dag全称是什么?作用是什么

dag全称是什么?作用是什么,第1张

CAMP途径与双信号途径都是G蛋白偶连信号通路1、cAMP信号通路 信号分子与受体结合后,通过与GTP结合的调节蛋白(G蛋白)的耦联,在细胞内产生第二信使,从而引起细胞的应答反应。 cAMP信号通路由质膜上的5种成分组成:①激活型激素受体(Rs);②抑制型激素受体(Ri);③与GDP结合的活化型调节蛋白(Gs);④与GDP的抑制型调节蛋白(Gi);⑤腺苷酸环化酶( C )。 (1) Rs 与Ri Rs与Ri位于质膜外表面,识别细胞外信号分子并与之结合,受体有两个区域,一个与激素作用,另一个与G蛋白作用。 (2) Gs与Gi G蛋白也称耦联蛋白或信号转换蛋白,它将受体和腺苷酸环化酶耦联起来,使细胞外信号跨膜转换为细胞内信号,即第二信使cAMP (3)腺苷酸环化酶 cAMP信号通路的催化单位是结合在质膜上的腺苷酸环化酶,它催化ATP生成cAMP。 cAMP信号通路的主要效应是激活靶酶和开启基因表达,是通过蛋白激酶A完成的。 ①激活靶酶:通过对蛋白激酶A的活化进而使下游靶蛋白磷酸化,从而影响细胞代谢和细胞行为是细胞快速答应胞外信号的过程。 ②开启基因表达:是一类细胞缓慢应答胞外信号的过程,这就是cAMP信号通路对细胞基因表达的影响。该信号途径涉及的反应链可表示为:激素 G蛋白偶联受体 G蛋白 腺苷酸环化酶 cAMP cAMP依赖的蛋白激酶A 基因调控蛋白 基因转录。 2外界信号分子与受体结合,使质膜上的 4,5—二磷酸磷脂酰肌醇(PIP2)水解成 1,4,5—三磷酸肌醇(IP3)和二酰苷油(DG )两个第二信使。 磷脂酰肌醇信号通路的最大特点是胞外信号被膜受体接受后,同时产生两个胞内信使,分别启动两个信号传递途径即IP3—Ca 2 +和DG—PKC途径,实现细胞对外界的应答,因此把这一信号系统称之为“双信使系统”。 IP3是一种水溶性分子,在细胞内动员内源Ca 2 +,使胞质中内源Ca 2 + 浓度提高。Ca 2+通过钙调蛋白引起细胞反应;DG激活蛋白激酶C(PKC)。 在许多细胞中,PKC的活化可增强特殊基因转录。有两条途径:①PKC激活一条蛋白激酶的级联反应,导致基因调控蛋白的磷酸化和激活;②PKC的活化,导致一种抑制蛋白的磷酸化,使基因调控蛋白摆脱抑制状态释放出来,进入细胞核,刺激特殊基因的转录。

没有关系。HSPG是应用于医学中的,DAG只是一个数据库的组件,在计算机领域中。HSPG作为生长因子的共受体(co-receptor)在肿瘤增殖、分化、侵袭和转移等一系列过程中担任重要角色。DAG即数据库可用性组,是内置在MicrosoftExchangeServer中的邮箱服务器高可用性和站点恢复框架的基本组件。

环核苷酸是细胞内重要的第二信使 环核苷酸是细胞内重要的第二信使 腺苷酸环化酶 磷酸二酯酶 鸟苷酸环化酶 磷酸二酯酶 1、核苷酸环化酶催化cAMP和cGMP的生成 核苷酸环化酶催化cAMP和cGMP的生成 cAMP 2、细胞中存在多种催化环核苷酸水解的磷酸二酯酶(PDE) 细胞中存在多种催化环核苷酸水解的磷酸二酯酶(PDE) 3、环核苷酸在细胞内调节蛋白激酶活性 cAMP激活PKA影响糖代谢 cAMP激活PKA影响糖代谢 激活PKA PKA调控基因表达 PKA调控基因表达 蛋白激酶不是cAMP cGMP的唯一靶分子 cAMP和 4、蛋白激酶不是cAMP和cGMP的唯一靶分子 (二)脂类也可以作为胞内第二信使 脂类也可以作为胞内第二信使 DAG与IP3是重要的第二信使 DAG与IP3是重要的第二信使 1 2、脂类第二信使作用于相应的靶蛋白分子 DAG活化PKC的作用机制示意图 DAG活化PKC的作用机制示意图 活化PKC DAG、钙离子及磷脂酰丝氨酸一起激活PKC DAG、钙离子及磷脂酰丝氨酸一起激活PKC (三)钙离子可激活信号转导有关的酶类 钙离子可激活信号转导有关的酶类 1、钙离子在细胞内的分布有明显的区域特征 μmol/L) 2、钙离子的信号功能主要通过钙调蛋白实现 钙离子的信号功能主要通过钙调蛋白实现 钙调蛋白 钙调蛋白(Calmodulin, CaM)可看作是细 钙调蛋白( CaM) 胞内钙离子的受体, 胞内钙离子的受体,与钙离子结合后可引起 构象改变。 构象改变。 CaM构象改变后,作用于Ca/CaMCaM构象改变后,作用于Ca/CaM-依 构象改变后 Ca/CaM 赖性激酶(CaM赖性激酶(CaM-K) 钙离子还可以直接激活PKC、AC、cAMP-PDE等 钙离子还可以直接激活PKC、AC、cAMP-PDE等 PKC (四)NO的信使功能与cGMP有关 NO的信使功能与cGMP有关 的信使功能与cGMP I II III型 型 激活PKG,PKG磷酸化其底物 激活PKG,PKG磷酸化其底物 PKG,PKG 可引起血管舒张等效应 硝酸甘油通过释放NO而激活此通路缓解心绞痛 硝酸甘油通过释放NO而激活此通路缓解心绞痛 NO 蛋白质作为细胞内 作为细胞内信号转导分子

(1)G蛋白耦联受体属于膜受体,介导的信号转导的大致路径为:配体-受体结合→激活G蛋白→刺激G蛋白效应器→将信息传递给第二信使→蛋白激酶→产生生物学效应。(2)第二信使包括cAMP、cGMP、Ca2+、IP3(肌醇三磷酸)、DG(二脂酰甘油)等。A项,肾上腺素属于胺类激素,既可以cAMP作为第二信使,也可以IP3和DG作为第二信使。C项,促肾上腺皮质激素(ACTH)属于蛋白质类激素,以cAMP作为第二信使。BD两项,醛固酮属于类固醇激素,甲状腺激素虽然属于含氮激素,两者的作用机制相似,都是激素进入细胞后直接与核受体结合,调节基因表达,其作用机制无需第二信使参与。

《开源精选》是我们分享Github、Gitee等开源社区中优质项目的栏目,包括技术、学习、实用与各种有趣的内容。本期推荐的IPFS 是一个分布式系统,用于存储和访问文件、网站、应用程序和数据。

而且,当您使用 IPFS 时,您不只是从其他人那里下载文件——您的计算机也有助于分发它们。当您在几个街区外的朋友需要相同的 Wikipedia 页面时,他们可能会像从您的邻居或任何使用 IPFS 的人那里一样从您那里获得它。

IPFS 不仅可以用于网页,还可以用于计算机可能存储的任何类型的文件,无论是文档、电子邮件,甚至是数据库记录。

可以从不由一个组织管理的多个位置下载文件:

最后一点实际上是 IPFS 的全名: InterPlanetary File System 。我们正在努力建立一个系统,该系统可以在不连贯或相隔很远的地方工作,就像行星一样。虽然这是一个理想主义的目标,但它让我们努力工作和思考,几乎我们为实现这一目标而创造的一切在家里也很有用。

IPFS 是一个点对点 (p2p) 存储网络。可以通过位于世界任何地方的对等点访问内容,这些对等点可能会传递信息、存储信息或两者兼而有之。IPFS 知道如何使用其内容地址而不是其位置来查找您要求的内容。

理解 IPFS 的三个基本原则:

这三个原则相互依赖,以启用 IPFS 生态系统。让我们从 内容寻址 和内容的唯一标识开始。

互联网和您的计算机上都存在这个问题!现在,内容是按位置查找的,例如:

相比之下,每条使用 IPFS 协议的内容都有一个 内容标识符 ,即 CID,即其 哈希值 。散列对于它所来自的内容来说是唯一的,即使它与原始内容相比可能看起来很短。

有向无环图 (DAG)

IPFS 和许多其他分布式系统利用称为有向无环图的数据结构 (打开新窗口),或 DAG。具体来说,他们使用 Merkle DAG ,其中每个节点都有一个唯一标识符,该标识符是节点内容的哈希。
IPFS 使用针对表示目录和文件进行了优化的 Merkle DAG,但您可以通过多种不同的方式构建 Merkle DAG。例如,Git 使用 Merkle DAG,其中包含许多版本的存储库。

为了构建内容的 Merkle DAG 表示,IPFS 通常首先将其拆分为 块 。将其拆分为块意味着文件的不同部分可以来自不同的来源并可以快速进行身份验证。

分布式哈希表 (DHT)

要查找哪些对等方正在托管您所追求的内容( 发现 ),IPFS 使用分布式哈希表或 DHT。哈希表是值键的数据库。 分布式 哈希表是一种表在分布式网络中的所有对等方之间拆分的表。要查找内容,您需要询问这些同行。

libp2p项目 (打开新窗口)是 IPFS 生态系统的一部分,它提供 DHT 并处理对等点之间的连接和交谈。

一旦你知道你的内容在哪里(或者更准确地说,哪些对等点正在存储构成你所追求的内容的每个块),你就可以再次使用 DHT 来查找这些对等点的当前位置( 路由 )。因此,要获取内容,请使用 libp2p 查询 DHT 两次。

然而,这确实意味着 IPFS 本身并没有明确保护 有关 CID 和提供或检索它们的节点的知识。这不是分布式网络所独有的。在 d-web 和 legacy web 上,流量和其他元数据都可以通过可以推断出很多关于网络及其用户的方式进行监控。下面概述了这方面的一些关键细节,但简而言之:虽然 节点之间 的 IPFS 流量是加密的,但这些节点发布到 DHT 的元数据是公开的。节点宣布对 DHT 功能至关重要的各种信息——包括它们的唯一节点标识符 (PeerID) 和它们提供的数据的 CID——因此,关于哪些节点正在检索和/或重新提供哪些 CID 的信息是公开的可用的。

加密

网络中有两种类型的加密: 传输加密 和 内容加密 。

在两方之间发送数据时使用传输加密。阿尔伯特加密文件并将其发送给莱卡,莱卡在收到文件后对其进行解密。这会阻止第三方在数据从一个地方移动到另一个地方时查看数据。

内容加密用于保护数据,直到有人需要访问它。Albert 为他的每月预算创建了一个电子表格,并用密码保存它。当 Albert 需要再次访问它时,他必须输入密码才能解密文件。没有密码,Laika 无法查看该文件。

IPFS 使用传输加密,但不使用内容加密。这意味着您的数据在从一个 IPFS 节点发送到另一个节点时是安全的。但是,如果拥有 CID,任何人都可以下载和查看该数据。缺乏内容加密是一个有意的决定。您可以自由选择最适合您的项目的方法,而不是强迫您使用特定的加密协议。

如果您精通命令行并且只想立即启动并运行 IPFS,请遵循此快速入门指南。请注意,本指南假定您将安装 go-ipfs,这是用 Go 编写的参考实现。

ipfs将其所有设置和内部数据存储在称为 存储库的目录中。 在第一次使用 IPFS 之前,您需要使用以下ipfs init命令初始化存储库:

如果您在数据中心的服务器上运行,则应使用server配置文件初始化 IPFS。这样做会阻止 IPFS 创建大量数据中心内部流量来尝试发现本地节点:

您可能需要设置大量其他配置选项 — 查看完整参考 (打开新窗口)更多。

后面的散列peer identity:是您节点的 ID,与上面输出中显示的不同。网络上的其他节点使用它来查找并连接到您。如果需要,您可以随时运行ipfs id以再次获取它。

现在,尝试运行在ipfs init 那个样子ipfs cat /ipfs/ /readme。

您应该看到如下内容:

您可以 探索 存储库中的其他对象。特别是quick-start显示示例命令尝试的目录:

准备好将节点加入公共网络后,在另一个终端中运行 ipfs 守护程序,并等待以下所有三行显示您的节点已准备好:

记下您收到的 TCP 端口。如果它们不同,请在下面的命令中使用您的。

现在,切换回原来的终端。如果您已连接到网络,您应该能够在运行时看到对等方的 IPFS 地址:

这些是 /p2p/

现在,您应该能够从网络中获取对象了。尝试:

使用上述命令,IPFS 在网络中搜索 CIDQmSgv并将数据写入spaceship-launchjpg桌面上调用的文件中。

接下来,尝试将对象发送到网络,然后在您喜欢的浏览器中查看它。以下示例curl用作浏览器,但您也可以在其他浏览器中打开 IPFS URL:

您可以通过转到 来查看本地节点上的 Web 控制台localhost:5001/webui。这应该会d出一个这样的控制台:

Web 控制台显示可变文件系统 (MFS)中的文件。MFS 是内置于 Web 控制台的工具,可帮助您以与基于名称的文件系统相同的方式导航 IPFS 文件。

当您使用CLI 命令ipfs add 添加文件时,这些文件不会自动在 MFS 中可用。要查看您使用 CLI 添加的 IPFS 桌面中的文件,您必须将文件复制到 MFS:

—END—

开源协议:MIT License

开源地址:>

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13060544.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-30
下一篇 2023-05-30

发表评论

登录后才能评论

评论列表(0条)

保存