物联网平台那么多我们如何选择?

物联网平台那么多我们如何选择?,第1张

选择物联网平台是一项关键决策,会对企业产生多方面影响。这篇文章列出了帮您选择合适物联网平台的几个要点。
可扩展性
数据增长越多,处理起来就越困难,这需要立即处理。当公司能够处理大量数据时,机器学习算法可以帮助获得更好的商业智能,这反过来又可以帮助做出更好的决策。因此,可扩展性变得很重要。为了将机器学习算法应用于大量数据,您需要首先找到一个物联网供应商来帮助获取这些数据。因此,选择物联网供应商的决定变得至关重要。随着大量数据的出现,与硬件和数据安全相关的成本和风险也随之增加。如果您从一开始就没有连接数百万台设备,这并不重要,重要的是要确保您的物联网平台能够处理数据负载。
在寻找供应商时,您需要考虑平台的可扩展性和平台的最佳性能。可扩展的物联网平台允许您连接到数百万台设备,这些设备具有不同的技术要求,并在不危及质量和效率情况下使用数据提供洞察力。
协议支持
长期以来,M2M通信和工业自动化已经存在。借助数据驱动的运营洞察,物联网使工业自动化成为一个更好、更精确的领域。为了提供完整的自动化体验,物联网平台需要支持传统和新兴协议。此外,物联网平台还应该提供协议转换。基于SCADA的RTU和PLC仍有在现有平台上实现自动化的趋势。BACnet、Modbus和CANBUS的使用在通信设备中也很常见。
定价模式
平台提供商应该有透明的定价政策。当心那些提供特惠价格的供应商,当您注册时,他们会提高价格。
如果您选择订阅模式,则可以支付订阅定价的费用。如果您要销售硬件,那么您可以选择带有许可证的平台选项,以便将其包含在开发成本中。
云基础设施
寻找能够提供适合您当前IT环境的物联网平台供应商,并托管在本地。与单一方法相比,混合云方法已经证明是成功的。混合云的最佳之处在于它能提供良好的访问性,使用此选项的公司可以方便快捷地访问私有云和公共云。
结论
随着技术的进步,物联网将改进我们彼此的互动方式,以及全球经济的运行模式。要取得成功,需要一个可扩展的集成平台。物联网机器学习也有利于根据我们的需求塑造我们的环境。
在选择物联网平台时,需要向供应商提出您的需求和限制条件,这一重要步骤将有助于做出更有针对性的决策。

近年来,大数据一直呈现出万众瞩目的局面。随着时间的推移,大数据产业开始快速发展。同时,大数据和 "互联网+"的发展也开创了互联网的新时代。大数据是互联网和计算机的结合。互联网在网络上上传和分享数据,而计算机在网络上将数据数字化。两者的结合,让大数据有了生命力。数据是计算机筛选海量数据的结果。它是对移动智能设备、云和物联网收集的海量数据进行存储、分析和计算。完美地提高了海量数据的使用率和价值。它开创了人类社会利用数据价值的另一个时代。移动互联网普及后,智能设备向云端上传大量的用户数据。

它们记录了用户的浏览行为、点击行为和出行轨迹,形成了大量的用户行为数据。电子导航,如金山、腾讯、百度都会产生大量的数据流,与传统数据不同,传统数据代表一种属性或价值,而电子导航数据代表一种行为、一种轨迹,这些数据流具有巨大的商业价值,作为一种新的数据类型,是过去没有的。进入新媒体时代后,互联网上的数据和信息主要由数据创造,大量的用户在各种新媒体平台上产生了大量的行为数据。这些数据在移动互联网兴起之前是没有的。网上交易积累了大量的数据。这些数据包括支付数据、搜索行为、物流数据、购物偏好、评价和分享等。

大量的网上交易数据由电商产生,包括支付数据、查询行为、物流运输、购买偏好、点击订单、评价行为等,属于信息流和资金流数据。传统互联网入口转向搜索引擎后,用户的搜索行为和提问行为聚集了海量数据。单位存储价格的下降也使得这些数据的存储变得经济可行。因为大数据技术可以完美解决海量数据的采集、存储、计算、分析等问题。随着互联网经济的发展和人们对互联网依赖程度的提高,进一步推动了大数据的发展。可以说,大数据的发展是由于互联网经济时代的刚性需求。中国有14亿人口,是拥有智能手机最多的国家。

这样一来,每天都会有海量的数据信息产生,为中国大数据的收集和发展提供了强有力的支持。大数据可以从这些数据中提取有价值的信息,用于为企业创造商业价值。在不断实践和应用中实现互利共赢,刺激了大数据的发展。国家政策支持 自2014年大数据被写进政府工作报告以来,政府一直在提供政策支持。大数据产业发展规划(2016-2020年)》为近年来的大数据发展奠定了政策基础。2021年,大数据产业也将迎来新的发展趋势,将面向数字政府、数字生态、数字技术等方面的需求如火如荼地展开,很多地区都投入了大数据管理机构,如上海局的 "大数据 "和贵州的 "云上",大数据都在沈阳组建了管理局,助力大数据产业发展。

一、将真实的加工制造连接到工业40

如果使用了工业40技术,一个新的加工制造生产线可以实现多达25种的产品变化,同时将产量提高10%,库存减少30%。工业40架构的应用让制造商在生产过程中可以获得更丰厚的投资回报率。

工业40是一场工业的革命,目的是将信息技术(IT)的虚拟世界、机器的物理世界以及互联网合为一体。其中心是将具有IT功能的所有工业领域都整合起来。

工业物联网(IIoT)设备要想创建工业40生产制造环境需要注意以下5个方面。

在工业40中,对机器工具或一组机器的 *** 作,应该允许使用诸如智能手机或平板电脑这样的智能设备进行简单的连接。

1分布式智能

这里说的分布式智能是指在智能传动和控制技术网络的机器设备中,加入尽可能多的智能和控制功能、或者单独的传动轴,而不是从一个中央处理单元(CPU)来处理所有的动作。

2快速连接

在决定应该使用现场总线的什么功能时,应该看一下生产平台是否支持例如OPC UA(来自于OPC基金会)这样的标准。消除不同供应商系统的障碍,而且对通讯和控制平台采取一种更加开放的方式很重要。

3开放标准和系统

开放标准允许基于软件的解决方案可以更加灵活地集成,并有可能将新的技术移植进现有的自动化架构中。

4实时数据整合

可能利用实时的机器和工厂性能数据来改变自动化系统和生产工艺的管理方式。不用捕捉并分析数月以来有价值的关于生产率、机器停机时间或者能源消耗的数据,支持工业40的平台能够将数据整合到常规的工厂管理报告之中。这会让制造商和机器具备详细的信息来执行快速的工艺和生产变更,以实现产品满足特定客户需求的愿景。

5自适应性

科技帮助生产线变得主动。目标就是让工作站和模块可以适应个性化的客户或产品需求。

二、让工业40和IIoT在智能工厂里运行

工业40和工业物联网(IIoT)能够为设备(从传感器到大规模控制系统)、数据和分析之间提供更好的连接性,Beckhoff自动化的TwinCAT产品专家Daymon Thompson这样认为。传感器和系统需要网络连接来共享数据,分析有助于做出更明智的决策。

物联网主要包括4个基本元素实体的设备、与设备之间的双向连接、数据以及分析设备可以是小到一个传感器大到一个大规模控制系统中的任何一种。传感器和系统需要与更大的网络进行连接,以共享由传感器或系统产生的数据。对此数据进行的分析会产生可执行的信息,其结果是让人们做出精明的决策。

关于智能工厂的3个思考

在决定实施工业40之前,要对智能工厂提出的3个问题是:

1你是否想要自动完成快速的产品转换,以及对市场需求的响应更好?

2你是否想通过识别出可以进行持续改进的区域来提升你的设备综合效率(OEE)以及生产总产量?

3你是否想要根除浪费,例如能源、原材料和闲置时间?

在确定和完善真实世界里智能工厂的目标之后,采用基于PC控制的硬件和软件有助于帮助你早日成功。

三、为什么要部署工业物联网?

因为在工业世界里普遍使用了联网的传感器而比商业的物联网(IoT)更加先进,这些传感器就是物联网里面的“物”。数以亿计的联网的有线及无线压力、液位、流量、温度、震动、声波、位置、分析仪表以及其他传感器被用于工业领域,而且每年以数百万台的速度增加,为工厂提供了更多的监控、分析和优化。

IIoT通过将传感器连接到分析和其他系统中,来自动提高性能、安全性、可靠性和能源效率,具体方式为:

1从传感器上采集数据比以往经济有效得多,因为传感器很多都是电池供电和无线通讯的

2使用大数据分析和其他技术将这些数据翻译成可以理解的信息。

3将这些可 *** 作的信息在正确的时间呈献给正确的人员,要么是工厂人员,要么是远程专家。

4如果工作人员采取了正确的 *** 作,将带来性能上的提升。

四、基于平台的工具克服了IIoT的复杂性

基于平台的方式提供了一种灵活的硬件架构,可以部署在许多不同的应用场合中,消除了硬件的复杂性,并让每一个新的问题基本上都成为软件方面的挑战。系统设计师选择的平台应该基于一个对信息技术(IT)友好的 *** 作系统(OS),这样它们可以安全地进行供给和配置,进而来正确地认证和授权用户维护系统的整体性,并让系统最大程度地可用。

五、基于数据的工业物联网

如果没有数据,就没有大数据、云和分析功能,也没有区别于物联网(IoT)的工业物联网(IIoT);PI北美组织的副总监Carl Henning说,IIoT中的“物”造就了IoT中的“物”。IIoT需要开放的标准,以太网和软件标准可以为控制和制定决策所需要的信息提供数据。

其中一部分)时,大多数人认为最有用的特性是实时功能。

六、优化布线是提升工业物联网性能的基石

通过将信息、自动化、以及运行在工业物联网上的生产系统之间不断融合,物联网正在积极地影响着未来的工业自动化,Softing 有限公司市场部副总裁Mark Knebusch指出。随着以太网速度越来越快,电缆系统的集成更加重要,而电缆的认证有助于提升工业网络的性能。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13055401.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-30
下一篇 2023-05-30

发表评论

登录后才能评论

评论列表(0条)

保存