如何理解互联网 与物联网云计算大数据的关系

如何理解互联网 与物联网云计算大数据的关系,第1张

我们在互联网进化论和互联网神经学的研究过程中,提出“互联网正在向着与人类大脑高度相似的方向进化,它将具备自己的视觉、听觉、触觉、运动神经系统,也会拥有自己的记忆神经系统、中枢神经系统、自主神经系统。另一方面,人脑至少在数万年以前就已经进化出所有的互联网功能,不断发展的互联网将帮助神经学科学家揭开大脑的秘密。科学实验将证明大脑中也经拥有Google一样的搜索引擎,Facebook一样的SNS系统,IPv4一样的地址编码系统,思科一样的路由系统。”
之前也根据这一研究结果所绘制的“互联网虚拟大脑结构图”对互联网与云计算,大数据,物联网,工业40(工业互联网)的关系进行了阐释。
1物联网是互联网大脑的感觉神经系统
因为物联网重点突出了传感器感知的概念,同时它也具备网络线路传输,信息存储和处理,行业应用接口等功能。而且也往往与互联网共用服务器,网络线路和应用接口,使人与人(Human ti Human ,H2H),人与物(Human to thing,H2T)、物与物( Thing to Thing,T2T)之间的交流变成可能,最终将使人类社会、信息空间和物理世界(人机物)融为一体
2云计算是互联网大脑的中枢神经系统
在互联网虚拟大脑的架构中,,互联网虚拟大脑的中枢神经系统是将互联网的核心硬件层,核心软件层和互联网信息层统一起来为互联网各虚拟神经系统提供支持和服务,从定义上看,云计算与互联网虚拟大脑中枢神经系统的特征非常吻合。在理想状态下,物联网的传感器和互联网的使用者通过网络线路和计算机终端与云计算进行交互,向云计算提供数据,接受云计算提供的服务。
3大数据是互联网智慧和意识产生的基础
随着博客、社交网络、以及云计算、物联网等技术的兴起,互联网上数据信息正以前所未有的速度增长和累积。互联网用户的互动,企业和政府的信息发布,物联网传感器感应的实时信息每时每刻都在产生大量的结构化和非结构化数据,这些数据分散在整个互联网网络体系内,体量极其巨大。这些数据中蕴含了对经济,科技,教育等等领域非常宝贵的信息[52]。这就是互联网大数据兴起的根源和背景。
与此同时,深度学习为代表的机器学习算法在互联网领域的广泛使用,使得互联网大数据开始与人工智能进行更为深入的结合,这其中就包括在大数据和人工智能领域领先的世界级公司,如百度,谷歌,微软等。2011年谷歌开始将“深度学习”运用在自己的大数据处理上,互联网大数据与人工智能的结合为互联网大脑的智慧和意识产生奠定了基础。
4工业40或工业互联网本质上是互联网运动神经系统的萌芽
互联网中枢神经系统也就是云计算中的软件系统控制工业企业的生产设备,家庭的家用设备,办公室的办公设备,通过智能化,3D打印,无线传感等技术使的机械设备成为互联网大脑改造世界的工具。同时这些智能制造和智能设备也源源不断向互联网大脑反馈大数据数,供互联网中枢神经系统决策使用。
5互联网+的核心是互联网进化和扩张,反映互联网从广度、深度融合和介入现实世界的动态过程
互联网+是2015年在中国迅速升温的新互联网概念,这其中离不开国家的倡议,腾讯的大力推动,张晓峰,杜军主编的《互联网+,国家战略行动路线图》等书的深入研究。对于这个原创于本土并被广泛关注的互联网概念,我们应该给与大力支持,更因为互联网+的确深刻刻画了互联网发展形态。
我们无法用上面单独的一张图表示我们对互联网+的理解。这是因为互联网+本质上反映互联网从广度、深度侵蚀现实世界的动态过程。互联网从1969年在大学实验室里诞生,不断扩张,从美国到美洲,从亚洲,欧洲到非洲,南极洲,应用领域从科研,到生活,从娱乐到工作,从传媒到工业制造业。互联网+提出者,易观国际的于扬老师认为互联网像黑洞一样,不断把这个世界吞噬进来。其实互联网+反映了于扬老师的互联网黑洞论进一步提升,+这个符号可以看做是一张黑洞的入口或嘴。这也是为什么我们叫互联网+,而不叫+互联网。

1 大数据、云计算和物联网的区别
大数据侧重于海量数据的存储、处理与分析,从海量数据中发现价值,服务于生产和生活;云计算本质上旨在整合和优化各种IT资源,并通过网络以服务的方式廉价提供给用户;物联网的发展目标是实现物物相连,应用创新是物联网发展的核心。
2 大数据、云计算和物联网的联系
从整体上看,大数据、云计算和物联网这三者是相辅相成的。大数据根植于云计算,大数据分析的很多技术都来自于云计算,云计算的分布式和数据存储和管理系统(包括分布式文件系统和分布式数据库系统)提供了海量数据的存储和管理能力,分布式并行处理框架MapReduce提供了海量数据分析能力,没有这些云计算技术作为支撑,大数据分析就无从谈起。反之,大数据为云计算提供了“用武之地”,没有大数据这个“练兵场”,云计算技术再先进,也不能发挥它的应用价值。
物联网的传感器源源不断产生的大量数据,构成了大数据的重要来源,没有物联网的飞速发展,就不会带来数据产生方式的变革,即由人工产生阶段向自动产生阶段,大数据时代也不会这么快就到来。同时,物联网需要借助于云计算和大数据技术、实现物联网大数据的存储、分析和处理。
云计算、大数据和物联网,三者会继续相互促进、相互影响,更好地服务于社会生产和生活的各个领域。
以上由物联传媒整理提供,如有侵权联系删除

1、云计算
一般来讲云计算,云端即是网络资源,从云端来按需获取所需要的服务内容就是云计算。云计算是指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的资源(硬件、平台、软件)。提供资源的网络被称为“云”。“云”中的资源在使用者看来是可以无限扩展的,并且可以随时获取,按需使用,随时扩展,按使用付费。这种特性经常被称为像水电一样使用IT基础设施。广义的云计算是指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的服务。这种服务可以是IT和软件、互联网相关的,也可以是任意其他的服务。
2、物联网
简单理解:物物相连的互联网,即物联网。物联网在国际上又称为传感网,这是继计算机、互联网与移动通信网之后的又一次信息产业浪潮。世界上的万事万物,小到手表、钥匙,大到汽车、楼房,只要嵌入一个微型感应芯片,把它变得智能化,这个物体就可以“自动开口说话”。再借助无线网络技术,人们就可以和物体“对话”,物体和物体之间也能“交流”,这就是物联网。随着信息技术的发展,物联网行业应用版图不断增长。如:智能交通、环境保护、政府工作、公共安全、平安家居、智能消防、工业监测、老人护理、个人健康、花卉栽培、水系监测、食品溯源等。大的理想就是智慧地球,目前实际生活中存在并在建设的智慧城市都是物联网炒的概念。
3、大数据
大数据(big data),就是指种类多、流量大、容量大、价值高、处理和分析速度快的真实数据汇聚的产物。大数据或称巨量资料或海量数据资源,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
大数据的4V特点:Volume、Velocity、Variety、Veracity。
即:数量Volume、多样性Variety、速度Velocity、和真实性Veracity。
4、大数据,云计算,物联网和移动互联网的关系
物联网对应了互联网的感觉和运动神经系统。云计算是互联网的核心硬件层和核心软件层的集合,也是互联网中枢神经系统萌芽。大数据代表了互联网的信息层(数据海洋),是互联网智慧和意识产生的基础。包括物联网,传统互联网,移动互联网在源源不断的向互联网大数据层汇聚数据和接受数据。云计算与物联网推动大数据发展。

云计算与大数据概述
云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。狭义云计算指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需资源;广义云计算指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需服务。这种服务可以是IT和软件、互联网相关,也可是其他服务。它意味着计算能力也可作为一种商品通过互联网进行流通。
大数据(big data),或称海量数据,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。
大数据管理,分布式进行文件系统,如Hadoop、Mapreduce数据分割与访问执行;同时SQL支持,以Hive+HADOOP为代表的SQL界面支持,在大数据技术上用云计算构建下一代数据仓库成为热门话题。从系统需求来看,大数据的架构对系统提出了新的挑战:
1、集成度更高。一个标准机箱最大限度完成特定任务。
2、配置更合理、速度更快。存储、控制器、I/O通道、内存、CPU、网络均衡设计,针对数据仓库访问最优设计,比传统类似平台高出一个数量级以上。
3、整体能耗更低。同等计算任务,能耗最低。
4、系统更加稳定可靠。能够消除各种单点故障环节,统一一个部件、器件的品质和标准。
5、管理维护费用低。数据藏的常规管理全部集成。
6、可规划和预见的系统扩容、升级路线图。
云计算与大数据的关系
简单来说:云计算是硬件资源的虚拟化,而大数据是海量数据的高效处理。虽然从这个解释来看也不是完全贴切,但是却可以帮助对这两个名字不太明白的人很快理解其区别。当然,如果解释更形象一点的话,云计算相当于我们的计算机和 *** 作系统,将大量的硬件资源虚拟化后在进行分配使用。
可以说,大数据相当于海量数据的“数据库”,通观大数据领域的发展我们也可以看出,当前的大数据发展一直在向着近似于传统数据库体验的方向发展,一句话就是,传统数据库给大数据的发展提供了足够大的空间。
大数据的总体架构包括三层:数据存储,数据处理和数据分析。数据先要通过存储层存储下来,然后根据数据需求和目标来建立相应的数据模型和数据分析指标体系对数据进行分析产生价值。
而中间的时效性又通过中间数据处理层提供的强大的并行计算和分布式计算能力来完成。三者相互配合,这让大数据产生最终价值。
不看现在云计算发展情况,未来的趋势是:云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力,借用Google一篇技术论文中的话:“动一下鼠标就可以在妙极 *** 作PB级别的数据”,确实让人兴奋不能止。

物联网与云计算各自具备很多优势,结合方式我们可以分为以下几种:
第一,一对多方式。即单一云计算中心,多业务终端。此类模式中,分布范围较小的各物联网终端(传感器、摄像头或3G手机等),把云中心或部分云中心做为数据的处理中心,终端所获得信息、数据统一由云中心处理及存储,云中心提供统一界面给使用者 *** 作或者查看。
这类应用非常多,如小区及家庭的监控、对某一高速路段的监测、公共设施的保护等都可以用此类信息。这类云计算中心,可提供海量存储空间和统一界面、分级管理等功能,为日常生活提供较好的帮助。
第二,多对多方式,即多个云计算中心,大量业务终端。对于很多区域跨度较大的企业、单位而言,多中心、大量终端的模式较为适合。譬如,一个跨多地区或者多国家的企业,因其分公司或分厂较多,要对其各公司或工厂的生产流程进行监控、对相关的产品进行质量跟踪等等。
有些数据或者信息需要及时甚至实时共享给各个终端的使用者也可采取这种方式。这个的模式的前提是我们的云计算中心要包含公共云和私有云,并且他们之间的互联没有障碍。这样,对于有些机密的事情,比如企业机密等可较好地保密而又不影响信息的传递与传播。
第三,信息和应用的处理分层化,海量业务终端。这种模式可以针对用户的范围广、信息及数据种类多、安全性要求高等特征来打造。当前,客户对各种海量数据的处理需求越来越多,针对此情况,我们可以根据客户需求及云计算中心的分布进行合理的分配。对需要大量数据传送,但是安全性要求不高的,如视频数据、游戏数据等,我们可以采取本地云计算中心处理或存储。对于计算要求高,数据量不大的情况,可以放在专门负责高端运算的云计算中心。而对于数据安全要求非常高的信息和数据,我们可以放在具有灾难备份功能的云计算中心。此模式根据应用模式和场景,对各种信息、数据进行分类处理,然后选择相关的途径给予相应的终端。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13057350.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-30
下一篇 2023-05-30

发表评论

登录后才能评论

评论列表(0条)

保存