物联网边带是什么

物联网边带是什么,第1张

当前,物联网(IoT)技术领域充释着各种标准,像NB-IoT、LoRa、SigFox等,他们正通过各自擅长的技术和应用抢夺IoT风口,以争取在这片广阔的市场上取得优势。
这里写描述
NB-IoT是由电信标准延伸而出的,主要是由电信运营商支持,而LoRa则是一个商业运用平台,两者主要区别在于商业运营的模式:NB-IoT基本是由电信运营商来把控运营,所以使用者必须使用它的网关及服务,而LoRa就量对开放一些,有各种不同的组合方式,商业的模式是完全不同的。
技术层面上来看,NB-IoT和LoRa的差异其实并不是很大,属于各有优劣。而相对于某些领域,国内有一些用户在并行使用这两种技术和网络。NB-IoT相对而言是受限于基站的,而LoRa则要加入一个网关相对简单容易,并且总的来说价格要比NB-IOT低廉。用户可以根据需求,增加不同的网关覆盖。所以从覆盖程度上来说LoRa的覆盖程度可能比NB-IoT更广一点。
LPWAN又称LPN,全称为LowPower Wide Area Network或者LowPower Network,指的是一种无线网络。这种无线网络的优势在于低功耗与远距离,通常用于电池供电的传感器节点组网。因为低功耗与低速率的特点,这种网络和其他用于商业,个人数据共享的无线网络(如WiFi,蓝牙等)有着明显的区别。
在广泛应用中,LPWAN可使用集中器组建为私有网络,也可利用网关连到公有网络上去。
LPWAN因为跟LoRaWAN名字类似,再加上最近的LoRaWAN在IoT领域引起的热潮,使得不少人对这两个概念有所混淆。事实上LoRaWAN仅仅是LPWAN的一种,还有几种类似的技术在与LoRaWAN进行竞争。
概括来讲,LPWAN具有如下特点:
• 双向通信,有应答
• 星形拓扑(一般情况下不使用中继器,也不使用Mesh组网,以求简洁)
• 低数据速率
• 低成本
• 非常长的电池使用时间
• 通信距离较远
LPWAN适合的应用:
• IoT,M2M
• 工业自动化
• 低功耗应用
• 电池供电的传感器
• 智慧城市,智慧农业,抄表,街灯控制等等
LoraWAN和Lora之间关系
虽然一样是因为名字类似,很多人会将LoRaWAN与LoRa两个概念混淆。事实上LoRaWAN指的是MAC层的组网协议。而LoRa只是一个物理层的协议。虽然现有的LoRaWAN组网基本上都使用LoRa作为物理层,但是LoRaWAN的协议也列出了在某些频段也可以使用GFSK作为物理层。从网络分层的角度来讲,LoRaWAN可以使用任何物理层的协议,LoRa也可以作为其他组网技术的物理层。事实上有几种与LoRaWAN竞争的技术在物理层也采用了LoRa。
LoraWAN的主要竞争技术
这里写描述
如今市场上存在多个同样使用LoRa作为物理层的LPWAN技术,例如深圳艾森智能(AISenz Inc)的aiCast。aiCast支持单播、多播和组播,比LoRaWAN更加复杂完备。许多LoRaWAN下不可能的应用因此可以实现。
Sigfox使用慢速率的BPSK(300bps),也有一些较有前景的应用案例。
NB-IoT(Narrow Band-IoT)是电信业基于现有移动通信技术的IoT网络。其特点是使用现有的蜂窝通信硬件与频段。不管是电信商还是硬件商,对这项技术热情不减。
关键技术Lora简介
LoRaWAN的核心技术是LoRa。而LoRa是一种Semtech的私有调制技术(2012收购CycleoSAS公司得来)。所以为了便于不熟悉数字通信技术的人们理解,先介绍两个常见的调制技术FSK与OOK。选用这两个调制方式是因为:
1这两个是最简单、最基础、最常见的数字通信调制方式
2在Semtech的SX127x芯片上与LoRa同时被支持,尤其是FSK经常被用来与LoRa比较性能。
OOK
OOK全称为On-Off Keying。核心思想是用有载波表示一个二进制值(一般是1,也可能反向表示0),无载波表示另外一个二进制值(正向是0,反向是1)。
在0与1切换时也会插入一个比较短的空的无载波间隔,可以为多径延迟增加一点冗余以便接收端解调。OOK对于低功耗的无线应用很有优势,因为只用传输大约一半的载波,其余时间可以关掉载波以省功耗。缺点是抗噪音性能较差。
这里写描述
FSK
FSK全称为Frequency Shift Keying。LoRaWAN协议也在某些频段写明除LoRa之外也支持(G)FSK。FSK的核心思想是用两种频率的载波分别表示1与0。只要两种频率相差足够大,接收端用简单的滤波器即可完成解调。
对于发送端,简单的做法就是做两个频率发生器,一个频率在Fmark,另一个频率在Fspace。用基带信号的1与0控制输出即可完成FSK调制。但这样的实现中,两个频率源的相位通常不同步,而导致0与1切换时产生不连续,最终对接收器来讲会产生额外的干扰。实际的FSK系统通常只使用一个频率源,在0与1切换时控制频率源发生偏移。
这里写描述
GFSK是基带信号进入调制前加一个高斯(Gaussian)窗口,使得频率的偏移更加平滑。目的是减少边带(Sideband)频率的功率,以降低对相邻频段的干扰。代价是增加了码间干扰。
对于这一方面的研究实验发现:学习Lora调制技术的一些准备及发现
然而,对于“悠久历史积累”和高安全、易部署等综合优势的LoRa阵营来说,最近几年里,在技术和落地方面虽取得了长足的进步,但离真正的规模、解决行业客户的切实问题是有着不小的差距。那么,究竟是技术壁垒突破较难?产业链生态不健全?亦或者是商业模式限制了从业者对市场规模的想象?对于LoRa产业链的广大从业者而言,找到制约LoRa技术大规模发展的瓶颈,并联手产业合力突围对推动产业良性发展至关重要。

台阶不算的,建筑面积是以外墙外边缘计算的。走廊的话,如果没有围护结构(通俗点说就是墙)的话,按投影面积的一半算建筑面积。有围护结构但层高小于22m的也算一般面积,大于22m时按全部面积计算。

现今世界网络和数据普及,不单止智能手机能连接网络,就连手表,闹钟,家电等日常用品,也能即时在网络中提取资讯,并配合环据数据作出分析,将最好的体验反馈给 用家。而透过网络来连接人,流程,资讯和装置这个概念,亦是我们平常所说的物联网(物联网,又名物联网)。

承接上文介绍了雾计算的简单的应用和由来,下文将会介绍物联网的一个重要技术 - 边缘计算(Edge computing)。下文将会阐述边缘计算的由来,并介绍它与物联网的关系,而且会利用无人驾驶作为用例,介绍云计算的短处和边缘计算的应用。

先定义一下边缘计算(wikepedia,2019):

这里提到很多艰涩的专业名词,例如是“分散式运算”,“节点”等,其实只是描述:边缘技术是一种技术将大型应用程式的一部分转移到(即分散式运算)日常设备中处理(即边缘节点中)。

在云计算的典型结构中(如上图),通常可分为“云(云层) - 网(雾层) - 端(边缘)”三层。“端”这一层覆盖所有终端的应用程式,亦通常是被管理的角色。当云计算一计算出结果,就会到透过“网”层,将指令发送到“端”层的应用程式执行,而应用程式收到数据后,则会发送到“云”层作计算。

而边缘计算则可以想像为给予“端”层一定程度的“自治”。在边缘计算的架构中,终点被赋予简单的存储和计算能力(与雾计算不同,这里重点是“简单”的功能) ,令它能偶尔脱离云的管理,并根据环境数据作出回应。

增加终端系统简单的计算和存取能力看似一小步,但其实这个布局有着莫大的好处,当中包括:

  - 低延迟:数据由近场产生,能快速回应

  - 独立性:在没有网络连接下,系统亦能运作

  - 合规性:无需传送用户资料,保护个人数据

  - 简化数据:终端先处理部份数据,数据简化后才向云服务器传输

  - 安全性:数据传输减少,减少网络安全风险

无人驾驶是边缘计算其中一个经典用例,亦是一个很好例子说明云计算的短处和为什么需要边缘计算。

下图展示的是常用的云计算架构,当中包括1)一架智能汽车(客户端),并且正在使用无人驾驶功能,2)互联网(Internet),用作传输数据,以及3)云服务(云计算)服务器),用作提供无人驾驶服务。

假设汽车正在以60ms-1的速度行驶,并在起始位置感测到前方3m有阻碍物。由于汽车正在使用云计算的架构,汽车本身并没有分析的功能,汽车会将感测到的影像 传送到云服务器中作分析(步骤1)。

很不幸地,由于汽车现在在北区甚远,信息在005s后才能到云服务 无上停驶,但也要经过005s才能将指令发送到汽车上执行(步骤2)。

在这段发送信息到回收指令的过程中(~01s),汽车会继续以均速行驶(60ms-1),并到6m后(= 60ms-1×01s)才会收到指令停下来 。而且会撞到在3m前的路人,酿成车祸。

汽车在起始位置感测到前方3m有阻碍物,会立刻执行停车指令(步骤1)。然后再发送影像和决策内容到云服务器中作进阶分析(步骤2),以改善无人驾驶性能。 (注:这里看似与雾计算方式相似,但在过程中,应用程式没有作任何的数据分析,只根据感应器内容作出回应。若然是雾计算的话,感应器信息会发送到雾服务中,再作分析,然后通知终端设备作出回应。)

由此可见,云服务器距离数据产生的位置较远,因此会造成较大的延迟。而无人驾驶这些需要实时作出决策的活动,则很大机会需要使用边缘计算,使计算的服务靠近产生数据的源头,做到计算更接近实际行动。

随着科技的进步,数据传输速度的快速提升,不少日常物品,例如是家用电器,车辆等,都已经嵌入感测器,并透过网络接结与互联网交换资讯,形成了庞大的物件网络(即物联网)。

物件会在运行时会收集到大量的环境数据。有些人会问,为什么不把数据都在本地(local drive)处理,其他数据再传到云服务做储存。这可能是其中一个可以实行的方法,但如果所有数据都在本地处理,物件本身要设有很多的存储装置和处理服务器。这会大大增加电力消秏和物件重量,增加成本。

因此,最好的方法是结合云计算和边缘计算的优势做出最佳的配置。在一些决定物件重大安全性的事件(例如如上文无人驾驶例子的刹车)可将决定的主导权放到边缘上,其他没有急切性的事情,则放到云服务器低成本集中处理。透过云与边缘的良好分工,大大减少成本,亦能提高运算效率。

物联网产业链全景梳理:共有四大层面

所谓产业链,是以生产相同或相近产品的企业集合所在产业为单位形成的价值链,是承担着不同的价值创造职能的相互联系的产业围绕核心产业,通过对信息流、物流、资金流的控制,在采购原材料、制成中间产品以及最终产品、通过销售网络把产品送到消费者手中的过程中形成的由供应商、制造商、分销商、零售商、最终用户构成的一个功能链结构模式。

从产业链条来看,物联网的产业链条由上而下可以分为感知层、传输层、平台层和应用层四个层级。

自2018年中美贸易摩擦以来,美国加大了对中国高新技术出口的限制,不断扩大实体清单,影响了中国一些科技主导型企业的发展,这从侧面警示了中国在全球供应链中地位的脆弱性。物联网通过传感器把物理世界与数字世界联系起来,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。其中传感器作为数据采集的源头,已经成为各种应用能力所需的数据来源所在。目前中国国内也涌现出了一些传感器芯片重点生产企业,如:高德红外、西人马、士兰微、敏芯微电子、博通、全志科技、大唐微电子、复旦微电子等。

物联网产业链区域热力地图:企业主要分布在京津冀、珠三角与东部沿海等地区

从区域分布来看,目前我国物联网行业上市公司主要分布在京津冀、珠三角与东部沿海等经济发达地区。分布在北京和广东的企业数量最多,其中感知层上市企业主要集中在北京,应用层代表上市企业主要集中在广东。

物联网相关企业数量的分布与数字经济的发展情况相关。根据新华三发布的《2021年中国城市数字经济指数蓝皮书》,全国城市数字经济评分排名前十的城市分别为上海、深圳、北京、成都、杭州、广州、无锡、南京、重庆和苏州。根据中国企业数据库企查猫,目前中国物联网企业主要分布在华东和华南及中部的四川等地,特别以广东、江苏等省市为代表。整体来看,数字经济的发展在不断推动物联网的发展。

物联网产业上市公司业绩情况:产业整体毛利率较高

从物联网代表企业的业绩情况来看,物联网产业代表企业的毛利率均值达到36%,行业整体毛利率较高。从单独企业情况来看,行业主要上市公司的业务规模差距明显,毛利率水平也因业务侧重点的不同而呈现出分层差异。上市企业具体的业绩情况如下表所示:

更多本行业研究分析详见前瞻产业研究院《中国物联网行业细分市场需求与投资机会分析报告》

作者:黄还青;华为高级产业发展经理,ECC需求与总体组副主席。

首先我们认为边缘计算的兴起应该是在过去三四年,之所以兴起大背景是因为实体经济的数字化转型。这波实体经济数字化以万物感知、万物互联、万物智能为特征,这三方面的特征仅仅依靠云计算是没办法特别好的解决,比如实时性、带宽、安全、隐私等等一些问题,在这样背景下,边缘计算逐渐兴起。
我们分享几个行业对于边缘计算的需求特征和大背景下浮现出来关于边缘计算的机会。先看一下工业,1工业40以及智能制造大背景下,推动了工业界原来传统的架构重构:云+边缘+设备三层扁平互联架构。在这个过程中,边缘计算为什么有价值?边缘计算核心是解决了传统五层架构里面网络孤岛、数据孤岛与业务孤岛的问题,同时更好的支撑柔性制造,并且带来从技术到商业各个方面价值创新的能力。
2OPC-UA overTSN向下渗透,边缘计算碎片化的问题在工业界尤其明显。比如工业界目前一个比较好的解决方案,能解决边缘计算碎片化的方案。OPC-UA over TSN 原来更多是在PLC之间及以上的层次。去年11月份在 OPC基金会下面成立FLC工作组,工作组目的是 PLC以下的层次如何利用OPC UA over TSN 技术需求,研究明白,协议规范,定义清楚。
其实,工业界大背景下,施耐德这样的巨头已经围绕大的趋势,展开一些 探索 ,我们看到施耐德已经明确了要基于 云+边缘控制+产品 三个层次去重构原有的架构,特意强调边缘控制层的智能化是非常核心的点,提到了边缘计算的主要形态,包括本地设备和边缘云;同时和华为开展持续深入的合作。
智慧城市,从08年IBM提出了智慧地球概念后,智慧城市的建设在全球成为了个热点;17年中国发布了数字中国战略,引爆了新一轮智慧城市的建设,边缘侧拥有最全的诉求,所以新一轮智慧城市的建设需要边缘智能、边缘协同、边缘能力的支撑;同时,5G的发展会极大推动城市的万物互联,这也将极大促进边缘计算产业发展。例如河长巡河场景下,利用边缘计算实时采集河湖动态信息,通过AI辅助进行监测数据处理,污染预警溯源;智慧路灯场景下,借助边缘计算实时监控路灯运行状态,辅助路灯开、关、亮度管理,本地化运营团队进行针对性维护,精准高效;雪亮工程场景下,边缘计算不仅能够进行边缘预处理,剔除“垃圾”信息,减少上传的视频数据,还能够使边缘设备更加“聪明”。

全球主流运营商看重边缘计算产业机会点,都在拓耕边缘计算领域,从管道经营到算力经营,完善2C业务体验,强化2B市场能力。
中国联通致力于构建一个开放的,开源的Edge-Cloud服务PaaS平台,以灵活分配计算,存储,网络和加速资源,旨在加速边缘服务的孵化和推广。

1、发布CUBE-Edge20白皮书;

2、中国联通将大力发展边缘DC,启动全国范围内15个省市的规模试点;

3、主导的《IoT requirements for Edge computing》国际标准项目立项
中国移动将边缘计算上升为公司战略与5G并列。中移动将边缘计算上升为公司战略与5G并列,推动中国移动未来从管道经营(流量变现)扩展到算力经营(服务变现)”

1、成立中国移动边缘计算开放实验室;

2、发布中国移动边缘计算技术白皮书;

3、宣布Pioneer300计划。
美国电信公司AT&T将边缘计算定位其5G战略三大支柱之一,AT&T已经为移动和固定无线应用接入边缘计算,可以使用LTE或5G连接进行部署。主导发起了Akraino开源,通过开源加快边缘计算生态建设和商用部署。
全球移动通信系统协会,简称GSMA,全球移动通信系统协会(GSMA)成立于1987年,是全球移动通信领域的行业组织,目前其成员已包括220个国家的近800家移动运营商以及230多家更为广泛的移动生态系统中的企业,其中包括手机制造商、软件公司、设备供应商、互联网公司以及金融服务、医疗、媒体、交通和公共事业等领域的企业。GSMA认为边缘计算是运营商未来重要发展方向:

1、Edge Cloud如何帮助运营商Cloud VR/AR等新型业务降低部署成本,加快部署速度;

2、边缘计算如何推动当前智慧城市,智能制造中图像处理能力,

GSMA动态:

1、GSMA在MWC2019发布了边缘计算白皮书:Distributed Edge Cloud: Definitions,

Dynamics AndDrivers,

2、GSMA计划通过推动边缘计算典型PoC来加速边缘计算在运营商的应用。
GSMA定义的2大边缘计算形态

运营商边缘计算核心技术:

1、多形态I硬件(边缘云,一体机形态,异构数据处理云化网关等);

2、轻量级云原生PaaS(微服务,Serveless等);

3、安全(物理安全,平台安全,应用安全等)。

边缘计算技术方向往那些方向走?

边缘计算需要与云计算协同,才能最大化增强实现彼此的应用价值,这个得到产业界的广泛认同,但是边云协同的价值和内涵到底是什么,涉及到那些方面的协同?这些问题在产业界一直缺乏共识。去年,ECC产业联盟试图从主要场景出发,初步梳理了边云协同的全视图,我们认为边云协同大体上会涉及三层六类协同,也就是从IaaS 到 PaaS 到SaaS三个层次,边缘侧三个层次和云侧三个层次一定有相互协同工作,落实到具体场景中,不见得所有业务场景都会包括,我们这个六类应该是目前阶段理解边云协同的全视图。
边缘计算正从10走向20,如果说10更偏向概念定义,主要目的是推动产业共识;20则更加关心技术和能力构建,从而促进边缘计算的实践落地。边缘计算20核心观点包括落地形态,我们认为主要是边缘云和云化网关两种形态,当然细分来说还有很多。

边缘云主要提供近现场的综合计算能力,支撑智慧园区、平安城市、智能制造等场景,将中心云的能力拉近到边缘,是下一步云计算创新突破的增长点。

云化网关是企业/行业数据的汇聚节点,是网关设备基于云计算技术的演进,主要通过多样连接、实时处理、云化管理和人工智能等关键能力,边云协同使能行业数字化。

软件平台,一定是引入云架构、云技术,实现端到端实时、协同式智能、可信赖、可动态重置的能力。

硬件平台:以异构计算为主,需要考虑ARM+X86+GPU+NPU+FPGA异构计算能力的支持。

核心特征:边云协同和边缘智能。
从趋势看,边缘计算发展分为三阶段。

第一阶段,这个阶段时期大致是2015年-2017年,概念孵化,产业共识

产业共识:边缘计算及其价值成为产业共识

概念泛化:雾计算、边缘计算、节点计算、移动边缘计算、开放边缘计算

边界不清:OT认为20年前的工业现场PLC即是、海康威视认为智能摄像头即是、思科认为云之下终端之上。

第二阶段,当前就是在第二阶段,2018年到2020年,主要是进一步聚焦及落地 探索

价值落地场景:从泛化概念,逐步聚焦到云边缘、物联网边缘价值场景。

业务本质:云计算在数据中心之外汇聚节点的延伸和演进。“边云协同、边缘智能”为核心能力。

第三阶段是2020年以后,开始规模发展

带来更丰富的应用场景:增值业务(如预测性维护)到控制系统(如vPLC)

以及更广泛的行业覆盖:从制造/运营商/能源到泛工业(如交通、企业、智慧家居等)

边缘计算已经形成产业共识,正从泛化概念走向进一步聚焦及落地 探索 ,未来3~5年是产业发展关键期。

华为物联网技术应用场景有:1远程智能诊断;2实时监测;3设备连接管理;4智能家居;5智能供应链管理;6远程医疗服务;7信息可视化;8智能运营中心;9自动化驾驶; 10无线传输;11工业物联网;12机器人 *** 作。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13016782.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存