物联网关键技术的书籍目录

物联网关键技术的书籍目录,第1张

11 物联网概述
12 物联网对通信网络的需求
13 物联网总体架构
14 智慧网络
15 物联网核心技术
151 二维码及RFID
152 传感器
153 无线传感器网络(WSN)
154 近距离通信
155 无线网络
156 感知无线电
157 云计算
158 全IP方式(IPv6)
159 嵌入式技术
16 物联网与泛在网概念的差异
17 物联网的行业应用
18 物联网应用场景
181 城市安全管控
182 城市环境管控
183 城市能源管控
184 家庭数字生活
19 影响物联网发展的因素
110 物联网发展的步骤 21 无线传感器网络简介
211 无线传感器网络的发展历史
212 无线传感器网络体系结构
213 无线传感器网络的特点
214 无线传感器网络的典型应用
22 无线传感器网络协议栈
221 无线传感器网络物理层协议
222 无线传感器网络MAC协议
223 无线传感器网络路由协议
224 无线传感器网络传输层协议
225 无线传感器网络应用层协议
226 协议栈优化和能量管理的跨层设计
23 无线传感器网络安全
231 面临的安全挑战
232 安全需求
233 无线传感器网络安全攻击
234 无线传感器网络加密技术
235 无线传感器网络密钥管理
236 无线传感器网络安全路由
237 无线传感器网络入侵检测
24 无线传感器网络仿真平台
241 无线传感器网络的仿真特点
242 无线传感器网络模拟仿真的发展状况
25 nesC语言
251 nesC语言简介
252 nesC基本设计思想
253 nesC语法
26 TinyOS *** 作系统
261 TinyOS *** 作系统简介
262 TinyOS 2x组件命名规则
263 TinyOS平台与硬件抽象
264 TinyOS安装
265 TinyOS调度机制
266 TinyOS 2x消息通信机制
267 TinyOS 2x能量管理机制
27 无线传感器网络与电信网结合
271 接入控制
272 安全
273 认证和授权
274 计费
275 业务和应用场景
28 无线传感器网络与Internet结合
281 融合方式
282 接入技术
29 IPv6无线传感器网络 31 ZigBee简介
311 ZigBee联盟简介
312 ZigBee应用领域
32 ZigBee网络拓扑
321 星形拓扑构造
322 对等网络构造
33 网络功能简介
331 超帧结构
332 数据传输模型
333 帧结构
334 健壮性
335 功耗
336 安全性
34 ZigBee协议栈
35 ZigBee物理层
351 工作频率和信道分配
352 信道分配和编号
353 发射功率
354 物理层协议数据单元(PPDU)结构
355 24GHz频带无线通信规范
356 868/915MHz频带无线通信规范
357 无线信道通用规范
36 ZigBee MAC层
361 帧结构概述
362 帧结构
363 信道访问机制
364 MAC层功能
37 ZigBee网络层
371 网络层数据实体(NLDE)
372 网络层管理实体(NLME)
38 ZigBee应用举例 41 M2M技术特性
411 M2M业务特征
412 M2M基本业务需求
413 M2M端到端分层架构
42 M2M技术标准
421 3GPP进展
422 ETSI进展
423 ITU进展
43 M2M应用通信协议
431 M2M应用通信协议
432 WMMP
44 M2M应用
441 智能抄表
442 CDMA无线抄表解决方案 51 RFID基本工作原理
511 标签
512 读写器
513 天线
514 工作频率
515 空口协议
516 读写距离
52 RFID技术标准
521 ISO/IEC标准
522 EPC Global标准
53 防冲突技术
54 RFID的干扰
55 RFID安全问题及对策 61 NFC技术要点
611 NFC工作原理
612 NFC防冲突技术
613 NFC技术标准
614 VLC-NFC技术
62 NFC在手机中的应用
621 移动支付
622 其他应用
623 NFC手机架构 71 蓝牙技术
711 低功耗蓝牙技术概述
712 射频基带与信道配置
713 网络结构
714 链路层
72 低能耗蓝牙协议栈
721 L2CAP
722 HCI
723 SDP
724 LMP
725 蓝牙的安全架构
73 低能耗蓝牙的应用
参考文献

物联网应用技术应该要学习课程:计算机应用基础、计算机组装调试技术、计算机网络英语、程序设计基础、网页设计基础、数字电路、微机原理与接口技术、计算机网络、物联网技术基础、信息安全技术等;

核心课程:计算机网络技术、路由与交换技术、移动通信技术、无线传感器技术、嵌入式技术、智能家居技术、入侵检测与防御技术、网络数据库、Linux *** 作系统、Windows Server *** 作系统等;

拓展课程:智能蔬菜大棚技术、信息安全法规、应用文写作、网络营销、数据恢复技术、语音网络技术、无线网络技术、Ipv6技术等。

物联网最为明显的特征是网络智慧化,通过信息化的手段实现物物相连,提高不同行业的自动化管理水平,减少人为干预,从而极大程度地提升效率,同时降低人工带来的不稳定性。因此,物联网在许多行业应用中将发挥巨大的潜力。

例如未来通过感应设备将电网、铁路、桥梁、隧道、公路、建筑、供水系统、大坝、油气管道等数据信息化,并通过网络传输方式实现信息的采集及管理,将物联网与现有的互联网整合起来,实现人类社会与物理系统的整合。

智能化社区和社区智能化区别
各个业务系统相对独立,与社区居民业主之间的交互体验很差;
社区的安全卫生、联防联控机制缺失,社区居民和业主无参与感;街道社区、物业管理、以及居民业主之间缺乏有机的衔接纽带,社区管理与居住体验缺乏有效的交互性。
归其所有,总结一句话:
传统模式的主角是安防系统!
就是将各种安防系统进行叠加,忽略了人体所能承受的信息获取以及甄别能力的极限,系统越多,功能越多,对使用者的繁琐度就越高,越来越难用,最终体现的效果大打折扣。
智慧社区综合管理系统,就拿科博睿尔智能管理系统来说
部署机器视觉分析系统,用机器代替人眼来做测量和判断,实现技防+人防高效+云智慧体系协同。加入人工智能元素,成就新一代强大的智慧行为预警研判分析系统;
能够实现更高级别的行为识别分析,同时,完全将小区置于智能化流程
在物联网时代下,无卡、无证、无钱包正成为智慧城市生活的新趋势。
率先参与社区与新一轮信息技术的结合变革,打造新型房地产的变化格局,打造智慧社区的新理念。
全场景视频数据结构化,将人、车等信息结构化之外,业主和陌生人的访客识别
一脸通行,感受安全、舒适与便捷的体验,更能提升出行效率,减少出入口保安站岗的传统模式。
业主/陌生人/访客识别。人员定位/人员轨迹,车辆识别,快速通过
智能安防出入口管理、入侵报警,实现技防+人防高效协同
用机器代替人来做测量和判断,机器视觉与人工智能元素融合
人会疲劳,AI系统可以一直不间断的工作
夜间布控+入侵检测
高空抛物监管
智慧物管服务
缴费服务、报事报修,信息发布、电瓶车充电
访客智能管理,提升物业管理人员工作效率,智慧无感通行,提升临时访客的体验感和舒适感

尽管IPv4中常见的攻击方式将在IPv6网络中失效,使来自网络层的一些安全攻击得以抑制,但采用IPv6并不意味着关紧了安全的大门,来自应用层的威胁将以新的方式出现。 总有人误认为“网络改成IPv6,安全问题就全面解决了”。诚然,IPv4中常见的一些攻击方式将在IPv6网络中失效,例如网络侦察、报头攻击、碎片攻击、假冒地址及蠕虫病毒等,但IPv6不仅不可能彻底解决所有安全问题,反而还会产生新的安全问题。
虽然与IPv4相比,IPv6在网络保密性、完整性方面做了更好的改进,在可控性和抗否认性方面有了新的保证,但目前多数网络攻击和威胁来自应用层而非网络层。因此,保护网络安全与信息安全,只靠一两项技术并不能实现,还需配合多种手段,诸如认证体系、加密体系、密钥分发体系、可信计算体系等。

安全新问题如影随形

IPv6是新的协议,在其发展过程中必定会产生一些新的安全问题,主要包括:
● 针对IPv6的网管设备和网管软件都不太成熟。
IPv6的管理可借鉴IPv4。但对于一些网管技术,如SNMP(简单网络管理)等,不管是移植还是重建,其安全性都必须从本质上有所提高。由于目前针对IPv6的网管都不太成熟,因此缺乏对IPv6网络进行监测和管理的手段,对大范围的网络故障定位和性能分析的能力还有待提高。
● IPv6中同样需要防火墙、***、IDS(入侵检测系统)、漏洞扫描、网络过滤、防病毒网关等网络安全设备。
事实上,IPv6环境下的病毒已经出现。例如,有研究人员在IPv6中发现了一处安全漏洞,可能导致用户遭受拒绝服务攻击。据悉,该漏洞存在于IPv6的type 0路由头(RH0)特征中。某些系统在处理IPv6 type 0路由头时存在拒绝服务漏洞。
● IPv6协议仍需在实践中完善。
IPv6组播功能仅仅规定了简单的认证功能,所以还难以实现严格的用户限制功能。移动IPv6(Mobile IPv6)也存在很多新的安全挑战,目前移动IPv6可能遭受的攻击主要包括拒绝服务攻击、重放攻击以及信息窃取攻击。另外,DHCP( Dynamic Host Configuration Protocol,动态主机配置协议)必须经过升级才可以支持IPv6地址,DHCPv6仍然处于研究、制订之中。
●向IPv6迁移过程中可能出现漏洞。
目前安全人员已经发现从IPv4向 IPv6转移时出现的一些安全漏洞,例如黑客可以非法访问采用了IPv4和IPv6两种协议的LAN网络资源,攻击者可以通过安装了双栈的IPv6主机建立由IPv6到IPv4的隧道,从而绕过防火墙对IPv4进行攻击。
IPv6协议在网络安全上的改进
● IP安全协议(IPSec)技术
IP安全协议(IPSec)是IPv4的一个可选扩展协议,而在IPv6中则是一个必备的组成部分。IPSec协议可以“无缝”地为IP提供安全特性,如提供访问控制、数据源的身份验证、数据完整性检查、机密性保证,以及抗重播(Replay)攻击等。
IPSec通过三种不同的形式来保护通过公有或私有IP网络来传送的私有数据。
(1)验证:通过认证可以确定所接受的数据与所发送的数据是否一致,同时可以确定申请发送者在实际上是真实发送者,而不是伪装的。
(2)数据完整验证:通过验证保证数据从原发地到目的地的传送过程中没有任何不可检测的数据丢失与改变。
(3)保密:使相应的接收者能获取发送的真正内容,而无关的接收者无法获知数据的真正内容。
需要指出的是,虽然IPSec能够防止多种攻击,但无法抵御Sniffer、DoS攻击、洪水(Flood)攻击和应用层攻击。IPSec作为一个网络层协议,只能负责其下层的网络安全,不能对其上层如Web、E-mail及FTP等应用的安全负责。
●灵活的扩展报头
一个完整的IPv6数据包包括多种扩展报头,例如逐个路程段选项报头、目的选项报头、路由报头、分段报头、身份认证报头、有效载荷安全封装报头、最终目的报头等。这些扩展报头不仅为IPv6扩展应用领域奠定了基础,同时也为安全性提供了保障。
比较IPv4和Ipv6的报头可以发现,IPv6报头采用基本报头+扩展报头链组成的形式,这种设计可以更方便地增添选项,以达到改善网络性能、增强安全性或添加新功能的目的。
IPv6基本报头被固定为40bit,使路由器可以加快对数据包的处理速度,网络转发效率得以提高,从而改善网络的整体吞吐量,使信息传输更加快速。
IPv6基本报头中去掉了IPv4报头中的部分字段,其中段偏移选项和填充字段被放到IPv6扩展报头中进行处理。
去掉报头校验(Header Checksum,中间路由器不再进行数据包校验)的原因有三: 一是因为大部分链路层已经对数据包进行了校验和纠错控制,链路层的可靠保证使得网络层不必再进行报头校验; 二是端到端的传输层协议也有校验功能以发现错包; 三是报头校验需随着TTL值的变化在每一跳重新进行计算,增加包传送的时延。
●地址分配与源地址检查
地址分配与源地址检查在IPv6的地址概念中,有了本地子网(Link-local)地址和本地网络(Site-local)地址的概念。从安全角度来说,这样的地址分配为网络管理员强化网络安全管理提供了方便。若某主机仅需要和一个子网内的其他主机建立联系,网络管理员可以只给该主机分配一个本地子网地址;若某服务器只为内部网用户提供访问服务,那么就可以只给这台服务器分配一个本地网络地址,而企业网外部的任何人都无法访问这些主机。
由于IPv6地址构造是可会聚的(aggregate-able)、层次化的地址结构,因此,IPv6接入路由器对用户进入时进行源地址检查,使得ISP可以验证其客户地址的合法性。
源路由检查出于安全性和多业务的考虑,允许核心路由器根据需要,开启反向路由检测功能,防止源路由篡改和攻击。
IPv6固有的对身份验证的支持,以及对数据完整性和数据机密性的支持和改进,使得IPv6增强了防止未授权访问的能力,更加适合于那些对敏感信息和资源有特别处理要求的应用。
通过端到端的安全保证,网络可以满足用户对安全性和移动性的要求。IPv6限制使用NAT(Network Address Translation,网络地址转换),允许所有的网络节点使用全球惟一的地址进行通信。每当建立一个IPv6的连接,系统都会在两端主机上对数据包进行 IPSec封装,中间路由器对有IPSec扩展头的IPv6数据包进行透明传输。通过对通信端的验证和对数据的加密保护,使得敏感数据可以在IPv6 网络上安全地传递,因此,无需针对特别的网络应用部署ALG(应用层网关),就可保证端到端的网络透明性,有利于提高网络服务速度。
●域名系统DNS
基于IPv6的DNS系统作为公共密钥基础设施(PKI)系统的基础,有助于抵御网上的身份伪装与偷窃。当采用可以提供认证和完整性安全特性的DNS安全扩展 (DNS Security Extensions)协议时,能进一步增强对DNS新的攻击方式的防护,例如网络钓鱼(Phishing)攻击、DNS中毒(DNS poisoning)攻击等,这些攻击会控制DNS服务器,将合法网站的IP地址篡改为假冒、恶意网站的IP地址。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13017187.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存