物联网
物联网是一个基于网际网路、传统电信网等资讯承载体,让所有能够被独立定址的普通物理物件实现互联互通的网路。
大资料与物联网之间的关系是相铺相成的。物联网产生大资料。美国人前几年医院一年产生500个数据,IMT1。4TB资料等各种的资料通过感测器产生,也有在网上直接产生的,我们现在处于大资料时代,物联网一分钟可以产生非常多的东西,苹果下载2万余次,一分钟会上传10万条新微博,全世界物联网上虚拟网路上,产生了大量的资料。
物联网产生的大资料与一般的大资料有不同的特点。物联网的资料是异构的、多样性的、非结构和有噪声的,更大的不同是它的高增长率。物联网的资料有明显的颗粒性,其资料通常带有时间、位置、环境和行为等资讯。物联网资料可以说也是社交资料,但不是人与人的交往资讯,而是物与物,物与人的社会合作资讯。
除此之外,大资料助力物联网,不仅仅是收集感测性的资料,实物跟虚拟物要结合起来。今天北京交通堵塞,但是并不知道堵塞原因,如果 释出讯息和市民微博释出讯息结合起来就知道发生什么事,物联网要过滤,过滤要有一定模式。
基于大资料与物联网,云端计算之间的关系
物联网重点突出了感测器感知的概念,同时它也具备网路线路传输,资讯储存和处理,行业应用介面等功能。而且也往往与网际网路共用伺服器,网路线路和应用介面,使人与人(Human ti Human ,H2H),人与物(Human to thing,H2T)、物与物( Thing to Thing,T2T)之间的交流变成可能,最终将使人类社会、资讯空间和物理世界(人机槠)融为一体。
大资料目前尚没有统一的定义,比较有代表性的是3V 定义,即认为大资料需满足3 个特点:规模性(Volume)、多样性(Variety)和高速性(Velocity)。
以云端计算为代表的网际网路新应用的兴起,表明网际网路基础服务无论从硬体,软体还是资料资讯都在向集中和统一的方向发展。也就是说,未来的大资料还将具备一个新的特性-统一性(Unity)。
你也可以参考物联商业网。
因特网是一个数据网际网路;物联网是将现实世界的事物通过感测器等连线到网际网路形成的一个管理网路;云端计算是一种大规模的计算服务平台,它可以为其他网路提供计算服务;三网融合是将电信网、电视网及网际网路融合在一起的综合应用网路。
希望对你有用。
云端计算与网格计算的概念
首先,究竟什么是云端计算(Cloud Computing)呢?钱教授指出,云就是网际网路——做网路的似乎总是把网路抽象成云;云端计算就是利用在Inter中可用的计算系统,能够支援网际网路各类应用的系统。云端计算是以第三方拥有的机制提供服务,为了完成功能,使用者只关心需要的服务,这是云端计算基本的定义。
相对于网格计算(Grid Computing)和分散式计算,云端计算拥有明显的特点:第一是低成本,这是最突出的特点。第二是虚拟机器的支援,使得在网路环境下的一些原来比较难做的事情现在比较容易处理。第三是镜象部署的执行,这样就能够使得过去很难处理的异构的程式的执行互 *** 作变得比较容易处理。第四是强调服务化,服务化有一些新的机制,特别是更适合商业执行的机制。
那么网格计算的特点又是什么呢?
网格计算有了十几年的历史。网格基本形态是什么?是跨地区的,甚至跨国家的,甚至跨洲的这样一种独立管理的资源结合。资源在独立管理,并不是进行统一布置、统一安排的形态。网格这些资源都是异构的,不强调有什么统一的安排。另外网格的使用通常是让分布的使用者构成虚拟组织(VO),在这样统一的网格基础平台上用虚拟组织形态从不同的自治域访问资源。此外,网格一般由所在地区、国家、国际公共组织资助的,支援的资料模型很广,从海量资料到专用资料以及到大小各异的临时资料集合,在网上传的资料,这是网格目前的基本形态。
云端计算与网格计算区别何在
可以看出,网格计算和云端计算有相似之处,特别是计算的并行与合作的特点;但他们的区别也是明显的。主要有以下几点:
首先,网格计算的思路是聚合分布资源,支援虚拟组织,提供高层次的服务,例如分布协同科学研究等。而云计算的资源相对集中,主要以资料中心的形式提供底层资源的使用,并不强调虚拟组织(VO)的概念。
其次,网格计算用聚合资源来支援挑战性的应用,这是初衷,因为高效能运算的资源不够用,要把分散的资源聚合起来;后来到了2004年以后,逐渐强调适应普遍的资讯化应用,特别在中国,做的网格跟国外不太一样,就是强调支援资讯化的应用。但云计算从一开始就支援广泛企业计算、Web应用,普适性更强。
第三,在对待异构性方面,二者理念上有所不同。网格计算用中介软体遮蔽异构系统,力图使使用者面向同样的环境,把困难留在中介软体,让中介软体完成任务。而云计算实际上承认异构,用映象执行,或者提供服务的机制来解决异构性的问题。当然不同的云端计算系统还不太一样,像Google一般用比较专用的自己的内部的平台来支援。
第四,网格计算用执行作业形式使用,在一个阶段内完成作用产生资料。而云计算支援持久服务,使用者可以利用云端计算作为其部分IT基础设施,实现业务的托管和外包。
第五,网格计算更多地面向科研应用,商业模型不清晰。而云计算从诞生开始就是针对企业商业应用,商业模型比较清晰。
总之,云端计算是以相对集中的资源,执行分散的应用(大量分散的应用在若干大的中心执行);而网格计算则是聚合分散的资源,支援大型集中式应用(一个大的应用分到多处执行)。但从根本上来说,从应对Inter的应用的特征特点来说,他们是一致的,为了完成在Inter情况下支援应用,解决异构性、资源共享等等问题。
那么,网格计算和云端计算有没有可能取长补短、互为补充呢?钱教授提到,如果这两者结合起来,也许可以聚合大量分散的资源,从而支援各种各样的大型集中应用以及分散的应用。
最后,钱教授还谈到,在云端计算技术方面,有三个需要关注的问题。第一是安全,因为要想作为公共基础设施必须取得使用者的充分信任。第二是标准化,不能再走中介软体的老路。第三是开源,要走开放的平台,这样才有发展。
简明的描述,看了有茅塞顿开的感觉。
观点一:网格计算主要关注如何把一个任务分配到它所需要的资源上(一般来说是一个远端可用的),在这里一个大的计算任务可以被分成多个小任务,然后被分配到这些伺服器上执行;而云计算则强调把资源动态的从硬体基础架构上产生出来,以适应工作任务的需要,云端计算可以支援网格计算,也可以支援非网格计算。(简单理解,即动态产生的计算资源是来自一台伺服器还是多台,是否使用了网格计算的演算法。本人的理解)
观点二:网格计算与云端计算主要有三点区别,第一,网格主要是通过聚合式分布的资源,通过虚拟组织提供高层次的服务,而云计算资源相对集中,通常以资料中心的形式提供对底层资源的共享使用,而不强调虚拟组织的观念;第二,网格聚合资源的主要目的是支援挑战性的应用,主要面向教育和科学计算,而云计算一开始就是用来支援广泛的企业计算、web应用等;第三,网格用中介软体遮蔽异构性,而云计算承认异构,用提供服务的机制来解决异构性的问题。
网格计算与云端计算的关系如下表所示。
表 1 网格计算与云端计算的比较
网格计算
云端计算
目标
共享高效能运算力和资料资源,实现资源共享和协同工作
提供通用的计算平台和储存空间,提供各种软体服务
资源来源
不同机构
同一机构
资源型别
异构资源
同构资源
资源节点
高效能运算机
伺服器/PC
虚拟化检视
虚拟组织
虚拟机器
计算型别
紧耦合问题为主
松耦合问题
应用型别
科学计算为主,计算密集
资料处理为主,资料密集
使用者型别
科学界
商业社会
付费方式
免费( 出资)
按量计费
标准化
有统一的国际标准OGSA/WSRF
尚无标准,但已经有了开放云端计算联盟OCC
网格计算走的是学院派的路子:在概念上争论多年,在体系结构上三次伤筋动骨,在标准规范上花费了大量的心力,所设定的目标又非常远大--要在跨平台、跨组织、跨信任域的极其复杂的异构环境 享资源和协同解决问题,所要共享的资源也是五花八门--从高效能运算机、资料库、装置到软体、甚至知识;云端计算走的是现实派的路子:暂时不管概念、不管标准,Google云端计算与Amazon云端计算的差别非常大,云端计算只是对他们以前做的事情的新的共同的时髦叫法;所共享的储存和计算资源暂时仅限于某个企业内部,省去了许多跨组织协调的问题;以Google为代表的云端计算在内部管理运作方式上的简洁一如其介面,能省的功能都省了,Google档案系统甚至不允许修改已经存在的档案,大大降低了实现难度,却借助其无与伦比的规模效应释放前所未有的能量。
网格计算与云端计算的关系,就像是OSI与TCP/IP之间的关系:ISO制定的OSI(开放系统互联)网路标准,考虑得非常周到,也异常复杂,在多年之前就考虑到了会话层和表示层的问题。很有远见,但过于阳春白雪了,实现的难度和代价也非常大。当OSI的一个简化版--TCP/IP冒出来之后,将七层协议简化为四层,内容也大大精简,因而迅速取得了成功。在TCP/IP一统天下之后多年,语义网等问题才被提上议事日程,开始为TCP/IP补课,增加其会话和表示的能力。因此,OSI是学院派,TCP/IP是现实派。OSI是TCP/IP的基础,TCP/IP又推动了OSI的发展。不是成者为王、败者为寇的问题,而是滚动发展的问题。
1.物联网产生大资料,大资料助力物联网。目前,物联网正在支撑起社会活动和人们生活方式的变革,被称为继计算机、网际网路之后冲击现代社会的第三次资讯化发展浪潮。物联网在将物品和网际网路连线起来,进行资讯交换和通讯,以实现智慧化识别、定位、跟踪、监控和管理的过程中,产生的大量资料也在影响着电力、医疗、交通、安防、物流、环保等领域商业模式的重新形成。物联网握手大资料,正在逐步显示出巨大的商业价值。
2.大资料是高速跑车,云端计算是高速公路。在大资料时代,使用者的体验与诉求已经远远超过了科研的发展,但是使用者的这些需求却依然被不断地实现。在云端计算、大资料的时代,那些科幻片中的统计分析能力已初具雏形,而这其中最大的功臣并非工程师和科学家,而是网际网路使用者,他们的贡献已远远超出科技十年的积淀。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)