2019年全球ICT产业关键字,聚焦「智慧、速度与创新」。创新技术如人工智慧、延展实境(XR)、区块链、数位分身(DigitalTwin)持续出笼,尤其人工智慧加速晶片及量子电脑的发展,伴随5G商转,势必带动产业跳跃式前进。既然聚焦「虚实整合、运算科技、人机互动」三大主轴,2019年COMPUTEX,全球IP矽智财授权领导厂Arm受邀出席《COMPUTEX论坛》、《InnoVEX论坛》主题演讲。Arm在COMPUTEX揭示全面运算(TotalCompute)主张,为5G时代提供更符合更多使用情境(usecase)的整体运算方案,并展现强大生态系能量。
Arm在COMPUTEX2019有哪些亮点展示?瘾科技带你浏览四大解决方案 亮点一:物联网平台回应Arm的目标在2035年打造达一兆台连网装置,为了让连网装置深度沟通,Arm针对IoT平台的生态系,近年接续推出「DesignStart」、「Pelion」及「Neoverse」等相关计画。今年COMPUTEX,Arm展示Pelion这项混合环境的端到端联网连接、装置和资料管理平台方案。Pelion特色在于建构3A情境,「任何装置、任何资料、任何云端」(Anvice,Anydata,Anycloud),管理任何种类的连网装置与连接,应付任何内外部不同类型的资料,连接任何公有、私有及混合云端。
换言之,Pelion平台让企业在安全环境下,管理各项物联网装置,无限制连结任何规模的资料。COMPUTEX也展示,Arm收购TreasureData后,借助巨量资料技术能力,Pelion平台对资料流程进行融合,让企业用户以高效、更安全的技术部署、连接和更新连网装置,顺利走入物联网的资料世界。
亮点二:AI机器学习联网装置与数据资料爆发成长,人工智慧的机器学习应用,逐渐从云端转移至终端。为了把机器学习技术放在边缘装置发挥所长,Arm针对机器学习的晶片应用进而打造全新处理器。延续Arm在CPU具备的可编程优势,以及GPU数据处理压缩能力和高吞吐量的设计特点,将其整合至机器学习晶片设计之中。针对机器学习热潮,Arm推出「ProjectTrillium」机器学习运算平台支持各种AI应用程序,在功能性与可扩展性方面,能实现更快机器学习效率。根据统计,目前ProjectTrillium平台的学习数据吞吐量,比起过去CPU、GPU协同作业的机器学习效率,已经达2~4倍以上,效能也优于传统DSP的可编程逻辑。
换言之,ProjectTrillium是一个异质的ML运算平台,平台架构包括ArmML处理器、开放原始码ArmNN软体框架,目前搭载于超过25亿台Android装置。Arm针对ML处理器进行强化,包括超过两倍能源效率,达到每瓦5兆次运算(TOPs/W)、记忆体压缩技术提升达三倍,以及提升至高达八核心的次世代峰值效能,与每秒最高32兆次运算(TOP/s)。
随着机器学习需求愈来愈高,开发人员更渴望利用系统上专属神经处理器(NPU)的优势。Arm机器学习ML处理器提供同级最优化的能耗效率,并有强大的软体生态系统支援,让整个生态系统的AI效能极大化。
▲Arm示范如何在装置上快速的执行机器学习功能,挑战人的记忆,和装置相比,看谁能先辨出不同的图像。
亮点三:AR/VR装置前几年开始流行的AR、VR装置,过去最大挑战来自虚拟视觉的稳定度。对此,Arm因应5G科技演进推出多款全新高阶IP套件,其中Mali-D77DPU显示器即是聚焦扩增实境、虚拟实境所需的内容所打造,让虚拟实境更加真实。Mali-D77是Mali-D71显示处理器更新版,最高可对应3K解析度与120fps更新率,虚拟视觉影像得以更稳定呈现。全新的硬体功能,加速头戴式显示器的虚拟实境运算,实现更小、更轻、更舒适的VR装置部署。
▲在COMPUTEX展示OculusQuest的VR头盔,提供高效能、无线,摆脱传统VR装置需要连接线的牵绊,创造VR装置新体验。
当然,使用者对AR、VR装置的期待除了影像稳定,在沉浸式体验方面,还包含更轻量、不受线材影响以及更顺畅的效能。Mali-D77其他功能表现在镜头失真校正(LensDistortionCorrection)、色差校正(ChromaticAberrationCorrection)、非同步时间扭曲(AsynchronousTimewarp),对应更清晰、更真实影像,还能降低配戴者头晕情况。除此之外,Mali-D77显示处理器IP,3K120虚拟实境效能,硬体节省VR作业负载4成以上系统频宽,以及12%功耗表现。Arm表示,为了让VR更为普及,在全球达到数十亿台装置的长期目标,Mali-D77解决现阶段显示技术的挑战,为VR产业迎向下一个新世代。
亮点四:车用Arm在今年COMPUTEX展示的第四个亮点,聚焦在汽车应用。Arm在车用方面扮演重要角色,因其牵涉稳定与安全,尤其ADAS与自动驾驶需要顾虑的层级更是重要。对此,Arm针对车载安全推出ArmSafetyReady计画,同时也包括针对自驾车的7nm制程最佳化处理器架构Cortex-A76AE,借由整合Split-Lock提供车载所需的安全性。
换言之,ArmSafetyready车用安全计画涵盖Arm既有、新型与未来的全方位车载计画,从系统性流程到研发,且通过ISO26262与IEC61508标准,一站式提供软体、元件、工具、认证及标准等资源,确保加入此计画的合作伙伴其SoC与系统,皆达到最高安全层级。
今年COMPUTEX也展示基于Arm的DMS(DriverMonitoringSystem)驾驶监控系统产品。DMS是采用ArmCortex-A7所支援的深度学习NN模型,由TEEAILab所开发。这套DMS系统展示在CortexA7上运行AI/ML以实现驱动程序状态监视功能。例如针对驾驶员闭眼、打哈欠侧视、俯视、打电话和吸烟等行为进行迅速检测,并发出音频以提醒驾驶。Arm在智慧驾驶领域,也展开AutomotiveEnhancedforFunctionalSafety计画,将推出首款多情绪执行处理器,以强化新世代安全驾驶体验。
▲COMPUTEX展会上也展示Arm在智慧驾驶领域的成果(图右),情绪执行处理器问世将有助驾驶安全。
聚焦未来世界,打造创新体验Arm在COMPUTEX2019展会中,展现新世代运算领域的创新技术与相关应用。除了上述相关亮点,也聚焦面向未来2030年的使用情境。Arm拥有全面软体开发框架,包含ArmIP、ArmNN、ArmComputeLibrary及ArmDevelopmentStudios,透过生态系统合作帮助开发人员更快采用、更快上市,透过机器学习软体优化,有效扩展硬体效能。
想像未来的世界,5G传输、机器学习、终端运算可能已经成为我们生活的日常,而产业之间将呈现万物联网的庞大生态系。对此,Arm将持续展现其领先技术优势,携手物联网超级战队掌握下一波科技浪潮。
聚羧酸减水剂生产控制系统的工业物联网框架设计与实现严海蓉1,王子明2
(1北京慧物科联科技有限公司,北京 100124,2北京工业大学,北京 100124)
摘要:工业物联网既提供了在生产过程中获取并控制聚羧酸减水剂生产设备的信息的方式,也提供了基本的网络架构,方便系统集成和扩展。该框架在分析了聚羧酸减水剂生产流程的基础上被划分为设备控制层、通讯层和应用服务层。根据实际应用需求,描述了工业物联网架构可以方便接入设备,贴近工艺完成软件,并让机器具有智能。企业应用案例表明该系统能够有效地实现生产状态跟踪监测和生产设备自动控制的目标,对进一步研究工业物联网技术和解决方案具有一定的参考价值。
关键词:工业物联网;自动化控制系统;聚羧酸减水剂生产设备
中图分类号:TP273 文献标识码:A
Theindustrial IOT design of automatic control system for polycarboxylate superplasticizer
YAN Hairong1, Wang Ziming2
(1.Beijing Sophtek Corp,2 Beijing University of Technology,Beijing 100124,China)
0引言
原来的聚羧酸减水剂生产自动化控制不能充分满足生产工艺要求,存在的主要问题是:
1) 新设备接入非常困难;
2) 同类不同厂家设备不方便更换;
3) 匀速滴加过程中不能达到理想的控制速度,传统PID算法波动较大,常需要人工手动干预;
4) 温度控制需要人工参与控制,无法完成全自动;
电话 扣扣53O934955
工业物联网是工业40的支撑框架。物联网被称为继计算机、互联网之后,世界信息产业的第三次浪潮。它的发展离不开应用,面向工业自动化的工业互联网技术是物联网的关键组成部分[1]。工业物联网通过将具有感知能力的智能终端、无处不在的移动计算模式、泛在的移动网络通信方式应用到工业生产的各个环节,提高制造效率,把握产品质量,降低成本,减少污染,从而将传统工业提升到智能工业的新阶段[2]。
工业物联网框架中,整个系统具有强大的数据服务器,能够进行大数据的计算。在数据量足够的时候能够利用网络智能来帮助企业进行决策、配方优化和自动的设备维护等。
整个控制系统具有分布式智能能力。整个系统中,可以把数据都送到中控部分来完成;也可以将一些需要及时处理的,如温度控制等,直接由现场控制来完成。系统通常分为中央控制单元和分布的现场控制单元,中央控制单元由工业控制计算机充当,现场控制单元则由高可靠、抗干扰的工业级微控制器和与当前控制需求相配套的附加电路模块组成。依托微控制器的实时处理能力可以完成对现场生产进行实时调节控制,并且通过总线实现现场控制单元与中央控制单元进行数据交互,使生产过程表现出整体性、协调性,从而优化生产工艺、提高生成效率。
系统通过总线把各个独立的控制模块组织成在一起。控制模块的独立性,使得系统中各个分布的控制模块检修、升级、数量扩充都很方便,也为在生产规模扩大时控制系统扩充预留了接口。
因此工业物联网框架才能彻底解决传统控制的一些问题,真正贴合聚羧酸减水剂生产工艺。
1 系统概要设计
根据聚羧酸减水剂的生产过程,可以将聚羧酸减水剂自动化控制系统分为设备控制层、通讯层和应用服务层,系统框架如图1所示。
图1 系统框架图
图1中,应用服务层主要实现对生产过程中实时数据和生产状态的跟踪监测和管理,同时提供各种应用UI接口,用户可以通过使用计算机、手机等手持设备登录客户端来访问或获取所需要的数据或信息等,从而实现物联网的厂内处处可访问。一旦将企业网络与公共网络连接,用户登录后就可以实现生产数据随处可访问。
应用服务层中还包括有控制逻辑层,控制逻辑层通过与 *** 作人员进行交互,并且汇集、分析、存储和处理生产过程中的实时数据和生产状态,实现生产过程的逻辑控制。
通讯层主要实现设备控制层、控制逻辑层和应用服务层之间的可靠传输。
设备控制层主要实现原始数据的采集与分析、数据和状态的上传、控制指令的接收等。嵌入式控制器内的智能逻辑将和聚羧酸减水剂生产各工序要求的生产工艺(加料、滴加、温度调节、pH调节)等紧密贴合,并与控制逻辑层相互通讯完成所要求的工艺精密控制。
整个系统采用划分层次的设计思路使得系统具有很好的可移植性,各种传感器可以灵活的接入系统。这样新系统的总体实现或者旧系统的扩展可以采用“搭积木”的方式完成构建。
2 系统详细设计
根据以上设计的系统工业物联网框架和体系结构,本研究将以北京某公司的具体项目为例,详细介绍该系统的设计和应用过程。
21设备接入示例
基于工业物联网架构的设计,可以很容易的接入各种设备。比如如图2所示的聚羧酸减水剂自动化控制系统接入了一个服务器、一个 *** 作员站、若干显示器、2个控制站,若干现场设备和用户手机。
图2基于工业物联网架构的设备接入实例
服务器负责存储生产数据,包括生产 *** 作日志和生产过程数据,便于生成台帐和报表。也可以与各种财务、资产管理软件连接。同时,负责承载起局域网与大网络的连接工作。
*** 作员站上运行的软件,方便 *** 作员在中控室来 *** 作现场各种阀门、电机等开停,从而按照工艺过程完成生产。
控制站自动获得 *** 作员 *** 作命令来控制现场设备,比如阀门等,同时也自动从现场设备获取各种状态,比如称重数据等传给控制室控制机器。
现场设备是包括传感器和各类执行器,比如秤、阀门等自动工作。
图中的手机设备是为了表示出工业物联网框架可以任意接入设备的特性。比如,在该框架下,巡视人员可以通过手机进行接入,完整现场紧急控制一些阀门的开或者是关。经理等就可以通过手机来查看每天生产数据。
同时,对于不同厂家的同类设备,该工业物联网框架也有较好的兼容能力。
22贴合工艺的软件设计
软件包括生产线管理软件和工业现场控制软件。生产线管理软件工作于生产管理计算机,主要实现工艺管理、配方管理;通过网络,根据权限,可调出 *** 作人员的现场 *** 作记录,完成对现场的远程管理。工业现场控制软件工作于车间级服务器中,主要通过与工艺以及现场布置相同的画面显示,使得 *** 作人员便于 *** 作,以实现现场设备仪表信号的采集、处理,配方管理和现场数据实时界面显示和控制等功能。
图3 聚羧酸合成控制生产工艺示意图
根据实际生产过程和自动化控制系统的特点,当前聚羧酸生产过程分大单体预化过程、 A、B料预混过程、A、B料计量罐加料过程、碱计量罐加料过程、A、B料滴加过程、反应釜搅拌控制过程、反应釜温度控制过程,针对不同的过程,分别实现其控制目标,从而达到完整生产过程的控制。
下面以工艺中的A、B料计量罐滴加控制为例来说明软件设计功能。
首先控制系统为用户提供友好的A、B滴加控制对话框,方便用户可视化 *** 作。用户可以选择采用以前输入的备用方案进行控制,也可以选择自己新输入方案进行空控制。总之都能够根据配方在规定的时间内,将指定质量的物料匀速加入到对应的反应釜中。
图4 启动已存备用方案滴加
图5 启动自定义方案采用三阶段定量滴加示例
其次控制系统采用分段式匀速滴加模式(图5),启动滴加时,控制系统计算出三个阶段分别的预期流速。控制系统实时读取当前计量罐的质量,并根据当前时间,计算出实时流速。控制系统根据实时流速和预期流速的差值,控制调节阀的开启度,从而控制滴加速度。
图6 滴加控制效果示意图(多阶段不同流速)
最后,显示出实时滴加工作界面(图6),工作工作误差一般不大于1%。
23机器学习的智能能力
原来控制系统由于没有采用物联网框架,数据存储量不充分,从而无法让机器自主学习。各种设备常常需要人来手工调整,设定最高最低值;控制过程需要人工进行干预,来辅助机器完成自动控制。
而现有的工业物联网架构,拥有了专门的数据服务器,从而可以存储较大量的数据。而对于这些数据进行分析而产生的机器智能不可小觑。
比如,以前温度控制时,只能根据人工经验设定一个固定的值。反应釜的材质、容量、夹套、搅拌电机、搅拌桨叶等设备本身因素会影响调温结果。
而往往由于冬夏的自来水、室内温度、物料温度、反应剧烈程度等也会影响调温结果。因此在控制系统安装后要进行长时间的人工参与测试来努力找到一个合适的最大最小值。而测试时间毕竟短,这个值一旦这个值固定后,后续生产时就无法轻易改变,为此生产 *** 作员常需要来观测这个温度控制过程并且来参与控制,否则很难达到理想的控制效果。
再比如对于滴加控制的PID算法,往往由设计者人为给定一个PID参数,也无法完全适应实际设备磨损等情况。
而基于工业物联网架构的控制时,可以在服务器端运行一个智能控件,由它来自动学习历史调温或者滴加流速的变化情况,不断训练软件,让软件重新找到合适的上下调节阈值,这样才可以真正达到完全自动化。整个系统拥有了自己不断学习的机器智能。
3 系统测试结果
基于工业物联网的聚羧酸减水剂自动化控制系统在设计和开发完成后,在北京某工厂的实际生产线上投入使用。目前,该系统运行安全、稳定,大部分功能已经实现,达到了预期的效果。
在系统正式投入使用后,对系统的工业现场控制软件、生产线管理软件和嵌入式控制器进行了长时间的测试。针对实现过程中遇到的问题做了大量的调试工作。下面以实现滴加A料为例对系统的测试进行描述。
*** 作人员在控制室通过点击用户 *** 作界面的A料滴加阀门按钮进行滴加参数的配置,如图7所示。 *** 作人员需要输入的参数为滴加质量和滴加时间,同时系统也支持分阶段滴加。在点击开始滴加按钮后,服务器会向嵌入式控制器发送滴加A料指令。
图7 滴加A料配置界面
嵌入式控制器在接收到服务器下发的滴加A料指令后,会进行自动化控制,实现A料的滴加 *** 作,具体效果如图8所示。
图8 5个反应釜同时进行A料滴加曲线示意图
图8中5条不同颜色的线分别表示5个不同计量罐的A料滴加曲线,系统支持多个计量罐同时进行滴加 *** 作。左侧上升的直线表示向计量罐加入A料的过程,系统支持多个计量罐同时加料,质量控制精确,定量加料的误差在01%以内。右侧下降的曲线表示滴加A料过程,曲线的斜率即为速度。由图可知,系统基本上能够实现匀速滴加A料过程,同时,系统也支持连续4小时的滴加 *** 作,时间误差在1分钟左右。
基于工业物联网的聚羧酸减水剂自动化控制系统投入运行后,提高了聚羧酸减水剂的产品质量,提高了工艺生产的自动化程度,大大减轻了 *** 作人员的劳动强度,提高了企业的竞争力。
4 结束语
本研究基于工业物联网架构设计的聚羧酸减水剂自动化控制系统对聚羧酸减水剂生产过程可以进行高效的跟踪管理,在实际应用中具有重要作用。它使聚羧酸减水剂生产设备具备了一定的数据感知、处理和通信能力,从而为企业制定更好的工艺流程提空帮助。同时,它也促使聚羧酸减水剂生产管理过程更加科学和精细化。该系统的成功开发设计为工业物联网在化工行业的推广打下了基础,做出了积极地探索。
参考文献:
[1]LIANG Wei,ZENGPeng Internet of Things Technology and Application Oriented IndustrialAutomation[J] Instrument Standardization & Metrology,2010:21-24[梁炜,曾鹏面向工业自动化的物联网技术与应用[J]仪器仪表标准化与计量,2010:21-24]
[2] KANGShilong,DU Zhongyi,LEIYongmei,ZHANG Jing Overview of industrial Internet of Things[J]Internet of Things Technologies,2013:80-82,85[康世龙,杜中一,雷咏梅,张璟工业物联网研究概述[J]物联网技术,2013:80-82,85]
[3] BIDongzhen The Design and Realization of Industrial Sewing Machines System Basedon the IoT[D]Shandong: Qingdao University,2012[毕东贞基于物联网的工业缝纫机系统的设计与实现[D]山东:青岛大学,2012]
[4]ZHANG Ximin,WANGGuoqing,DINGXuenian Development of an Internet home automation system[J] Chinese Journalof Scientific Instrument,2009,30(11):2423-2427[张喜民,王国庆,丁学年基于因特网的远程家居自动控制系统研制[J]仪器仪表学报,2009,30(11):2423-2427]
[5]WU Jiaqiang Tracking and quality monitoring system based on IOT industrial forsteel pipe[J] Journal of Mechanical &ElectricalEngineering,2013,30(11):1335-1339[伍家强基于工业物联网的钢管跟踪及质量监测系统[J]机电工程,2013,30(11):1335-1339]
[6]LI Nan,LIUMin,YANJunwei Frame work for industrial internet of things oriented to steel continuouscasting plant MRO[J] Computer Integrated Manufacturing Systems,2011,17(2):413-418[李楠,刘敏,严隽薇面向钢铁连铸设备维护维修的工业物联网框架[J]计算机集成制造系统,2011,17(2):413-418]
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)