生活中:1智慧物流2智慧交通3智能安全4智慧能源与环境保护
学习中:
1信息教学
利用物联网的意义建立无所不在的学习环境。智能标签可以用来识别需要学习的对象,并且可以根据学生的学习行为记录来调整学习内容。2教育管理
物联网可用于人员出勤,图书馆管理,设备管理等教育管理中。3智慧校园
控制物联网的智能教学环境还可以用于校园交通管理,车辆管理,校园安全,师生健康,智能建筑,学生生活服务等校园领域。
生活中:
1智慧物流
目前物联网领域的应用主要体现在仓储、运输监控、快递终端三个方面。
2智慧交通
物联网技术的具体应用领域包括智能公交、自行车共享、车联网、充电桩监控、智能交通灯和智能停车。
3智能安全
目前智能安防的核心部分在于智能安防系统,将采集到的图像进行分析处理,并进行传输存储。
4智慧能源与环境保护
物联网应用主要集中在电、气、水、路灯等能源和公共设施,以及垃圾桶、井盖等环保设备。
物联网(IOT)是指通过各种信息传感器、全球定位系统、射频识别技术、红外传感器、激光扫描仪等设备和技术,实时采集任何需要监控、连接和交互的物体或过程,以及声、热、电、光、化学、力学、生物、位置等各种需要的信息的采集。院校专业:
基本学制:四年 | 招生对象: | 学历:中专 | 专业代码:080905
培养目标
培养目标
培养目标:本专业培养德、智、体等方面全面发展,掌握数学和其他相关的自然科学基础知识 以及和物联网相关的计算机、通信和传感的基本理论、基本知识、基本技能和基本方法,具有较强 的专业能力和良好外语运用能力,能胜任物联网相关技术的研发及物联网应用系统规划、分析、 设计、开发、部署、运行维护等工作的高级工程技术人才。
培养要求:
1.掌握马列主义、毛泽东思想与中国特色社会主义基本理论,具有良好的人文社会科学素 养、职业道德和心理素质,社会责任感强;
2.掌握从事本专业工作所需的数学等相关的自然科学知识以及一定的经济学、管理学和工 程科学知识;
3.系统掌握物联网专业基础理论知识和专业知识,理解基本概念、知识结构、典型方法,理 解物理世界与数字世界的关联,具有感知、传输、处理一体化的核心专业意识;
4.掌握物联网技术的基本思维方法和研究方法,具有良好的科学素养和一定的工程意识, 并具备综合运用掌握的知识、方法和技术解决实际问题的能力;
5.具有终身学习意识以及运用现代信息技术获取相关信息和新技术、新知识的能力;
6.了解物联网的发展现状和趋势,具有技术创新和产品创新的初步能力;
7.了解与本专业相关的职业和行业的重要法律法规及方针政策,理解工程技术伦理的基本 要求;
8.具有一定的组织管理能力、表达能力、独立工作能力、人际交往能力和团队合作能力;
9.具有初步的外语应用能力,能阅读本专业的外文材料,具有一定的国际视野和跨文化交 流、竞争与合作能力;
10掌握体育运动的一般知识和基本方法,形成良好的体育锻炼习惯。
主干学科:计算机科学与技术、电子科学与技术、通信工程。
核心知识领域:物联网技术体系、标识与感知、物联网通信、物联网数据处理、物联网控制、物 联网信息安全、物联网工程设计与实施等。
核心课程示例(括号内理论学时+实验或习题课学时):
示例一:物联网工程导论(18学时)、物联网通信技术(45 +18学时)、RFID原理及应用(45+ 18学时)、传感器原理及应用(45 +18学时)、传感网原理及应用(45 +18学时)、物联网软件设计 (27 +18学时)、物联网数据处理(54学时)、物联网中间件设计(27 +18学时)、物联网应用系统 设计(54学时)、嵌入式系统与设计(45 +18学时)、传感器微 *** 作系统原理与设计(36+36学 时)、物联网控制原理与技术(45 +18学时)、物联网定位技术(45 +18学时)、物联网信息安全 (45 +18学时)、物联网工程规划与设计(36学时)、计算机网络(54学时)。
示例二:物联网工程概论(30学时)、物联网算法基础(60 +15学时)、物联网硬件基础(60+ 15学时)、传感网与微 *** 作系统(45 +15学时)、物联网安全与隐私(30学时)、无线单片机与协议 开发(60+15学时)、JAVA语言程序设计(30 +15学时)、物联网移动应用开发(20 +10学时)、物 流管理信息系统(30+15学时)、RFID系统(30学时)、物联网嵌入式系统开发(20 +10学时)、多 传感器数据融合技术(60学时)、云计算(30学时)、物联网与智慧思维(30学时)、移动人机交互 技术(30学时)、社会计算(30学时)。
示例三:物联网工程导论(18学时)、物联网体系结构(40学时)、传感器原理及应用( 36+10 学时)、物联网数据处理(40+10学时)、嵌入式系统原理(40 +12学时)、物联网工程规划与设计 (40+10学时)、物联网应用系统设计(50学时)、物联网通信技术(40 +14学时)、RFID与智能卡 技术(40+10学时)、物联网控制技术与应用(40+14学时)、物联网信息安全(40 +14学时)、传感 器网络及应用(40 +14学时)、网络规划与设计(40 +14学时)、数据仓库与数据挖掘(40+10学 时)、信息系统分析与集成(40+14学时)、软件集成与服务计算(40+10学时)。
主要实践性教学环节:课程实验、课程设计、专业实习、毕业设计(论文)。
主要专业实验:传感器实验、传感网实验、物联网通信实验、物联网数据处理实验、物联网工 程规划与设计实验。
修业年限:四年。
授予学位:工学学士。
职业能力要求
职业能力要求
专业教学主要内容
专业教学主要内容
《嵌入式原理及应用》、《无线传感器网络》、《汇编语言与微机原理》、《传感器微 *** 作系统原理与设计》、《应用密码学》、《光电子物理基础》、《模拟电子技术》、《数字建模》、《微处理器系统设计》、《物联网信息处理技术》 部分高校按以下专业方向培养:电商物联网、移动嵌入式、智能机器人、物联网大数据采集与分析。
专业(技能)方向
专业(技能)方向
IT类企业:物联网工程、物联网系统设计架构、物联网应用系统开发、物理网系统管理、网络应用系统管理、物联网设备技术支持、云计算。
职业资格证书举例
职业资格证书举例
继续学习专业举例
就业方向
就业方向
物联网专业就业前景
目前,教育部审批设置的高等学校战略性新兴产业本科专业中有“物联网工程”、“传感网技术”和“智能电网信息工程”三个与物联网技术相关的专业。此三个专业从2011年才开始首次招生,目前为止还没有毕业生,所以,无法从往年的就业率来判断未来的就业情况,但可从行业的整体发展趋势和人才市场的需求等方面了解该专业未来的就业形势。
作为国家倡导的新兴战略性产业,物联网备受各界重视,并成为就业前景广阔的热门领域,使得物联网成为各家高校争相申请的一个新专业,主要就业于与物联网相关的企业、行业,从事物联网的通信架构、网络协议和标准、无线传感器、信息安全等的设计、开发、管理与维护,也可在高校或科研机构从事科研和教学工作。未来的物联网技术要得到发展,需要在信息收集、改进、芯片推广、程序算法设计等方面有所突破,而做到这些的关键是如何培养人才。柏斯维也指出,从整体来看,物联网行业是非常需要人才。
对应职业(岗位)
对应职业(岗位)
其他信息:物联网工程专业学习的课程主要涉及基础类课程和专业类课程。基础类课程主要包括程序设计、数据结构、计算机组成、 *** 作系统、计算机网络、信息管理,这些课程涉及专业需要掌握的核心概念、基本原理以及相关的基本技术和方法,以此让学生了解学科发展历史和现状。专业类课程主要有电路与电子技术、标识与感知、物联网通信、物联网数据处理、物联网控制、物联网信息安全、物联网工程设计与实施知识领域的基本内容。
材料补充:
物联网工程专业是一门普通高等学校本科专业,属于计算机类专业,基本修业年限为四年,授予工学学士学位。该专业要求掌握数学和其他相关的自然科学基础知识以及和物联网相关的计算机、通信和传感的基本理论、基本知识、基本技能和基本方法,培养能够系统地掌握物联网的相关理论、方法和技能,具备通信技术、网络技术、传感技术信息领域宽广的专业知识的高级工程技术人才。
物联网是继计算机、互联网之后的又一信息化时代的变革,它通过智能感知、识别技术与普适计算等通信感知技术,应用在网络与实物的融合中。物联网里面的应用就更广泛智慧工业,智慧农业,智慧城市,智慧医疗,这些都是和大数据,云计算结合在一起的,人工智能也是其中的一部分。那么,什么是人工智能物联网(AloT)?
AIoT(人工智能物联网)=AI(人工智能)+IoT(物联网)。AIoT融合AI技术和IoT技术,通过物联网产生、收集海量的数据存储于云端、边缘端,再通过大数据分析,以及更高形式的人工智能,实现万物数据化、万物智联化,物联网技术与人工智能追求的是一个智能化生态体系,除了技术上需要不断革新,技术的落地与应用更是现阶段物联网与人工智能领域亟待突破的核心问题。
简而言之,就是人工智能技术与物联网在实际应用中的合理融合实现效益最大化。
那么,人工智能和物联网又有什么区别呢?
人工智能和物联网两者的区别,大可不必去研究谁占据主导地位。与其说两者有什么区别,不如说是两者其实是相辅相成,相互联系的“共同体”。只有它们同时使用,才能实现人工智能和物联网最大优势。而且根据数据显示,在不久的将来,物联网技术将无处不在,我们很难再找到没有连接互联网的设备。
人工智能和物联网的是怎么结合在一起应用在现实生活中的?
1、无人机交通监控
我们的城市道路随着不断发展的同时,交通堵塞问题也每况愈下。因此使用实时资料来监控和改变交通流量,可以显著提高效率并改善塞车的情况。透过智慧路灯的架设,在每个路段监测流量并且及时调整交通号志,或者透过无人机作为机动性的更高的部署选择,并且可以监测更大范围的地区,利用智慧实时搜集信息,然后送交附近的装置进行分析。虽然物联网装置具有更强大的计算能力,但网络频宽仍然受到限制。而目前正在进行的5G基础建设,则可以有效地解决资料传输延迟问题,大幅提升实时分析,以满足智慧物联网工作负载的要求。
2、特斯拉智能汽车
特斯拉很好地应用了众多传感器、GPS和摄像头来开发的自动驾驶技术。特斯拉汽车通过物联网嵌入式传感器和人工智能应用来学习智能交通行为,以实现360度自动驾驶汽车。而这一项技术还有一个值得提的点是,所有特斯拉汽车都可以通过智能控制设备相互交流。此外,它还有助于提高每个单元的性能。
3、智能家居
智能家居行业,作为AIoT人机交互最重要的落地场景,正吸引越来越多企业进入。过去的家电就是一个功能机时代,就像以前的手机按键式的,帮你把温度降下来,帮你实现食物的冷藏;现在的家电实现了单机智能,就是语音或手机APP的遥控去实现调温度、打开风扇等等。基于互联智能的构想,未来的AIoT时代,每个设备都需要具备一定的感知(如预处理)、推断以及决策功能。因此,每个设备端都需要具备一定不依赖于云端的独立计算能力,即上面提到的边缘计算。
有相关言论称,在未来量子计算可能在人工智能方面发挥重要的积极作用。因为经典的人工智能不管发展到什么程度,我们仍然觉得这是一部机器,是一个机器人,它不可能完全像人类大脑一样去思考。而量子力学把观测者的意识与物质的演化结合起来,所以有些科学家会猜测,人类大脑的运行机制可能和量子计算机有一些相通之处。随着量子计算的发展,也许可以帮助我们更好地理解人类的智慧。总而言之,无论是AI,还是物联网,都离不开一个关键词——数据。数据是万物互联、人机交互的基础。AI的介入让IoT有了连接的“大脑”。同样,归功于当前存储技术发展,让数据有了基本的“后勤保障”。云服务的快速扩张,则让数据有了发挥价值的物质基础。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)