第一:Python web开发
学完Python可以做web开发,因为现在中国学习Python的比较少,而招聘Python的却非常的多,国内的豆瓣、果壳网等,国外的Google、Dropbox等都在使用Python做web开发。所以Python web是一个非常不错的选择方向。
第二:运维
目前很多运维人还没有学习Python,但是Python给运维带来的价值非常的大,在运维的工作中,有大量重复性工作的地方,并需要做管理系统、监控系统、发布系统等,将工作自动化起来,提高工作效率,这样的场景Python是一门非常合适的语言。如果用Python来做运维将会事半功倍。
第三:数据分析
现在无论是哪个行业的,做数据分析的人似乎都离不开Python,因为Python给他们带来的工作效率是非常的大。在生物信息学、物理、建筑、地理信息系统、图像可视化分析、生命科学等领域都会运用Python进行科学和数字计算。
第四:自动化测试
一切关于自动化的东西,似乎Python都可以满足,Python可以满足大多数自动化工作,提升工作效率。
第五:3D游戏开发
Python有很好的3D渲染库和游戏开发框架,有很多使用Python开发的游戏,如迪斯尼卡通城、黑暗之刃。常用PyGame、Pykyra等和一个PyWeek的比赛。
第六:网络编程
除了网络和互联网的支持,Python还提供了对底层网络的支持,有易于使用的Socket接口和一个异步的网络编程框架Twisted Python。
第七:人工智能
下个时代就是人工智能时代,很多人都在关注,而在人工智能时代最主流的开发语言就是Python,这是一个潜力最大的选择方向,所以学习Python不会错。
可以说Python在IT领域运用相当广泛,学完后可以从事很多方面的工作。
如果你想要专业的学习Python,应该根据自己的实际需求去千锋实地看一下,先好好试听之后,再选择适合自己的。只要努力学到真东西,前途自然不会差。
大数据专业需要学习哪些技术:
一、编程语言
想要学习大数据技术,首先要掌握一门基础编程语言。Java编程语言的使用率最广泛,因此就业机会会更多一些,而Python编程语言正在高速推广应用中,同时学习Python的就业方向会更多一些。
二、Linux
学习大数据一定要掌握一定的Linux技术知识,不要求技术水平达到就业的层次,但是一定要掌握Linux系统的基本 *** 作。能够处理在实际工作中遇到的相关问题。
三、SQL
大数据的特点就是数据量非常大,因此大数据的核心之一就是数据仓储相关工作。因此大数据工作对于数据库要求是非常的高。甚至很多公司单独设置数据库开发工程师。
四、Hadoop
Hadoop是分布式系统的基础框架,以一种可靠、高效、可伸缩的方式进行数据处理。具有高可靠性、高扩展性、高效性、高容错性、低成本等优点,从事大数据相关工作Hadoop是必学的知识点。
五、Spark
Spark是专门为大规模数据处理而设计的快速通用的计算引擎。可以用它来完成各种各样的运算,包括SQL查询、文本处理、机器学习等等。
六、机器学习
机器学习是目前人工智能领域的核心技术,在大数据专业中也有非常广泛的引用。在算法和自动化的发展过程中,机器学习扮演着非常重要的角色。可以大大拓展自己的就业方向。
互联网行业里大数据和云智能是当下最重要板块,企业借助大数据技术不仅能避免企业发展时会面临的各种风险,更能解决发展过程中所遇到的种种难题。近些年来大数据的公司越来越多,但是大数据人才需求还存在着很大缺口,为了响应市场需求未来我国还会需要更多的大数据人才。百度、阿里、京东等互联网高企依仗自身的强大技术和数据优势,均已将大数据作为企业的重要战略部署。
大数据专业未来就业方向解析:
一、ETL研发
企业数据种类与来源的不断增加,对数据进行整合与处理变得越来越困难,企业迫切需要一种有数据整合能力的人才。ETL开发者这是在此需求基础下而诞生的一个职业岗位。ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL
二、Hadoop开发
随着数据规模不断增大,传统BI的数据处理成本过高企业负担加重。而Hadoop廉价的数据处理能力被重新挖掘,企业需求持续增长。并成为大数据人才必须掌握的一种技术。
三、可视化工具开发
可视化开发就是在可视化工具提供的图形用户界面上,通过 *** 作界面元素,有可视化开发工具自动生成相关应用软件,轻松跨越多个资源和层次连接所有数据。过去,数据可视化属于商业智能开发者类别,但是随着Hadoop的崛起,数据可视化已经成了一项独立的专业技能和岗位。
四、信息架构开发
大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。
五、数据仓库研究
为方便企业决策,出于分析性报告和决策支持的目的而创建的数据仓库研究岗位是一种所有类型数据的战略集合。为企业提供业务智能服务,指导业务流程改进和监视时间、成本、质量和控制。
六、OLAP开发
OLAP在线联机分析开发者,负责将数据从关系型或非关系型数据源中抽取出来建立模型,然后创建数据访问的用户界面,提供高性能的预定义查询功能。
七、数据科学研究
数据科学家是一个全新的工种,能够将企业的数据和技术转化为企业的商业价值。随着数据学的进展,越来越多的实际工作将会直接针对数据进行,这将使人类认识数据,从而认识自然和行为。
八、数据预测分析
营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。
九、企业数据管理
企业要提高数据质量必须考虑进行数据管理,并需要为此设立数据管家职位,这一职位的人员需要能够利用各种技术工具汇集企业周围的大量数据,并将数据清洗和规范化,将数据导入数据仓库中,成为一个可用的版本。
十、数据安全研究
数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。
大数据的特点就是能够灵活、快速、高效的响应各种市场需求。大数据的受众领域非常广泛,不仅改善着人们的社会活动和生活方式,运用好大数据技术还能为企业带了更多的商机和商业价值。大数据不仅与IT行业关系密切,众多行业都已经开始了大数据运营的布局,例如金融、医疗、政府等。撼地大数据就是以大数据技术为基础研发出了属于自己的大数据数智招商系统,为产业招商打造了一个精准招商服务云平台,极大的改善了现阶段产业园招商难的窘境。
物联网工程专业以后能从事的工作有:
在政府管理部门、科学研究机构、设计院、咨询公司、建筑工程公司、物业及能源管理、建筑节能设备及产品制造生产企业等单位从事建筑节能的研究、设计、施工、运行、监测与管理工作。
从事行业:
毕业后主要在新能源、互联网、计算机软件等行业工作,大致如下:
1、新能源
2、互联网/电子商务
3、计算机软件
4、电子技术/半导体/集成电路
5、通信/电信/网络设备
从事岗位:
毕业后主要从事嵌入式软件工程师、Java开发工程师、硬件工程师等工作,大致如下:
1、嵌入式软件工程师
2、java开发工程师
3、硬件工程师
4、软件工程师
5、销售工程师
扩展资料:
物联网即“万物相连的互联网”,是互联网基础上的延伸和扩展的网络,将各种信息传感设备与互联网结合起来而形成的一个巨大网络,实现在任何时间、任何地点,人、机、物的互联互通。
物联网是新一代信息技术的重要组成部分,IT行业又叫:泛互联,意指物物相连,万物万联。由此,“物联网就是物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。因此,物联网的定义是通过射频识别、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现对物品的智能化识别、定位、跟踪、监控和管理的一种网络。
参考资料:
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)