物联网架构中智能公交实例中的四个层次分别是感知层、网络层、数据处理层和应用层。
感知层:感知层是物联网架构的最底层,包括传感器、执行器等各类物联网设备,用于采集各种物理量、环境数据和状态信息等。在智能公交实例中,感知层包括GPS定位、车载摄像头、气象传感器、车载计算机等设备,用于实时采集公交车运行的位置、状态、路况、天气等信息。
网络层:网络层是物联网的中间层,主要负责数据的传输和处理,将感知层采集到的数据传输到数据处理层进行分析和处理。在智能公交实例中,网络层包括无线通信网络和互联网,用于连接各个公交车辆和数据处理中心。
数据处理层:数据处理层是物联网实现数据智能分析和决策的核心层次,主要由数据存储、数据分析、数据挖掘等组成,用于对感知层采集到的海量数据进行处理和分析。在智能公交实例中,数据处理层包括云端服务器、物联网平台等设施,用于对公交车的实时位置、车速、路况等信息进行处理、分析和预测。
应用层:应用层是物联网架构的最高层,主要是由各种智能应用程序组成,用于实现物联网数据的应用和展示。在智能公交实例中,应用层包括公交车调度和管理系统、智能导航系统、乘客安全监控系统等应用程序,用于指导公交车的运行、改善乘客出行体验等。
总之,物联网架构中智能公交实例的四个层次,构成了一个完整的物联网生态系统,涵盖了物联网系统的各个方面,为智慧城市的建设和公共交通业的发展提供了有力的支持。
物联网共性平台是综合物联网应用共性特点,贯穿感知、传输、应用服务三层的共性功能模块、协议和平台等的总称。价值优势:
1、打破孤立“竖井式”应用架构所形成的“信息孤岛”:为物联网应用提供标准体系架构,并支持多应用业务信息融合和服务共享,实现应用业务间无缝集成与协作。
2、强大易扩展的物联网应用支撑平台:支持多种类型感知设备适配接入,兼容现有各类传输网络,提供灵活的应用服务部署和业务交互共享模式,并可根据用户需求在平台上动态添加新的应用。
3、强大的平台开发及运维支撑能力:显著降低物联网业务应用开发成本、服务运营成本及维护成本,降低物联网准入门槛。
4、支持二次开发和快速集成:采用先进、成熟、符合国际标准的软硬件技术,系统采用可扩展的开放式体系结构,能根据技术、业务的发展需要对平台功能进行调整、增加。
5、为物联网应用提供坚实的安全保障:物联网共性平台采用多种信息加密手段与安全管理协议保证数据传输安全性,通过灵活的访问权限模板机制实现对设备、感知信息的可定制化访问权限管理。
温馨提示:以上内容仅供参考。
应答时间:2021-11-25,最新业务变化请以平安银行官网公布为准。有机会,但是建议不要做泛和大,从垂直领域出发比较好,为啥这样说呢?原因如下。
1、各大运营商、互联网公司、设备制造商等等企业都在做综合性的平台。
国内有阿里、华为、三大运营商、百度、腾讯、小米、海尔、京东、中电科等。
国外有亚马逊、IBM、SAP、
谷歌、GE、西门子、博世等。
通过以上名单可以发现,这些公司的特点。
这说明物联网是未来的发展方向,是值得花钱而且花大钱去布局的事。
2、做综合性的物联网平台,要求的资金、资源和技术要求会很高。因为是综合性平台,那么你得搞清楚各行各业的所使用物联网平台的诉求,行业标准等等,不然你的用户群体就会很窄。
3、面对的竞争对手的实力都不可小觑,你要考虑的是现阶段进入这个领域做平台在技术上能否与以上那些公司一较高下呢?你想投入多少时间和精力去做平台呢?人家都可是布局好几年了,踩了很多坑积累了很多经验,且现在平台已具有一定规模,形成了一定的行业壁垒,特别是华为,据我所知,国内运营商的平台都离不开华为的支持。
物联网平台的玩家之多,让人惊叹啊,那么咱们还有没有机会呢?答案是肯定的,有!但我的建议走垂直领域。
物联网的领域很广泛,所以专业的物联网平台未来会有很多,而这种综合性的物联网平台经过几年的厮杀后,最终也就剩下几家巨头。何谓垂直领域的物联网平台呢?
最基本的就是行业垂直,比如工业、农业、教育、医疗、安防、建筑、家居、交通运输等领域。
以上玩家也有做垂直领域的,比如ABB/西门子/GE/普奥云/博世等,他们专注工业领域,爱立信、诺基亚专注通信领域,而互联网巨头则是走综合性的较多,因为他们有一定客户基础、服务器资源和用户群体,可以面对企业和开发者提供平台服务,海尔/小米等企业就是在智能家居领域发力的。
不出意外,安防领域的海康、大华都在对自己的领域来架设相应的物联网平台。
从专业的角度来看物联网平台类型有功能呢?
物联网平台有五种类型
1网络连接,网络连接平台以物联网系统的网络组件为中心。它们为用户提供保持设备在线所必需的软件、连接硬件和数据指导。它们的网络通常依赖现有的运营商服务和WI-FI,并以一种便于物联网设置的方式配置网络连接。
有机会的,物联网的网少不了平台,没有平台就没有物联网。平台提供基于数据的存储、管理等。数据挖掘、数据分析等都基于云平台来计算。
物联网平台从另一个角度来看,是数据的“聚合”平台,通过大数据分析,给决策提供状态、趋势和决策等。
随着5G时代的到来,“边缘计算”一词越来越多的出现在大众视野。今天我们就来讲讲Arex算力资源平台如何利用“边缘计算”制霸未来物联网20。
什么是边缘计算?
首先我们介绍一下什么是边缘计算:边缘计算是分布式计算技术的一种,分布式系统的崛起催生边缘计算平台和新的网络构架分布式AI会在最后一英里网络中增加更多的计算、智能和处理/存储能力,将引发移动端硬件和算力变革。
在这种配置中,人工智能引擎将依赖于大量物联网传感器和执行器,收集和处理大量的 *** 作现场数据。海量数据将为“本地化”的边缘计算AI引擎提供燃料,这些引擎将运行本地进程并在现场做出决策。
因此网络需要另一种水平的实时边缘计算、数据收集和存储,将推动人工智能处理到网络边缘。这将完成云边缘智能和网络化计算机的循环, 并通过基于区块链的智能合约来完成数据授权和业务运转。
物联网中边缘计算与区块链的结合是大势所趋,会将当前的传统物联网完全颠覆掉。
为什么这么说呢?
传统物联网将被淘汰
伴随着近年来通用计算机设备的飞速发展,各类自动化的智能设备开始进入人们视野,背后是廉价传感器和控制设备的爆炸性增长。传统物联网系统基于服务器/客户端的中心化架构。即所有物联设备都通过云实现验证、连接和智能控制。
中心化的物联网架构存在三个问题。
一是云计算成本,例如在家庭应用场景下,两台家电相距不到一米,也需要通过云端进行沟通。数据汇总到单一的控制中心,企业所销售的物联设备越多,其中心云计算服务支出的成本会越大。由于终端物联设备竞争愈加激烈,利润走低,中心计算成本矛盾会越来越突出。
其次,中心化的数据收集和服务方式,无法从根本上向用户保证数据会合法使用。用户的数据保护完全依靠企业单方面的承诺,难以进行有效的监管。
第三,中心化物联生态系统中,一个设备被攻陷,所有的设备会受到影响。例如《麻省理工 科技 评论》2017年所指出的僵尸物联网,可以通过感染并控制摄像头、监视器等物联设备,造成大规模网络瘫痪。
区块链技术重塑物联网
区块链技术可以利用区块链独特的不可篡改的分布式账本记录特性,构建底层通讯节点、建立链上算力生态、依托分布式存储用于计算服务等区块链技术的综合应用,将全球闲置算力整合起来,通过构建“边缘算力”模式为有需求的用户提供d性可扩容的算力交易、算力租赁等服务。为用户打造一个开放、公平、透明和低门槛的去中心化算力资源共享平台,同时结合丰富的行业经验为全球客户提供更优质的服务。
简单来说就是Arex算力资源平台利用分布式计算模式将全球的闲置算力进行整合,从而构建出高数量级的“边缘算力”,并以此为算力源对需要的应用场景进行高能输出。
边缘算力的应用场景到底有多广阔?
边缘计算将数据处理从云中心转移到网络边缘,计算和数据存储可以分散到互联网靠近物联终端、传感器和用户的边缘,不仅可以缓解云带宽压力,还可以优化面向感知驱动的网络服务架构。(例如家里的空调、热水器与冰箱、安防摄像头等可以通过边缘计算进行协调运行,即使是在连接不上云服务器的情况下,也能确保最佳的节能和服务状态。)
第三方数据分析机构IDC预测,在2020年全球将有约500亿的智能设备接入互联网,除了目前大火的5G通信外,包括大数据人工智能穿戴产品、无人驾驶技术、智慧城市服务等,其中40%的数据需要边缘计算服务。由此可见边缘计算有着强大市场潜力,也是当前各服务商争夺的热点。
无人驾驶技术:
无人驾驶
智能穿戴设备:
智慧城市:
要回答物联网云平台是不是还有机会的问题,首先要搞清楚几方面的状况:
一是定位。从技术角度来说,你是做物联网云平台的那一层,IaaS、PaaS、SaaS,单做某层或是混合?而技术的定位取决于:(1)你觉得那一块是你发掘出的空白或者你觉得有前景?(2)为你的客户提供什么样的价值(3)你想做什么样的商业模式。这三个问题依次定推,最后才决定了你了的技术定位和技术架构。找准定位,这是你开始一切的起点。
二是资源。这个我就不多说了,包括资金、技术、人脉、产业链合作,这是你保障自己可以开始有效行动的基础。
三是团队。团队是真正去实施理想的载体,可以是几个人的创业“作坊”,也可以是有一定规模的公司,也可以是松散的联盟组织。
其实,物联网的市场何其大,需要的云服务何其多,宏观市场和细分市场规模都足够你有所作为。做不做,做不做得好在于自己。至于,做不做设备终端,就看你是怎么玩了。
机会很大
物联网平台承上启下,是物联网产业链枢纽。按照逻辑关系和功能物联网平台从下到上提供终端管理、连接管理、应用支持、业务分析等主要功能。
通信技术发展促进连接数迅速猛增,物联网迎来告诉发展引爆点
连接数告诉增长是物联网行业发展基础
物联网发展路径为连接--感知--智能,目前处于物联网发展第一阶段即物联网连接数快速增长阶段。到2018年,全球物联网连接数将超过手机连接数。
物联网发展第一阶段:物联网连接大规模建立阶段,越来越多的设备在放入通信模块后通过移动网络(LPWA\GSM\3G\LTE\5G等)、WiFi、蓝牙、RFID、ZigBee等连接技术连接入网,在这一阶段网络基础设施建设、连接建设及管理、终端智能化是核心。爱立信预测到2021年,全球的移动连接数将达到275亿,其中物联网连接数将达到157亿、手机连接数为86亿。智能制造、智能物流、智能安防、智能电力、智能交通、车联网、智能家居、可穿戴设备、智慧医疗等领域连接数将呈指数级增长。该阶段中最大投资机会主要在于网络基础设施建设、通讯芯片和模组、各类传感器、连接管理平台、测量表具等。
物联网发展第二阶段:大量连接入网的设备状态被感知,产生海量数据,形成了物联网大数据。这一阶段传感器、计量器等器件进一步智能化,多样化的数据被感知和采集,汇集到云平台进行存储、分类处理和分析,此时物联网也成为云计算平台规模最大的业务之一。根据IDC的预测, 2020年全球数据总量将超过40ZB(相当于4万亿GB),这一数据量将是2012年的22倍,年复合增长率48%。这一阶段,云计算将伴随物联网快速发展。该阶段主要投资机会在AEP平台、云存储、云计算、数据分析等。
物联网发展第三阶段:初始人工智能已经实现,对物联网产生数据的智能分析和物联网行业应用及服务将体现出核心价值。Gartner 预测2020 年物联网应用与服务产值将达到2620 亿美元,市场规模超过物联网基础设施领域的4 倍。该阶段物联网数据发挥出最大价值,企业对传感数据进行分析并利用分析结果构建解决方案实现商业变现,同时运营商坐拥大量用户数据信息,通过数据的变现将大幅改善运营商的收入。该阶段投资者机会主要在于物联网综合解决方案提供商、人工智能、机器学习厂商等
物联网云平台是一个专门为物联网定制的云平台,物联网与普通的互联网是不同的:物联网终端设备比普通互联网手机端,电脑端多出几个数量级;普通互联网对>
物联感知层是物联网的基础,是联系物理世界与信息世界的重要纽带。感知层是由大量的具有感知、通信、识别能力的智能物体与感知网络组成。目前的主要技术有:RFID技术、二维码技术、Zig-Bee技术和蓝牙技术。
ZigBee技术是一种近距离、低复杂度、低功耗、低速率、低成本的双向无线通讯技术。Zigbee由于价格相对昂贵,其次协议占带宽的开销量对信道带宽要求较高。
在技术实现方面,zigbee协议开发难度很大,大多数zigbee协议还没开源,各家厂商通信协议互不兼容,极大的阻碍了设备的统一性,所以相比Zig-Bee和蓝牙技术,我国在二维码技术与RFID技术的建设较多。
感知层对物联网生命周期的重要性
物联网的生命周期与感知层中的感知节点紧密相关。我们知道,传感器、RFID标签以及各种测控设备共同组成了物联网感知层。传感器的造价决定了物联网能否在多个领域广泛普及,这就要求传感器尽可能结构简单、体积更小,只有这样,其造价成本才会有所降低。
而这些特性又决定了传感器必须使用小型电源才能满足供电需求,但是电源体型小往往电量存储也会小,这样一来,设置在野外环境中的传感器就很容易因为电量不足而无法进行长时间工作,从而影响物联网的生命周期。
高性能计算平台是物联网感知层的硬件设备吗?答:高性能计算平台是物联网感知层的硬件设备:物联网层次结构分为三层,自下向上依次是:感知层、网络层、应用层。感知层位于物联网三层结构中的最底层,其功能为“感知”,即通过传感网络获取环境信息。感知层是物联网的核心,是信息采集的关键部分。
对我们人类而言,是使用五官和皮肤,通过视觉、味觉、嗅觉、听觉和触觉感知外部世界。而感知层就是物联网的五官和皮肤,主要用于识别外界物体和采集信息。
物联网就是物物相连的互联网。
这有两层意思:
其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;
其二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。
物联网通过智能感知、识别技术与普适计算等通信感知技术,广泛应用于网络的融合中,也因此被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。
物联网的应用:
1、智能交通。物联网技术在道路交通方面的应用比较成熟。随着社会车辆越来越普及,交通拥堵甚至瘫痪已成为城市的一大问题。对道路交通状况实时监控并将信息及时传递给驾驶人,让驾驶人及时作出出行调整,有效缓解了交通压力。
2、智能家居。智能家居就是物联网在家庭中的基础应用,随着宽带业务的普及,智能家居产品涉及到方方面面。 家中无人,可利用手机等产品客户端远程 *** 作智能空调,调节室温。
3、公共安全。近年来全球气候异常情况频发,灾害的突发性和危害性进一步加大,网可以实时监测环境的不安全性,情况提前预防、实时预警、及时采取应对措施,降低灾害对人类生命财产的威胁。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)