——预见2023:《2023年中国物联网产业全景图谱》(附市场规模、竞争格局和发展前景等)
行业主要上市公司:大富科技(300134)、梦网集团(002123)、共进股份(603118)、胜宏科技(300476)、润和软件(300339)、立昂技术(300603)等
定义
所谓“物联网”(Internet of
Things,IOT),又称传感网,指的是将各种信息传感设备,如射频识别(RFID)装置、红外感应器、全球定位系统、激光扫描器等种种装置与互联网连接起来并形成一个可以实现智能化识别和可管理的网络。
早期的物联网是指依托射频识别技术的物流网络,随着技术和应用的发展,物联网的内涵已经发生了较大的变化。现阶段,物联网是指在物理世界的实体中部署具有一定感知能力、计算能力和执行能力的各种信息传感设备,通过网络设施实现信息传输、协同和处理,从而实现广域或大范围的人与物、物与物之间信息交换需求的互联。物联网依托多种信息获取技术,包括传感器、射频识别(RFID)、二维码、多媒体采集技术等。物联网的几个关键环节可以归纳为“感知、传输、处理”。
产业发展前景:物联网将继续保持高速增长
1、发展前景:市场规模不断扩大,产业物联网占比逐渐上升
物联网是中国新一代信息技术自主创新突破的重点方向,蕴含着巨大的创新空间,在芯片、传感器、近距离传输、海量数据处理以及综合集成、应用等领域,创新活动日趋活跃,创新要素不断积聚。物联网在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。中国以加快转变经济发展方式为主线,更加注重经济质量和人民生活水平的提高,采用包括物联网在内的新一代信息技术改造升级传统产业,提升传统产业的发展质量和效益,提高社会管理、公共服务和家居生活智能化水平。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。综合多方面的情况分析,前瞻认为未来6年中国物联网的发展将保持高速增长,到2027年市场规模超过7万亿元。
根据信通院于2020年12月发布的《2020中国物联网白皮书》,2019年中国物联网连接数中产业物联网和消费者市场各占一半,预计到2025年,物联网连接数的大部分增长来自于产业市场,产业物联网的连接数将占到总体的61%。由此来看,未来产业物联网的市场发展潜力大于消费物联网。
2、发展趋势:重点城市带动周边城市发展,分工协作格局将进一步显现
国内物联网产业已初步形成环渤海、长三角、珠三角,以及中西部地区等四大区域集聚发展的总体产业空间格局。其中,长三角地区产业规模位列四大区域的首位。未来中国物联网产业空间演变将呈现出三大趋势:
更多本行业研究分析详见前瞻产业研究院《中国物联网行业细分市场需求与投资机会分析报告》。
我们当前所处的世界,联网程度不断上升,低成本传感器和分布式智能也在不断普及,产业即将面临这一切带来的革命性的冲击;同时,在此过程中还会产生大量的数据,其规模将庞大到远远超过人类所能处理的范畴。对此,企业是否能足够迅速地适应并演进自身的业务,以维持在竞争格局中所处的位置?面对我们栖身的环境中植入的这些全新的信息来源和智能设备,人类应当如何掌握它们并从中获益?利用不断演进的技术组织机构将需要建立起内部数据仓库,以便能够利用新的数据源和数据流。智能接入设备亦将在某些情况下取代人的角色,它们将能够自行决策、执行自我调整,或是根据需要引发对自身的纠正和修复。在另一些情景中,众多设备的集合将聚集在一起成为完整的系统,这样的系统可以采用新的方法进行优化;而由系统聚集成的系统,将会彼此共享数据,并成为由数据和设备组成的生态系统。机器学习(指从数据中推导出意义的众多方法)注定将成为这个生态系统中的一部分;此外,随着企业着手为物联网(IoT)做准备,传统业务和数据分析技术也同样将被纳入到该生态系统之中物联网——某些人更愿意称之为“万物互联”(Internet of Everything)——正处于不断上升的轨道上。一项Gartner研究指出,在2020年IoT单元的数量将达到260亿,而IoT产品和服务的市值将达到3000亿美元1。另外,GE在工业互联网(Industrial Internet)——这一概念包含用于监控和优化工业设备(例如喷气式引擎、铁路机车、动力涡轮机和制造工艺)性能的机制和应用——领域已经活跃了很长时间。根据GE的估算和预测,在接下来20年中,工业互联网将帮助全球GDP产值提高10到15万亿美元(没错,万亿量级)。当然,围绕着已问世的全新技术和正在逐步浮现的技术概念,市场中充斥着大量炒作。例如,Gartner备受争议的 “成熟度曲线”(注:也有些人使用“炒作周期”这一贬义说法)报告就把IoT摆在了“翘首以望的顶峰”的位置上(而大数据作为之前的热点,已经进入了“理想幻灭的低谷” 3)。然而,哪怕企业家们为之表现出群情激昂的兴奋,或是记者们在笔下展现出了对未来的狂热展望,在现实中依旧存在着大量的挑战,组织机构必须克服它们,才能够真正乘上这次技术演进的东风。挑战组织机构必须聚焦于:了解产品技术和IT领域中,企业能力的相对成熟度;了解可以纳入哪些类型的IoT功能,以及新能力将会在哪些方面对客户价值带来影响;了解机器学习和预测分析模型的角色;基于市场变化的迅捷程度和竞争对手的相对敏捷度,重新思考业务模型和价值链。接下来,让我们对这些挑战逐一进行更详细地分析。理解产品和IT成熟度可以从产品和IT两个维度分别进行分析。首先,产品组合的成熟度如何?它是属于变更较缓慢且逐步演进的传统类型的产品,还是属于前进速度更快,同时具有更复杂生态系统的产品?矿产设备在技术上非常复杂。并且,与科学研究仪器相比,它拥有更为漫长的设备生命周期,和相对更缓慢的演进速度。然而,这并不意味着科研仪器的公司,在利用IoT产品进行系统优化方面更具优势。另一个需要考虑的因素是IT流程的成熟度。各种类型的组织机构都可能会因采用IoT而获益;然而,要想达成这一目标,它们所需采用的模型却各不相同。让我们进一步分析一下IT成熟度水平这个因素。举例来说,科学研究仪器供应商或许拥有先进技术,但却可能缺乏强有力的IT架构、流程和IT治理能力。与之相反,矿业设备制造商或许拥有非常成熟的内部IT流程。对科学研究仪器公司而言,IoT将让它们能够对安置在现场的仪器设备进行功能升级;但面对由多种类型设备组成的实验室信息生态系统库,公司并不一定愿意尝试去进行优化。(当然,以IT作为成本中心——例如内部IT管理——方面的成熟度不足,并不等于以IT作为利润中心——例如IT产品——方面成熟度的缺失;但当开发或拓展IT服务的时候,许多组织机构都选择在现有的基础IT能力之上构建。)在去年的哈佛商业评论(Harvard Business Review)中,讨论了一个矿业设备领域的例子:Joy Global是一家矿业设备制造商,其专家团队横跨与采矿作业相关的多种系统和流程。Joy Global以此为依托,针对来自多家供货商的一系列设备,提供监控、维护和优化的服务4。了解IoT能力接下来,应该考虑一下使用智能联网设备中的哪些能力。刚刚提到的哈佛商业评论刊登的文章4指出,IoT包含四种类型的能力:监视——传感器提供关于运行环境、产品使用和性能方面的数据;控制——可以控制并定制个性化产品功能;优化——来自监视与控制的反馈回路,能够提供更高的效率、更好的性能、预防性维护,以及诊断和修复;自治——监视、控制和优化将支持独立运行、不同系统间的协作、与环境交互、个性化、补给,以及自我诊断和修复。这四个层级的能力,将为重新定义供应链并重新配置价值链提供支持。我们不应该抱有产品的功能应固定不变的观点;相反,我们应该认为它们将更具灵活性和适应性。那些智能联网设备和产品将具有可变特性,并能够随着用户需求的变化而改变。在数年以前,软件制造商就已经认识到了这一点。而现在,物理对象也正在逐渐转变为软件驱动功能的载体或容器。上述这些层级的能力要求越来越精密的数据分析方法——从收集和应用数据,到支持算法自身运用数据并在同时进行学习。第一个层级的能力——监视——将成为一套实时的机制,我们可以运用它更好地了解现场情况和用户需求,并提供新的能力。这意味着组织机构的传统产品和服务将不再泾渭分明,而且二者的边界将彼此渗透。在过去,现场设备的维护由某个现场服务承包公司承担,设备制造商的业务并不涉及此环节。而在智能设备与监视能力结合后,设备可以在故障发生前将所需的服务提前告知制造商。同时,设备制造商也可以将常规维护纳入自己的服务范畴。不过,如果利润和物流对组织机构而言是个问题的话,那么复杂的维修工作将依旧由专业承包商完成。这一“去中介化”(disintermediation)的模式也可以运用到分发链中。设备可以自动发起补充供应的请求,从而降低甚至消除供应链中的物流和库存压力。控制是建立在监视之上的更复杂的应用。我们可以监视设备运行情况,并通过控制设备的多个部分或多个系统,来扩展人工干预的边界。想象一下,在 *** 作大部分功能都是自动化执行的系统或机器时,人类所扮演的角色:人类指导机器运转,并寻找系统设计的时候没有预料到(或是基于经济划算的角度未设计应对预设)的边界条件、异常和例外。接下来,人类使用自己的判断做出变更、纠正或调整。我们并不需要(在空间上)与设备在一起,或许我们也无需实时监视它们(这取决于流程)。我们通过监视层面采集数据并进行处理(某些数据处理必须在特定时刻完成),并通过控制层面将这些数据实时(或准实时)地运用到设备或装置的运行上。需要组织机构做出的战略决策是,是否以及何时在产品中提供更多的控制能力,以及是将其作为一种服务向客户开放,还是让客户拥有这些功能。第三个层级的能力——优化——可以拓展到某个单体对象、一系列对象,或是一套由来自多家制造商、使用不同技术的对象组成的生态系统的表现方面。是否将提供的服务拓展到这一领域,取决于围绕着价值链和流程边界的知识和经验的水平。前面提到的矿业的例子,反映出Joy Global与供应商相比的优势,主要在于拥有在流程生态系统中更加聚焦的视角。以卡车制造商为例,它无法很好地优化复杂的矿业设备,但却会凭借对自己的一系列卡车(以及潜在的一系列其他制造商生产的卡车)进行优化而获益——如果行业动态确实具有商业意义的话。要将优化的范围延伸到独立运行,还需要对这三个层级的能力进行一些拓展,以支持与环境及其他系统进行受限程度更低的交互。自治要求围绕着算法提供更多的智能,以便应对计划外的情况——程序员和系统工程师未能明确设计这些情况下的方案。自主运行需要整合具有适应性的机器学习方法,以应对新出现的情况,并将之纳入到用于监视、控制和优化的核心算法中。了解分析和机器学习2014年11月,施乐公司帕洛阿尔托研究中心的Mike Kuniavsky在IDTechEx上进行了一场名为“IoT领域中预测分析方面的用户体验”的演讲。在演讲中他表示,我们应该将几乎所有功能都存放(或是在不久的将来存放)在云上。数据和功能可以从任何位置、通过任何设备访问。而专业设备则提供用户访问数据的环境。健康手环可以通过iPhone或笔记本电脑,在特定的锻炼环境中访问用户的身体健康数据。在这种情况下,健康手环扮演了IoT传感器的角色,同时也提供了访问和使用数据的一种途径,而且它还通过软件功能包含了其他一些设备(例如计步器)的能力。设备上产生的数据可以为厂家提供额外的洞见,帮助其了解消费者的使用情况和喜好,并藉此升级功能或开发新特性。如果汇聚来自用户群的数据并结合其他数据集,那么新的洞见可以阐明流行病方面的数据、人群活动水平、生活方式和人口统计数据。对市场人员、健康服务提供者、保险公司和政府机构来说,这些信息具有宝贵的价值。(当然,我们必须认真对待隐私和数据使用许可方面的责任。)我们可以使用机器学习算法,基于这些数据模式作出预测。例如,在一份来自Mayo Clinic的研究中,发掘出了活动数据与心脏病人恢复速度的相关性5。同样的机器学习和预测算法也是许多联网智能消费设备的基础。例如,Nest恒温器是一套能够使用数据模式的设备,它预测消费者对于某个特定房间、在一天中的某个特定时刻的温度要求。(另一个控制和优化的例子体现在聚居区的层面。在获得了业主许可的情况下,电力设施可以通过远程调节的方式,控制成百上千的Nest设备,将室温调高或调低几度,从而完成高峰期的用能负载调度)。这类消费设备涵盖了从声音模式(例如亚马逊的个人助理输入设备Echo6)到更复杂的行为和活动模式(例如捷豹的路虎监视系统,它依赖于一套复杂的软件系统,该系统让汽车能够学习、预测和检查,并提醒车上的乘客帮助驾驶员自动委派次要任务,以便驾驶员将更多的注意力集中在驾驶上7)进行学习的范围。优化算法通过使用机器学习机制,来利用从动态环境下交互的传感器和智能设备传回的数据。算法不能基于特定的参数,精确地预测这些多变的情况,而是需要不断地感知、响应并适应。例如,随着汽车从驾驶员身上分担了更多的责任,它们需要与周边环境中更多的数据来源进行交互(传感器、灯光、其他车辆等等)。在工业自动化、物流和交通运输、电力网络与能源系统、交通管理、安全系统以及其他“系统的系统”等领域中的各类应用,都将让机器直接与其他机器进行交流。此外,这些应用还将基于能够演进和自适应的算法,帮助机器翻译数据流,从而使机器能够依据给定的运行参数达到要求的最终状态。反思业务模型和价值链智能联网设备要求组织机构重新检视,它们处在市场中的什么位置、以什么方式创造价值,以及这些价值将如何随着竞争环境和信息生态系统的演进而增加或减少。分析将帮助验证某些决策(例如,在对特性进行变更或是增加服务和功能后,获得实时使用数据);不过,市场新进入者和新的价值链结构或许会对业务模式带来巨大的转变,而基于公司传统业务模式做出的分析将不再具有相关性。因此,产品或服务的基础,或许会转变为来自传统产品的数据流,而不是来自产品本身的收入。新的业务模式将得以延展,甚至有可能远远超出产品本身的范畴,覆盖上游供应商或下游消费者。最重要的是,所有这些可能性,都会要求组织机构拥有围绕着其内部数据健康度和用于分析的基础设施的基础能力:数据“打捞”(curation)、所有制和质量标准、具有一致性的企业架构、干净整洁地集成在一起的系统、自动化的数据载入流程,以及成熟的分析专家。如果欠缺或未能有效管理这些基础条件,组织机构将很难进行快速反应,并演化出新的分析和数据管理功能与能力。IoT将基于数据流和复杂的方法,从信息中获取洞见,并通过与企业知识整合,将之运用到价值创造方面。而不具备这些能力的组织机构将在市场上落后,或是降级到低价值、低利润的层次。数据被称为“新的石油”——我们可以拓展这一比喻,这意味着通过分析能力中的知识提炼环节,数据将被精炼为高价值产品。组织机构现在就需要在构建此类基础设施的方面投入资源,以便为接下来数年中应对供应链和价值创造环节的转型、扰动和颠覆做好准备。信息敏捷性将成为必备的核心能力。
答:主要学习物联网的概念以及实际 *** 作。
1,通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络概念。“物联网概念”是在“互联网概念”的基础上,将其用户端延伸和扩展到任何物品与物品之间,进行信息交换和通信的一种网络概念。
2,物联网是新一代信息技术的重要组成部分。其英文名称是“The Internet of things”。由此,顾名思义,“物联网就是物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。
3,从某种意义说,物联网并不是指把所有的物体都实现联网,是一种局域性的网络,相对一个行业,或一个组织系统。举个简单例子,物联网在行业应用,实现了一个闭环的信息系统,物联网采集的数据,只对本行业有用,别的行业就不需要先关数据。也没有必要了解。
题主是否想询问“物联网的概念比传感器网的范围广么?”物联网的概念比传感器网的范围广。物联网的范围比传感器网更广泛,包括了更多的设备和传感器,同时也包括了更复杂的网络架构和应用场景。传感器网是指通过传感器将各种物理量(如温度、湿度、压力等)采集到互联网上,实现远程监测和控制的网络系统。传感器网相比物联网来说,范围更加狭窄,主要侧重于传感器的采集和监测功能,应用场景也相对简单,主要是工业自动化、环境监测、农业等领域。因此,物联网是传感器网的延伸和升级,是更加综合、智能和广泛应用的一种网络系统。现状:我国已形成基本齐全的物联网产业体系,部分领域已形成一定市场规模,网络通信相关技术和产业支持能力与国外差距相对较小,传感器、RFID等感知端制造产业、高端软件和集成服务与国外差距相对较大。仪器仪表、嵌入式系统、软件与集成服务等产业虽已有较大规模,但真正与物联网相关的设备和服务尚在起步。
我国已形成了较完整的敏感元件与传感器产业,产业规模稳步增长。我国形成了RFID低频和高频的完整产业链以及以京、沪、粤为主的空间布局,2009年市场规模达到85亿元并成为全球第3大市场。我国仪器仪表产业连续多年实现20%以上的增长,2009年产值超过5000亿元,企业数量为5000多个,小型企业数量占比达到90%。
在物联网网络通信服务业领域,我国物联网M2M网络服务保持高速增长势头,目前M2M终端数已超过1000万,年均增长率超过80%,应用领域覆盖公共安全、城市管理、能源环保、交通运输、公共事业、农业服务、医疗卫生、教育文化、旅游等多个领域,未来几年仍将保持快速发展,预计“十二五”期间将突破亿级。三大电信企业在资源配置方面积极筹备,加紧建设M2M管理平台并推出终端通信协议标准,以推进M2M业务发展。国内通信模块厂商发展较为成熟,正依托现有优势向物联网领域扩展。国内M2M终端传感器及芯片厂商规模相对较小,处于起步阶段。尽管我国在物联网相关通信服务领域取得了不错的进展,但应在M2M通信网络技术、认知无线电和环境感知技术、传感器与通信集成终端、RFID与通信集成终端、物联网网关等方面提升服务能力和服务水平。
在物联网应用基础设施服务业领域,虽然不是所有云计算产业都可纳入物联网产业范畴,但云计算是物联网应用基础设施服务业中的重要组成部分,物联网的大规模应用也将大大推动云计算服务发展。国内云计算商业服务尚在起步,SaaS已形成一定规模,而真正具有云计算意义的IaaS和PaaS商业服务还未开展。目前,我国在云计算服务的基础设施(IDC中心)建设、云计算软硬件产业支持和超大规模云计算服务的核心技术方面与发达国家存在差距。云安全方面,我国企业具有一定的特点和优势。随着物联网应用的规模推进、互联网快速发展和国家信息化进程的不断深入,我国云计算服务将形成巨大的市场需求空间,“十二五”期间将呈现快速发展态势。
在物联网相关信息处理与数据服务业领域,信息处理与数据分析的关键技术主要是数据库与商业智能。我国数据库产业非常薄弱,知名企业只有三四家,只占国内市场10%左右的份额。商业智能(BI)领域我国虽然技术相对落后,但已形成了一定规模,国内现有BI厂商有近500家,但高端市场仍由国际厂商垄断。整体而言,我国拥有自主知识产权的数据库产品、BI产品和掌握关键技术的软件企业少,产业链不完整,缺乏产品线完整、软硬结合、竞争力强的国际企业。
2020年国家会议召开,加快推动新基建建设,各产业进行数字化的转型,进行智能产业化的升级,以5G为核心的物联网蓬勃发展。互联网时代已经进入到了“物联网”时代。
01
嵌入式应用的发展前景
“物联网”让所有的物品都具有计算机的智能但不以计算机的形式出现,并把这些物品与网络连接在一起,这就需要嵌入式技术的支持。
嵌入式是一个低调的领域,但是又无处不在。它功能很强大,领域很广阔。所有带有数字接口的设备,如手表、 汽车 等,都会使用到嵌入式系统。
嵌入式系统在IoT的应用随着市场的发展,可以说是是越来越广。编程不单单是在IT行业广泛应用,在当代 社会 中,各个行业间相互影响,相互渗透早已不是什么稀奇事了,而嵌入式系统也应时代的需求在各个行业中充当着重要的角色。
嵌入式技术近年来得到了飞速的发展,就业前景广阔很多行业都可以用到它。随着行业的发展,市场对嵌入式方向的人员需求逐渐增多,薪资也是水涨船高,尤其是尤其是中高端开发岗位数量明显增多。
据统计:目前全国嵌入式工程师平均薪资可达近10K,其中薪资在15k-20k之间的占比有246%。而一线城市,如北京、上海、深圳等地,嵌入式工程师平均薪资更是高达20000元/月以上。由此可见,不管是现在还是未来,嵌入式工程师或将成为企业发展不可或缺的一部分。
02
嵌入式开发在哪里可以运用?
工业物联网
机器、设备和人的连接需要在工业互联网内完成,工业物联网不断发展需要嵌入式系统的更新。AI+IoT将成为未来产业成长的动能,因此嵌入式硬件系统平台作为发展工业物联网第二、三阶段的基石,必须能以融合人工智能及物联网的解决方案来应对市场需求。
农业物联网
嵌入式系统现在广泛运用于农业当中,通过分析设备的工作情况,通过传感器和仪器的使用,实现高效运作。
我国是农业大国,物联网技术的成熟带动农业物联网终端产品发展,养殖物联网系统、智能大棚、自动水肥一体化等日益成熟,大大促进了农业生产智能化。现在各种以嵌入式为特征智能终端产品屡见不鲜。嵌入式系统不断被应用于生活之中,改变着人们的生活,推动着工农业的发展。
世界上许多发达国家拥有着高度发达的养殖业。这些发达国家的养殖业,均有着高技术、低人工,高产能,低消耗等特点。这其中,高技术的 科技 力量已经成为现代化养殖场一个关键性的指标。我国的养殖业以前只是“后院养殖”的副业,经过40年的发展,从后院养殖的副业到独立的产业,从传统养殖到机械化设备养殖、加工、包装的现代化养殖,形成规模化养殖,成为我国农业的主要组成,带动农业经济快速发展。
所谓智能化养殖,利用物联网技术,围绕设施化畜禽养殖场生产和管理环节,通过智能传感器在线采集养殖场环境信息(二氧化碳、氨气、硫化氢、空气温湿度等),同时集成改造现有的养殖场环境控制设备,实现畜禽养殖的智能生产与科学管理。
医疗物联网
现在先进的医疗技术都逐步实现AI技术化,而在医疗技术进步中,嵌入式系统扮演者不可替代的角色。嵌入系统为医疗信息化提供便捷的 *** 作系统,提高医护人员的技术水平,减轻医疗工作者的负担。
在医院临床上,物联网应用在移动护理条码扫描系统、移动门诊输液管理系统、婴儿防盗系统、患者生命体征动态监测系统等;在医院运营管理体系上,物联网应用于消毒供应中心质量追溯系统、科室物资管理系统、医疗废物管理系统、手术器械清点系统等。
03
嵌入式系统的安全性
自嵌入式系统诞生以来,关于什么是嵌入式系统一直存在争议。早期的定义是:“嵌入式系统是一个您甚至都不知道的系统,直到它停止工作为止。”
在物联网,工业物联网和人工智能的当今时代,其中所有事物都直接或通过云连接到其他事物,术语“嵌入式系统”是与大部分等同于“物联网设备,”没有什么可以被认为是安全的,而且一切都必须保证安全。
每年连接到Internet的设备数量呈指数增长。预计到2035年将有超过1万亿个连接的设备,而这些设备中每一个都需要的一件事就是安全性。幸运的是,可以使用解决方案,使开发人员可以使用商业和开源工具保护其嵌入式和物联网设备从端点到云的安全。
如今,随着行业的发展,人才资源的稀缺是必然的结果,有越来越多的学生选择嵌入式开发等专业。而这些高素质人才也将出现在各行各业中,让IT不再是一个独立的行业,而是作为各行各业沟通以及联系的桥梁,让各个行业工作效率更高效,联系更紧密。
物联网是互联网基础上的延伸和扩展的网络。将各种信息传感设备与互联网结合起来而形成的一个巨大网络,实现在任何时间、任何地点,人、机、物的互联互通。物联网的基本特征可概括为整体感知、可靠传输和智能处理。
物联网的应用领域涉及到方方面面,在工业、农业、环境、交通、物流、安保等基础设施领域的应用,有效推动了智能化发展,使得有限的资源更加合理的使用分配,从而提高了行业效率、效益。在家居、医疗健康、教育、金融与服务业、旅游业等与生活息息相关的领域的应用,从服务范围、服务方式到服务的质量等方面都有了极大的改进,大大提高了人们的生活质量。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)