1、物联网的定义:
物联网是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络。
2、物联网的组成:
物联网大致可以分为以下四个层面,即:感知层、网络层、平台层以及应用层。具体如下:
(1)、感知识别层。
感知层是物联网整体架构的基础,是物理世界和信息世界融合的重要一环。在感知层,我们可以通过传感器感知物体本身以及周围的信息,让物体也具备了“开口说话,发布信息”的能力,比如声音传感器、压力传感器、光强传感器等。感知层负责为物联网采集和获取信息。
(2)、网络构建层。
网络层在整个物联网架构中起到承上启下的作用,它负责向上层传输感知信息和向下层传输命令。网络层把感知层采集而来的信息传输给物联云平台,也负责把物联云平台下达的指令传输给应用层,具有纽带作用。网络层主要是通过物联网、互联网以及移动通信网络等传输海量信息。
(3)、平台管理层。
平台层是物联网整体架构的核心,它主要解决数据如何存储、如何检索、如何使用以及数据安全与隐私保护等问题。平台管理层负责把感知层收集到的信息通过大数据、云计算等技术进行有效地整合和利用,为人们应用到具体领域提供科学有效的指导。
(4)、综合应用层。
物联网最终是要应用到各个行业中去,物体传输的信息在物联云平台处理后,挖掘出来的有价值的信息会被应用到实际生活和工作中,比如智慧物流、智慧医疗、食品安全、智慧园区等。
扩展资料:
物联网的功能主要有以下几点:
1、获取信息的功能。
信息的感知、识别,信息的感知是指对事物属性状态及其变化方式的知觉和敏感;信息的识别指能把所感受到的事物状态用一定方式表示出来。
2、传送信息的功能。
传送信息指的是信息发送、传输、接收等环节,最后把获取的事物状态信息及其变化的方式从时间(或空间)上的一点传送到另一点的任务,这就是常说的通信过程。
3、处理信息的功能。
处理信息指的是信息的加工过程,利用已有的信息或感知的信息产生新的信息,实际是制定决策的过程。
4、施效信息的功能。
施效信息指的是信息最终发挥效用的过程,有很多的表现形式,比较重要的是通过调节对象事物的状态及其变换方式,始终使对象处于预先设计的状态。
参考资料来源:百度百科-物联网
RFID技术
核心关键技术主要有RFID技术、传感器技术、无线网络技术、人工智能技术、云计算技术等
拓展内容:
1、RFID技术
RFID技术是物联网中“让物品开口说话”的关键技术,物联网中RFID标签上存着规范而具有互通性的信息,通过无线数据通信网络把他们自动采集到中央信息系统中实现物品的识别。
2、传感器技术
传感器技术在物联网中传感器主要负责接收物品“讲话”的内容。传感器技术是从自然信源获取信息并对获取的信息进行处理、变换、识别的一门多学科交叉的现代科学与工程技术,它涉及传感器、信息处理和识别的规划设计、开发、制造、测试、应用及评价改进活动等内容。
3、无线网络技术
物联网中物品要与人无障碍地交流,必然离不开高速、可进行大批量数据传输的无线网络。无线网络既包括允许用户建立远距离无线连接的全球语音和数据网络,也包括近距离的蓝牙技术、红外技术和Zigbee技术。
4、人工智能技术
人工智能是研究是计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考和规划等)的技术。在物联网中人工智能技术主要将物品“讲话”的内容进行分析,从而实现计算机自动处理。
5、云计算技术
物联网的发展理离不开云计算技术的支持。物联网中的终端的计算和存储能力有限,云计算平台可以作为物联网的大脑,以实现对海量数据的存储和计算。
物联网时代,大量的数据从不同的设备传感器产生,单机数据库系统肯定无法存储这么大量的数据,在选择数据库方面,肯定要选择具有分布式能力存储的数据库。
在物联网时代,数据之间还有一个非常重要的特性,那就是数据之间的关联性。不同的数据从相互连接的互联网设备传感器中产生,由于不同的传感器相互连接,协同工作和采集数据,如何将大量具有相互关联的数据保存在数据库,这里我推荐使用图数据库来进行存储。
图数据库相对于其他数据库来说,最大的优势就是查询数据之间的关联性会更加快速,消耗的时间会更短。打个比方,在社交网络中,我们想要查询在用户A的粉丝中,粉丝关注了B的用户。如果使用传统关系型数据库来存储用户的关注关系,在上面的数据统计中,要使用两层Join才能算出结果,而关系型数据库Join *** 作会很慢。使用图型数据库存储数据的话,图中的点为用户,边为用户的关注关系,在查询A的粉丝,同时粉丝也关注B的用户,只需要遍历两层关注关系就能很快查询到结果。
图数据库也属于NoSql数据库的一种,常用的图形数据库有,JanusGraph、Neo4j、Cayley、dgraph。不同的图数据库,底层实现也不尽相同。
JanusGraph是一种分布式图数据库,由Java语言开发,可以使用Hadoop生态存储系统作为数据源,构建出数据大图。是TiTan图数据库的开源版本,支持事务的ACID。
Neo4j是一种单机的图数据库,其优势就是能够快速安装并且使用,便于新同学上手。你的数据量一般不大的话,我推荐使用Neo4j,直接使用Neo4j相关的API就可以将数据模型图构建而出,然后使用Neo4jCypher查询语言,就可以分析数据,Cypher是一种类SQL的语言。
Cayley和Dgraph都是使用Go语言实现的图数据库,Go语言的最大特性就是其编译速度和开发便捷性,Cayley和Dgraph都支持分布式存储,不过都不支持SQL语言查询数据,Dgraph不支持事务,而Cayley支持事务,不过在开源社区,Dgraph比Cayley更加活跃,这里优先建议使用Dgraph作为物联网的存储数据库。
总体来说,在物联网时代,一定要学会使用图数据库,在分析大量数据之间的关联性时,图数据库就能够派上用场,图数据库最大的优势就是分析不同数据之间的关联性。
物联网迟早要落到实处,现在主要是试点阶段,2015年后略有规模发展,2020年后将逐渐普及。针对目前的大多数物联网相关公司来说,硬件、软件是基础部分。
以下仅供参考:
物联网体系结构分三层
1、感知层:感知层是物联网的皮肤和五官,主要功能是信息感知与采集,主要包括二维码标签和识读器、RFID标签和读写器、摄像头、各种传感器(如温度感应器、声音感应器、震动感应器、压力感应器)等。
2、网络层:网络层是物联网的神经中枢和大脑—用于传递信息和处理信息。
网络层解决的是传输和预处理感知层所获得数据的问题。这些数据可以通过移动通信网、互联网、企业内部网、各类专网、小型局域网等进行传输。
网络层中的感知数据管理与处理技术是实现以数据为中心的物联网的核心技术,包括传感网数据的存储、查询、 分析、挖掘和理解,以及基于感知数据决策的理论与技术。
云计算平台作为海量感知数据的存储、分析平台,将是物联网网络层的重要组成部分,也是应用层中众多应用的基础。
3、应用层。应用层是物联网的“社会分工”—结合行业需求,实现广泛智能化。应用层是物联网与行业专业技术的深度融合,结合行业需求实现行业智能化。
物联网应用层利用经过分析处理的感知数据,为用户提供丰富的特定服务。物联网的应用可分为监控型(物流监控、污染监控)、查询型(智能检索、远程抄表)、控制型(智能交通、智能家居、路灯控制)和扫描型(手机钱包、高速公路不停车收费)等。应用层是物联网发展的体现,软件开发、智能控制技术将会为用户提供丰富多彩的物联网应用。
作者 | 网络大数据
来源 | raincent_com
随着物联网的演变和发展,所有可以想象到的东西(或事物)和产业都将变得更加智能:智能家居和智慧城市、智能制造机械、智能汽车、智能健康等等。无数被授权收集和交换数据的东西正在形成一个全新的网络——物联网——一个可以在云中收集数据、传输数据和完成用户任务的物理对象网络。
物联网和大数据正在走向胜利之路。不过,要想从这一创新中获益,还需要解决一些挑战和问题。在本文中,我们很高兴与大家分享多年来在物联网咨询领域积累的知识。
物联网大数据如何应用
首先,有多种方法可以从物联网大数据中获益:在某些情况下,通过快速分析就足够了,而一些有价值的见解只有在经过深入的数据处理之后才能获得。
实时监测。通过连网设备收集的数据可以用于实时 *** 作:测量家中或办公室的温度、跟踪身体活动(计算步数、监测运动)等;实时监测在医疗保健中被广泛应用(例如,获取心率、测量血压、糖分等);它还成功地应用于制造业(用于控制生产设备)、农业(用于监测牛和作物)和其他行业。
数据分析。在处理物联网生成的大数据时,我们有机会超越监测,并从这些数据中获得有价值的见解:识别趋势,揭示看不见的模式并找到隐藏的信息和相关性。
流程控制和优化。来自传感器的数据提供了额外的上下文情境信息,以揭示影响性能和优化流程的重要问题。
▲交通管理:跟踪不同日期和时间的交通负荷,以制定出针对交通优化的建议,例如,在特定时间段增加公共汽车的数量,看看是否有改观,以及建议引入新的交通信号灯方案和修建新的道路,以减少街道的交通拥堵状况。
▲零售:跟踪超市货架中商品的销售情况,并在商品快卖完之前及时通知工作人员补货。
▲农业:根据传感器的数据,在必要时给作物浇水。
预测性维护。通过连网设备收集的数据可以成为预测风险、主动识别潜在危险状况的可靠来源,例如:
▲医疗保健:监测患者健康状态并识别风险(例如,哪些患者有糖尿病、心脏病发作的风险),以便及时采取措施。
▲制造业:预测设备故障,以便在故障发生之前及时解决。
还应注意的是,并非所有的物联网解决方案都需要大数据(例如,如果智能家居拥有者要借助智能手机来关灯,则可以在没有大数据的情况下执行此 *** 作)。重要的是要考虑减少处理动态数据的工作量,并避免存储将来没有用处的大量数据。
物联网中的大数据挑战
除非处理大量数据以获取有价值的见解,否则这些数据完全没用。此外,在数据收集、处理和存储方面还有各种挑战。
▲数据可靠性。虽然大数据永远不会100%准确,但在分析数据之前,请务必确保传感器工作正常,并且用于分析的数据质量可靠,且不会因各种因素(例如,机器运行的不利环境、传感器故障)而损坏。
▲要存储哪些数据。连网设备会产生万亿字节的数据,选择存储哪些数据和删除哪些数据是一项艰巨的任务。更重要的是,一些数据的价值还远远没有显现出来,但将来您可能需要这些数据。如果您决定为将来存储数据,那么面临的挑战就是以最小的成本做到这一点。
▲分析深度。一旦并非所有大数据都很重要,就会出现另一个挑战:什么时候快速分析就足够了,什么时候需要进行更深入的分析以带来更多价值。
▲安全。毫无疑问,各个领域的连网事物可以让我们的生活变得更加美好,但与此同时,数据安全也成一个非常重要的问题。网络罪犯可以侵入数据中心和设备,连接到交通系统、发电厂、工厂,并从电信运营商那里窃取个人数据。物联网大数据对于安全专家来说还是一个相对较新的现象,相关经验的缺失会增加安全风险。
物联网解决方案中的大数据处理
在物联网系统中,物联网体系架构的数据处理组件因输入数据的特性、预期结果等而不同。我们已经制定了一些方法来处理物联网解决方案中的大数据。
数据来自与事物相连的传感器。“事物”可以是任何物体:烤箱、汽车、飞机、建筑、工业机器、康复设备等。数据可以是周期性的,也可以是流式的。后者对于实时数据处理和迅速管理事物至关重要。
事物将数据发送到网关,以进行初始数据过滤和预处理,从而减少了传输到下一个物联网系统中的数据量。
边缘分析。在进行深入数据分析之前,有必要进行数据过滤和预处理,以选择某些任务所需的最相关数据。此外,此阶段还可以确保实时分析,以快速识别之前在云中通过深度分析所发现的有用模式。
对于基本协议转换和不同数据协议之间的通信,云网关是必需的。它还支持现场网关和中央物联网服务器之间的数据压缩和安全数据传输。
连网设备生成的数据以其自然格式存储在数据湖中。原始数据通过“流”进入数据湖。数据保存在数据湖中,直到可以用于业务目的。清理过的结构化数据存储在数据仓库中。
机器学习模块根据之前积累的历史数据生成模型。这些模型定期(例如,一个月一次)用新数据流更新。输入的数据被累积并应用于训练和创建新模型。当这些模型经过专家的测试和批准后,控制应用程序就可以使用它们,以响应新的传感器数据发送命令或警报。
总结
物联网产生大量数据,可用于实时监控、分析、流程优化和预测性维护等。然而,应该记住,从各种格式的海量数据中获得有价值的见解并不是一件容易事情:您需要确保传感器工作正常,数据得到安全传输和有效处理。此外,始终存在一个问题:哪些数据值得存储和处理。
尽管存在一些挑战和问题,但应记住,物联网的发展势头强劲,并可以帮助多个行业的企业开辟新的数字机遇。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)