目前的农业物联网主要涉及到哪些方面?

目前的农业物联网主要涉及到哪些方面?,第1张

由于中国农业物联网才刚起步,所以 目前的农业物联网是层次不齐、鱼龙混杂的。农业物联网包含几个大项:
1农业
2畜牧业
3水产等
邦农物联网在这几方面做的都挺不错的,你可以参考下。

农业物联网和农业产业互联网的关系都是对农业进行信息化改造。
1、农业物联网和农业产业互联网的区别有以下几点。
2、定义不同:农业物联网(InternetofAgriculture,IIA)是通过传感技术、通信技术和网络技术来实现对农业生产过程的智能化管理和数字化控制。而农业产业互联网(BusinessInternetofAgriculture,BIAN)则是指运用互联网、云计算、大数据等信息技术,对农村产业进行优化重组的过程。两者之间存在很大差别。
3、应用范围不同:农业产业互联网(BIAN)将互联网应用于农业生产经营及管理服务中。而农业物联网则是将感知层、传输层和应用层的信息进行综合分析决策后向用户或者其他相关人员提供及时有效的智能决策和执行服务。
4、发展现状差异很大:从目前全国农村信息化建设推进情况来看,全国农村信息化建设水平不平衡不充分的问题依然突出。从农业产业物联网到农产品电子商务这一过程中,需要有一个数据平台来承载和提供各种数据业务和服务功能。

农业物联网:物联网被世界公认为是继计算机、互联网与移动通信网之后的世界信息产业第三次浪潮。他是以感知为前提,实现人与人、人与物、物与物全面互联的网络。

在这背后,则是在物体上植入各种微型芯片,用这些传感器获取物理世界的各种信息,再通过局部的无线网络、互联网、移动通信网等各种通信网路交互传递,从而实现对世界的感知。

物联应用

实时监测功能

通过传感设备实时采集温室(大棚)内的空气温度、空气湿度、二氧化碳、光照、土壤水分、土壤温度、棚外温度与风速等数据;将数据通过移动通讯网络传输给服务管理平台,服务管理平台对数据进行分析处理。

远程控制功能

针对条件较好的大棚,安装有电动卷帘,排风机,电动灌溉系统等机电设备,可实现远程控制功能。农户可通过手机或电脑登录系统,控制温室内的水阀、排风机、卷帘机的开关;也可设定好控制逻辑,系统会根据内外情况自动开启或关闭卷帘机、水阀、风机等大棚机电设备。

查询功能

农户使用手机或电脑登录系统后,可以实时查询温室(大棚)内的各项环境参数、历史温湿度曲线、历史机电设备 *** 作记录、历史照片等信息;登录系统后,还可以查询当地的农业政策、市场行情、供求信息、专家通告等,实现有针对性的综合信息服务。

警告功能

警告功能需预先设定适合条件的上限值和下限值,设定值可根据农作物种类、生长周期和季节的变化进行修改。当某个数据超出限值时,系统立即将警告信息发送给相应的农户,提示农户及时采取措施。

随着社会的快速发展和国家政策对农业的大力支持,加之物联网技术的日渐成熟,物联网在传统农业领域的应用越来越广泛。农业是物联网技术的重点应用领域之一,也是物联网技术应用需求最迫切、难度最大、集成性特征最明显的领域。
近几年,物联网技术已被应用到农业的诸多领域,包括农业环境监测、温室大棚生产控制、节水灌溉、气象监测、产品安全与溯源、设备智能诊断管理等方方面面。
通过传感器所传输的数据,可以随时随地掌握作物的信息,对农作物进行远程管理,同时请专家或通过专家系统对作物的病虫害、长势等进行科学诊断与决策。现今,被提及最多的词语莫过于大数据、云计算。这些高精尖技术已被各个领域所熟知并运用。而与这两个词联系最为密切的另一个词是物联网技术。借势而行。传统农业面临发展机遇。
所有的人,都祝你快乐
广告
相对于国外的规模化种植,我国农业种植相对落后,目前正在从传统的个体种植作业向规模化的现代种植农业作业转型。
物联网技术是解决农业目前问题的关键。那么,什么是农业物联网?它在农业中有哪些应用?
对于物联网技术在农业中的应用,基础技术是传感器网络的完善。传感系统的完善与否直接影响着整个农业物联网技术的运行。
那么什么是农业物联网呢? 简单说,农业物联网具有几个关键的层面:前端生产信息的采集、信息的传输、信息的处理与应用。利用传感器采集土壤、气象、病虫害、农事 *** 作等生产过程中信息,将信息传输到云平台,通过云平台进行加工,为生产管理、质量追溯、农技服务等提供数据支撑是物联网技术在农业中的主要应用。
据了解,物联网技术已被应用到农业的诸多领域,包括农业环境监测、温室控制、节水灌溉、气象监测、产品安全与溯源、设备智能诊断管理等方方面面。
从应用层面来说,主要是从大田的种植、设施种植、畜禽养殖、水产养殖等的生产过程的应用。对于物联网在农业中的应用,目前应用最多的是生产过程中对于生产数据的采集和生产管理控制,以及流通环节的质量追溯。
在传统的以经验管理为主要模式的种植管理中,施肥、喷药、灌溉等由于经验不同,不同的种植人员会出现不同的种植结果,同时造成水资源浪费,过量施肥喷药等。随着规模化种植的不断推广,行业情形的不断变更,传统的经验管理不能适应规模化的生产作业模式,科学的先进管理方式必将取而代之。
应用物联网技术可以采集动植物信息,时时掌握动植物动态。传感器在农业生产中将起重要的作用。

农业物联网应用功能主要有一下几个方面:

远程智能农业监控:通过在农业生产现场搭建“物联网” 监控网络,实现对农业生产现场气候环境,土壤状况,作物长势,病虫害情况的实时监测;并根据预设规则,对现场各种农业设施设备进行远程自动化控制,实现农业生产环节的海量数据采集与精准控制执行。

农产品标准化生产:通过自主研发或与第三方合作导入,为农作物品类逐步建立起“气候,土壤,农事,生理”四位一体的农业生产与评估模型,将农业生产从以人为中心的传统模式,变革为以数据为中心的现代模式,通过数据驱动农业生产标准化的真正落地,进而实现农产品定制化生产。

农产品安全追溯及防伪鉴真:通过采集农产品在生产、加工、仓储、物流等环节的相关数据,为农产品建立可视化产品档案,向消费者充分展示产品安全与品质相关信息,实现从农田到餐桌的双向可追溯。同时,通过一物一码技术,帮助农业生产和流通企业实现产品防伪鉴真,并精准获取客户分布数据。

物联网和互联网的区别,实际上挺简单,我们可以这样简单的来理解,即物联网要解决的是物与物之间的相互联系,而互联网要解决的是人与人之间的相互联系。这样一说,我们就会对两者之间有个简单的初步认识。如果还不理解什么是物联网,我们说一个概念,可能你就会明白了,自动化听说过没,相信在生活中我们遇到的自动化 *** 作的生活物品或生产工具不少吧?比如马桶,当水少了,它会自动抽水,当水箱满了,它就会自动停止抽水。这样一个自动化的装置系统,你该不会说它是互联网吧!
而随着物联网技术的不断开发利用,将会使农业的生产水平不断得到提升,可以减轻农业从业人员的劳动强度和数量。也就是说,物联网与农业的深入结合,就不需要那么多人种地了,就像机械化在农业中的运用一样,将会出现大量的农业剩余劳动力。再不需要更多劳动力的情况下,一些不会 *** 作物联网设备的,必将成为农业的剩余劳动力转移至二三产业中去,农业生产也就可以实现更为高效的规模化、集约化生产了。

本专题我共整理了10篇文章,来自中国农业科学院农业质量标准与检测技术研究所、南京农业大学、英国林肯大学、华南农业大学、江南大学、国家农业智能装备工程技术研究中心、浙江大学、中国科学院、吉林农业大学、西北农林 科技 大学、国家信息农业工程技术中心等单位。

文章包含农产品质量安全纳米传感器、太阳能杀虫灯、分簇路由算法、农田物联网混合多跳路由算法、水产养殖溶解氧传感器研制、土壤养分近场遥测方法、农机远程智能管理平台、水肥浓度智能感知与精准配比、果园多机器人通信等内容,供大家阅读、参考。

专题--农业传感器与物联网

Topic--Agricultural Sensor and Internet of Things

[1]王培龙, 唐智勇 农产品质量安全纳米传感应用研究分析与展望[J] 智慧农业(中英文), 2020, 2(2): 1-10

WANG Peilong , TANG Zhiyong Application analysis and prospect of nanosensor in the quality and safety of agricultural products[J] Smart Agriculture, 2020, 2(2): 1-10

知网阅读

[2]杨星, 舒磊, 黄凯, 李凯亮, 霍志强, 王彦飞, 王心怡, 卢巧玲, 张亚成 太阳能杀虫灯物联网故障诊断特征分析及潜在挑战[J] 智慧农业(中英文), 2020, 2(2): 11-27

YANG Xing, SHU Lei, HUANG Kai, LI Kailiang, HUO Zhiqiang, WANG Yanfei, WANG Xinyi, LU Qiaoling, ZHANG Yacheng Characteristics analysis and challenges for fault diagnosis in solar insecticidal lamps Internet of Things[J] Smart Agriculture, 2020, 2(2): 11-27

摘要: 太阳能杀虫灯物联网(SIL-IoTs)是一种基于农业场景与物联网技术的新型物理农业虫害防治工具,通过无线传输太阳能杀虫灯组件状态数据,用户可后台实时查看太阳能杀虫灯运行状态,具有杀虫计数、虫害区域定位、辅助农情监测等功能。但随着SIL-IoTs快速发展与广泛应用,故障诊断难和维护难等矛盾日益突出。基于此,本研究首先阐述了SIL-IoTs的结构和研究现状,分析了故障诊断的重要性,指出了故障诊断是保障其可靠性的主要手段。接着介绍了目前太阳能杀虫灯节点自身存在的故障及其在无线传感网络(WSNs)中的体现,并进一步对WSNs中的故障进行分类,包括基于行为、基于时间、基于组件以及基于影响区域的故障四类。随后讨论了统计方法、概率方法、层次路由方法、机器学习方法、拓扑控制方法和移动基站方法等目前主要使用的WSNs故障诊断方法。此外,还探讨了SIL-IoTs故障诊断策略,将故障诊断从行为上分为主动型诊断与被动型诊断策略,从监测类型上分为连续诊断、定期诊断、直接诊断与间接诊断策略,从设备上分为集中式、分布式与混合式策略。在以上故障诊断方法与策略的基础上,介绍了后台数据异常、部分节点通信异常、整个网络通信异常和未诊断出异常但实际存在异常四种故障现象下适用的WSNs故障诊断调试工具,如Sympathy、Clairvoyant、SNIF和Dustminer。最后,强调了SIL-IoTs的特性对故障诊断带来的潜在挑战,包括部署环境复杂、节点任务冲突、连续性区域节点无法传输数据和多种故障诊断失效等情形,并针对这些潜在挑战指出了合理的研究方向。由于SIL-IoTs为农业物联网中典型应用,因此本研究可扩展至其它农业物联网中,并为这些农业物联网的故障诊断提供参考。

知网阅读

[3]汪进鸿, 韩宇星 用于作物表型信息边缘计算采集的认知无线传感器网络分簇路由算法[J] 智慧农业(中英文), 2020, 2(2): 28-47

WANG Jinhong, HAN Yuxing Cognitive radio sensor networks clustering routing algorithm for crop phenotypic information edge computing collection[J] Smart Agriculture, 2020, 2(2): 28-47

摘要: 随着无线终端数量的快速增长和多媒体图像等高带宽传输业务需求的增加,农业物联网相关领域可预见地会出现无线频谱资源紧缺问题。针对基于传统物联网的作物表型信息采集系统中存在由于节点密集部署导致数据传输过程容易出现频谱竞争、数据拥堵的现象以及固定电池的网络由于能耗不均衡引起监测周期缩减等诸多问题,本研究建立了一个认知无线传感器网络(CRSN)作物表型信息采集模型,并针对模型提出一种引入边缘计算机制的动态频谱和能耗均衡(DSEB)的事件驱动分簇路由算法。算法包括:(1)动态频谱感知分簇,采用层次聚类算法结合频谱感知获取的可用信道、节点间的距离、剩余能量和邻居节点度为相似度对被监控区域内的节点进行聚类分簇并选取簇头,构建分簇拓扑的过程对各分簇大小的均衡性引入奖励和惩罚因子,提升网络各分簇平均频谱利用率;(2)融入边缘计算的事件触发数据路由,根据构建的分簇拓扑结构,将待检测各区域变化异常表型信息触发事件以簇内汇聚和簇间中继交替迭代方式转发至汇聚节点,簇内汇聚包括直传和簇内中继,簇间中继包括主网关节点和次网关节点-主网关节点两种情况;(3)基于频谱变化和通信服务质量(QoS)的自适应重新分簇:基于主用户行为变化引起的可用信道改变,或分簇效果不佳对通信服务质量产生的干扰,触发CRSN进行自适应重新分簇。此外,本研究还提出了一种新的能耗均衡策略去能量消耗中心化(假设sink为中心),即在网关或簇头节点选取计算式中引入与节点到sink的距离成正比的权重系数。算法仿真结果表明,与采用K-medoid分簇和能量感知的事件驱动分簇(ERP)路由方案相比,在CRSN节点数为定值的前提下,基于DSEB的分簇路由算法在网络生存期与能效等方面均具有一定的改进;在主用户节点数为定值时,所提算法比其它两种算法具有更高频谱利用率。

知网阅读

[4]顾浩, 王志强, 吴昊, 蒋永年, 郭亚 基于荧光法的溶解氧传感器研制及试验[J] 智慧农业(中英文), 2020, 2(2): 48-58

GU Hao, WANG Zhiqiang, WU Hao, JIANG Yongnian, GUO Ya A fluorescence based dissolved oxygen sensor[J] Smart Agriculture, 2020, 2(2): 48-58

摘要:溶解氧含量的测量对水产养殖具有极其重要的意义,但目前中国市面上的溶解氧传感器存在价格昂贵、不能持续在线测量及更新部件维护困难等问题,难以在水产养殖物联网中大规模推广和发挥作用。本研究基于荧光淬灭原理,利用水中溶解氧浓度与荧光信号相位差的关系进行低成本、易维护溶解氧传感器的研发。首先利用自制备溶氧敏感膜,经激发光照射后产生红色荧光,该荧光寿命可由溶解氧浓度调节;然后利用光信号敏感器件设计光电转化电路实现光信号感知;再以STM32F103微处理器作为主控芯片,编写下位机程序实现激发光脉冲产生,利用相敏检波原理以及快速傅里叶变换(FFT)计算激发光与参照光的相位差,进而转化为溶解氧浓度,实现溶解氧的测量。荧光探测部分与系统主控部分采用分离式设计思想,利用屏蔽排线直接插拔连接,便于传感器探测头的拆卸、更换、维护以及实现远距离在线测量。经测试,本溶解氧传感器的测量范围是0~20 mg/L,响应延迟小于2 s,溶氧敏感膜使用寿命约1年,可以实时不间断地对溶解氧浓度进行测量。同时,本传感器具有测量方便、制作成本低、体积小等特点,为中国水产养殖低成本溶解氧传感器的研发与市场化奠定了良好的基础。

知网阅读

[5]矫雷子, 董大明, 赵贤德, 田宏武 基于调制近红外反射光谱的土壤养分近场遥测方法研究[J] 智慧农业(中英文), 2020, 2(2): 59-66

JIAO Leizi, DONG Daming, ZHAO Xiande, TIAN Hongwu Near-field telemetry detection of soil nutrient based on modulated near-infrared reflectance spectrum[J] Smart Agriculture, 2020, 2(2): 59-66

摘要: 土壤养分作为农业生产的重要指标,含量过少会降低农作物产量,过多则会造成环境污染。因此,快速、准确检测土壤养分对于精准施肥和提高作物产量具有重要意义。基于取样和化学分析的传统方法能够全面准确地检测土壤养分,但检测过程中土壤的取样及预处理过程繁琐、 *** 作复杂、费时费力,不能实现土壤养分的原位快速检测。本研究基于调制近红外光谱,提出了一种土壤养分主动式近场遥测方法,可有效避免土壤反射自然光的干扰。该方法使用波长范围1260~1610 nm的8通道窄带激光二极管作为近红外光源,通过测量8通道激光光束的土壤反射率,建立土壤养分中氮(N)关于土壤反射率的计量模型,实现了N的快速检测。在74组已知N含量的土壤样品中,选取54组作为训练集,20组作为预测集。基于一般线性模型,对训练集中土壤N含量与土壤反射率的定量化参数进行训练,筛选显著波段后的计量模型R2达到097。基于建立的计量模型,预测集中土壤N含量预测值与参考值的决定系数R2达到09,结果表明该方法具有土壤养分现场快速检测的能力。

知网阅读

[6]朱登胜, 方慧, 胡韶明, 王文权, 周延锁, 王红艳, 刘飞, 何勇 农机远程智能管理平台研发及其应用[J] 智慧农业(中英文), 2020, 2(2): 67-81

ZHU Dengsheng, FANG Hui, HU Shaoming, WANG Wenquan, ZHOU Yansuo, WANG Hongyan, LIU Fei, HE Yong Development and application of an intelligent remote management platform for agricultural machinery[J] Smart Agriculture, 2020, 2(2): 67-81

摘要: 本研究针对农机管理实时数据少、农机实时作业监管困难、服务信息不对称等问题,首先提出专业化远程管理平台设计时应具有五大原则:专业化、标准化、云平台、模块化以及开放性。基于这些原则,本研究设计了基于大田作业智能传感技术、物联网技术、定位技术、遥感技术和地理信息系统的可定制化的通用农机远程智能管理平台。平台分别为各级政府管理部门、农机合作社、农机手、农户设计并实现了基于WebGIS 的农机信息库及农机位置服务、农机作业实时监测与管理、农田基础信息管理、田间作物基本信息管理、农机调度管理、农机补贴管理、农机作业订单管理等多个实用模块。研究着重分析了在当前的技术背景下,平台部分关键技术的实现方法,包括采用低精度GNSS定位系统前提下的作业面积的计算方法、GNSS定位数据处理过程中的数据问题分析、农机调度算法、作业传感器信息的集成等,并提出了以地块为核心的管理平台建设思路;同时提出农机作业管理平台将逐步从简单作业管理转向大田农机综合管理。本平台对同类型管理平台的研发具有一定的参考与借鉴作用。

知网阅读

[7]金洲, 张俊卿, 郭红燕, 胡宜敏, 陈翔宇, 黄河, 王红艳 水肥浓度智能感知与精准配比系统研制与试验[J] 智慧农业(中英文), 2020, 2(2): 82-93

JIN Zhou, ZHANG Junqing, GUO Hongyan, HU Yimin, CHEN Xiangyu, HUANG He, WANG Hongyan Development and testing of intelligent sensing and precision proportioning system of water and fertilizer concentration[J] Smart Agriculture, 2020, 2(2): 82-93

摘要: 为解决农场当地当时的复合肥料精准化配料问题,本研究将水肥一体化智能灌溉施肥系统作为研究对象,构建了水肥浓度智能感知与精准配比系统。首先提出现场在线水肥溶液智能感知模型的快速建立方法,利用数据分析算法从传感器实时监测的一系列浓度梯度的肥料溶液中挖掘出模型。其次基于上述模型设计水肥浓度智能感知与精准配比系统的框架结构,阐述系统工作原理;并通过三种水体模拟在线配肥验证了该系统原位指导水肥浓度配比的有效性,同时评价了水体电导率对水肥配比浓度的干扰。试验结果表明,正则化条件下二阶的多项式拟合曲线是表达溶液电导率与水肥浓度的变化关系最优的模型,相关系数R2均大于0999,由此模型可得出用户关心的复合肥各指标浓度。三种水体模拟在线配肥结果表明,水体会干扰电导率导致无法准确反演水肥配比的浓度,相对偏差值超过了01。因此,本研究提出的在线水肥智能感知与精准配比系统实现了消除当地水体电导率对水肥配比准确性的干扰,通过模型计算实现复合肥精准化配比,并得出各指标浓度。该系统结构简单,配比精准,易与现有水肥一体机或者人工配肥系统结合使用,可广泛应用于设施农业栽培、果园栽培和大田经济作物栽培等环境下的精准智能施肥。

知网阅读

[8]孙浩然, 孙琳, 毕春光, 于合龙 基于粒子群与模拟退火协同优化的农田物联网混合多跳路由算法[J] 智慧农业(中英文), 2020, 2(3): 98-107

SUN Haoran, SUN Lin, BI Chunguang, YU Helong Hybrid multi-hop routing algorithm for farmland IoT based on particle swarm and simulated annealing collaborative optimization method[J] Smart Agriculture, 2020, 2(3): 98-107

摘要: 农业无线传感器网络对农田土壤、环境和作物生长的多源异构信息的获取起关键作用。针对传感器在农田中非均匀分布且受到能量制约等问题,本研究提出了一种基于粒子群和模拟退火协同优化的农田物联网混合多跳路由算法(PSMR)。首先,通过节点剩余能量和节点度加权选择簇首,采用成簇结构实现异构网络高效动态组网。然后通过簇首间多跳数据结构解决簇首远距离传输能耗过高问题,利用粒子群与模拟退火协同优化方法提高算法收敛速度,实现sink节点加速采集簇首中的聚合数据。对算法的仿真试验结果表明,PSMR算法与基于能量有效负载均衡的多路径路由策略方法(EMR)相比,无线传感器网络生命周期提升了57%;与贪婪外围无状态路由算法(GPSR-A)相比,在相同的网络生命周期内,第1个死亡传感器节点推迟了两轮,剩余能量标准差减少了004 J,具有良好的网络能耗均衡性。本研究提出的PSMR算法通过簇首间多跳降低远端簇首额外能耗,提高了不同距离簇首的能耗均衡性能,为实现大规模农田复杂环境的长时间、高效、稳定地数据采集监测提供了技术基础,可提高农业物联网的资源利用效率。

知网阅读

[9]毛文菊, 刘恒, 王东飞, 杨福增, 刘志杰 面向果园多机器人通信的AODV路由协议改进设计与测试[J] 智慧农业(中英文), 2021, 3(1): 96-108

MAO Wenju, LIU Heng, WANG Dongfei, YANG Fuzeng, LIU Zhijie Improved AODV routing protocol for multi-robot communication in orchard[J] Smart Agriculture, 2021, 3(1): 96-108

摘要: 针对多机器人在果园中作业时的通信需求,本研究基于Wi-Fi信号在桃园内接收强度预测模型,提出了一种引入优先节点和路径信号强度阈值的改进无线自组网按需平面距离向量路由协议(AODV-SP)。对AODV-SP报文进行设计,并利用NS2仿真软件对比了无线自组网按需平面距离向量路由协议(AODV)和AODV-SP在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能。仿真试验结果表明,本研究提出的AODV-SP路由协议在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能均优于AODV协议,其中节点的移动速度为5 m/s时,AODV-SP的路由发起频率和路由开销较AODV分别降低了365%和709%,节点的移动速度为8 m/s时,AODV-SP的分组投递率提高了059%,平均端到端时延降低了1309%。为进一步验证AODV-SP协议的性能,在实验室环境中搭建了基于领航-跟随法的小型多机器人无线通信物理平台并将AODV-SP在此平台应用,并进行了静态丢包率和动态测试。测试结果表明,节点相距25 m时静态丢包率为0,距离100 m时丢包率为2101%;动态行驶时能使机器人维持链状拓扑结构。本研究可为果园多机器人在实际环境中通信系统的搭建提供参考。

知网阅读

[10]黄凯, 舒磊, 李凯亮, 杨星, 朱艳, 汪小旵, 苏勤 太阳能杀虫灯物联网节点的防盗防破坏设计及展望[J] 智慧农业(中英文), 2021, 3(1): 129-143

HUANG Kai, SHU Lei, LI Kailiang, YANG Xing, ZHU Yan, WANG Xiaochan, SU Qin Design and prospect for anti-theft and anti-destruction of nodes in Solar Insecticidal Lamps Internet of Things[J] Smart Agriculture, 2021, 3(1): 129-143

摘要: 太阳能杀虫灯在有效控制虫害的同时,可减少农药施药量。随着其部署数量的增加,被盗被破坏的报道也越来越多,严重影响了虫害防治效果并造成了较大的经济损失。为有效地解决太阳能杀虫灯物联网节点被盗被破坏问题,本研究以太阳能杀虫灯物联网为应用场景,对太阳能杀虫灯硬件进行改造设计以获取更多的传感信息;提出了太阳能杀虫灯辅助设备——无人机杀虫灯,用以被盗被破坏出现后的部署、追踪和巡检等应急应用。通过上述硬件层面的改造设计和增加辅助设备,可以获取更为全面的信息以判断太阳能杀虫灯物联网节点被盗被破坏情况。但考虑到被盗被破坏发生时间短,仅改造硬件层面还不足以实现快速准确判断。因此,本研究进一步从内部硬件、软件算法和外形结构设计三个层面,探讨了设备防盗防破坏的优化设计、设备防盗防破坏判断规则的建立、设备被盗被破坏的快速准确判断、设备被盗被破坏的应急措施、设备被盗被破坏的预测与防控,以及优化计算以降低网络数据传输负荷六个关键研究问题,并对设备防盗防破坏技术在太阳能杀虫灯物联网场景中的应用进行了展望。

知网阅读

微信交流服务群

为方便农业科学领域读者、作者和审稿专家学术交流,促进智慧农业发展,为更好地服务广大读者、作者和审稿人,编辑部建立了微信交流服务群,有关专业领域内的问题讨论、投稿相关的问题均可在群里咨询。

入群方法: 加我微信 331760296 备注: 姓名、单位、研究方向 ,我拉您进群,机构营销广告人员勿扰。

信息发布

科研团队介绍及招聘信息、学术会议及相关活动 的宣传推广

根据福建财经频道采访报道福建蜂窝物联网科技有限公司根据自己在行业内多年的经验总结得出四大农业物联网解决方案:温室大棚、生态农场、畜牧养殖、水产养殖。
① 温室大棚:温室生产管控解决方案通过对温室内温湿度、土壤水分、光照度、光合效率、二氧化碳、光照度等进行数据监测,通过无线技术传输至云平台加工处理,并在手机、电脑、平板上实时显示。用户还可通过软件平台对温室湿帘风机、喷淋滴灌、内外遮阳、顶窗侧窗、加温补光等设备进行控制。从而达到温室种植的智能化管理,减轻用户的工作量,节省用户用工成本和管理成本。
② 生态农场:室外农作物智能监控改造方案,该方案可建设一个气象站及其相关传感器,采集农作物当地的环境参数,设备主要以水泵、电磁阀、水肥一体化设备等为主,施工简便,主要实现自动控制水阀进行浇水作业等功能,提高生产效率,提高作物产量。
③ 畜牧养殖:主要针对环境温湿度和空气中氨气含量进行监测,配套水帘与排风系统,以此来达到降温与换气功能。同时采用自动投料装置与粪便清理装置,确保了环境的环境卫生,减少用工成本。另外针对畜禽安全方面采用视频监控系统,实时关注畜禽动态情况并实现远程会诊的功能。全面结合自动化设备和计算机信息技术为畜禽的生产提供有效的管控手段。
④ 水产养殖:水产养殖生产管控解决方案通过对养殖水域的环境以及现场设备的集中监控,经过云服务器分析,得出科学的生产 *** 作指导,使得水产养殖实现智能化,通过PC、APP等显示控制方式实现随时随地监控管理。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13008062.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存