四川阿凡可可物联网科技有限公司怎么样?

四川阿凡可可物联网科技有限公司怎么样?,第1张

简介:四川阿凡可可物联网科技有限公司是一家基于大数据、云计算的物联网科技公司,公司发展始于中国气都四川达州。阿凡可可科技是一家国内快速成长的物联网企业,目的打造国内领先的物联网信息技术服务平台,智能物联网平台,提供物接入、时序数据库、机器学习、传感设备等一系列物联网核心产品和服务,帮助开发者快速实现从设备端到服务端的无缝连接,高效构建各种物联网应用(如数据采集、信息安全等)。通过持续技术创新和不断积累行业经验,阿凡可可将成为国内物联网行业的智能物联网平台,在工业制造、能源、信息安全、车联网、物流、智能家居等行业提供完整的解决方案。同时,阿凡可可科技作为国内新锐基于大数据、云计算及软件开发的互联网公司,旨在为各个领域提供高品质的互联网策划、技术和营销媒介,为中小企业提供网站建设、应用程序开发,相关技术研发等业务。公司自营WD校园网、Freeworks、SmartInfo云社区、VRdogs智能等项目。阿凡可可科技旨在通过对当下信息科技技术的不断探索,不断向更先进的科技领域迈进。
法定代表人:宋卓
成立时间:2016-09-19
注册资本:100万人民币
工商注册号:511721000088833
企业类型:有限责任公司(自然人独资)
公司地址:达州市达川区翠屏街道民康巷65号附2号市开发总公司13幢2-2号

大概六年前,在为ZDNet撰写文章时,我们曾经认真思考过一个问题:MongoDB未来要走向何方?随着时间推移,答案已经逐渐浮出水面:要让数据库更具可扩展性,支持开发者编写好的各种应用程序。为此,MongoDB增加了原生搜索功能,以支持内容管理;物联网用例也获得了时序数据支持;另外还有变更流,可帮助电商应用快速预测出下一最佳行动。

顺带一说,MongoDB的客户还需要一种能够与开发工具良好匹配、易于上手的云解决方案。 结果就是Atlas,这项托管云服务目前占MongoDB整体业务的60%。

但平心而论,与大多数其他 *** 作型数据库一样,MongoDB直到最近才刚刚得到重视。毕竟大家可能很难想象要在一套 *** 作型数据库中,执行涵盖多个表(或文档集合)的复杂查询。


1

为什么要引入分析?


大多数 *** 作型应用程序的共同之处是一旦添加了分析功能,其实用性将马上飞升。例如,分析可以帮助 汽车 制造商增强预防性维护,医疗保健服务商能够确定最佳护理方案,电子商务或 游戏 厂商则可以改善客户交互、防止客户流失。这些出于决策优化而设计出的分析功能,是对 *** 作型数据库的良好补充。

把分析跟交易型数据库联系起来绝不是什么新鲜想法,HTAP、translytical或增强型交易数据库都是分析厂商们拿出的相应成果。

云原生提出的计算与存储彼此分离的理念,则让我们有了另一个在不影响性能或吞吐量的情况下、将 *** 作数据处理与分析加以结合的好机会。 最近亮相的Oracle MySQL HeatWaev和谷歌AlloyDB,正是大厂在这个方向上的积极尝试。

大多数此类混合数据库都会使用专为分析而设计的柱状表,对传统行存储进行补充。顺带一提,它们也都使用相同的常见关系数据结构,确保转换更加简便易行。与之对应,如果引入包含分层和嵌套数据结构的文档模型,那么转译过程往往会更加困难。

那么,MongoDB是不是也该拥有自己的分析功能?这还是要看我们如何定义“分析”。如前所述,如果我们向交易中引入智能化 *** 作分析,那么应用程序的实用性将大大增强。所以只要把范围设定在快速决策分析,而非复杂的分析建模,那么答案就是肯定的。


2

无法一蹴而就的事业


MongoDB已经开始尝试支持分析功能。它从可视化开始,着手提供自己的图表功能与商务智能(BI)连接器,现在的MongoDB在Tableaus与Qliks端看来已经几乎与MySQL无异。虽然一图胜万言,但对于分析来说,可视化还只是万里长征第一步。MongoDB尽管能提供趋势快照,但还无法进一步实现数据关联(往往涉及更复杂的查询),也无法完全回答“为什么”会出现哪些状况。

MongoDB决心已定,开始通过分析提升自身竞争力。但在这个分析复杂度愈发高企的时代,它显然无法取代Snowflake、Redshift、Databricks或者其他专业分析方案。 但MongoDB分析面向的也并非数据分析师,而是应用程序开发者。 回到 *** 作型数据库的首要原则——尽量别把它,跟需要高度复杂的连接及/或高并发查询扯在一起。只要能让开发者构建起更好的应用程序,MongoDB就算是成功了。

Atlas能够灵活预留专门的分析节点。MongoDB也将在不久后,全面允许客户在更适合分析的节点上选择不同的计算实例。这些节点将提供在线数据复制功能,借此实现近实时分析。

但这还只是第一步:由于Atlas可运行在多种云环境上,因此客户还可以选择更多其他实例。不过大家无需担心,MongoDB未来将推出规范性指南,同时提供机器学习方案帮助大家自动选择最适应工作负载的实例类型。

对分析的尝试当然不可能止步于此,去年预览发布的Atlas Serverless将于本周推出正式版。刚刚起步的分析自然也将成为受益者,因为分析类工作负载一般与交易事务不同、突发峰值往往更多。


3

有没有可能对接SQL?


其实引入SQL的想法在MongoDB发展早期一直备受反对,当时有声音认为MongoDB永远不该成为关系数据库。但是,理性终将战胜情绪。

本周,MongoDB引入了新的Atlas SQL接口,可用于读取Atlas数据。这是一种全新结构,采用不同于BI连接器的通道。Atlas SQL将是MongoDB为数据提供SQL接口的第一次真正尝试,其思路绝不是简单把JSON扁平化以使其在Tableau中看起来像MySQL,而是提供更加精细的视图、反映JSON文档架构的丰富性。

但SQL接口编写工作不可能一蹴而就,所以预计Atlas SQL将在未来几年内逐渐发展完善。 毕竟要想与各类SQL工具(不止是可视化)实现全面集成,MongoDB还得在丰富的数据仓库选项上多下工夫。 我们还希望看到对upserts等 *** 作的支持,分析平台没有了这些核心功能,就相当于分析表中失去了行插入功能。

与Atlas SQL接口一同推出预览版的全新列存储索引,则意在提高分析查询的性能水平。同样的,这还仅仅只是开始。例如,MongoDB用户目前仍需要手动设置列存储索引、指定字段。但从长远来看,我们可以通过分析访问模式来实现自动化。设想一下:后续我们可以丰富元数据以分析字段基数,添加Bloom过滤器以进一步优化扫描功能,也可以继续完善查询计划器。

接下来是Atlas Data Lake,负责为云对象存储中的JSON文档提供联合视图。Atlas Data Lake在改造完成后,将针对多个Atlas集群和云对象存储提供更多的通用联合查询功能。新的存储层会自动将Atlas集群数据集提取到云对象存储和内部技术目录 (并非Alation)组合当中,借此加快分析查询。


4

以人为本


长期以来,MongoDB一直是开发者们最喜欢的数据库之一。 这是因为开发者热爱JavaScript和JSON,目前JS在Tiobe人气指数中排名第七。而JavaScript、JSON和文档模型将是MongoDB的永恒主题。但很遗憾,由于MongoDB此前一直刻意回避SQL,所以也就失去了相应的庞大人才库——SQL开发者同样体量庞大,让这一查询语言在人气指数中位列第九。现在,是时候做出改变了。

虽然MongoDB仍然认为文档模型优于、并有望取代关系模型(只是一家之言),但相信大家都认同一点:为了进一步扩大影响范围,MongoDB必须接纳那些以往被忽略的受众群体。要想双赢,两大阵营应该团结一致、实现简化;对于某些 *** 作用例,我们不必将数据移动并转移至独立的数据仓库目标,而是简化为在统一平台内 *** 作,最终将数据提取转化为更简单的数据复制。


5

意不在取代数据仓库、数据湖或智能湖仓


MongoDB绝不是要取代独立的数据仓库、数据湖或智能湖仓。目前复杂建模与发现已经成为分析工作中的重要组成部分,所以必须与 *** 作型系统分别执行。 更重要的是,在 *** 作型数据库中支持分析,最大的意义其实是实现流程内联并尽可能实时化。

换言之,MongoDB将由此实现与Snowflakes或者Databricks的全面协同。大家可以在数据仓库、数据湖或智能湖仓中开发用于识别异常值的模型,再将结果整理为一个相对简单、易于处理的分类、预测或规范模型。这样只要交易中出现异常,该模型就会被自动触发。

如今,在MongoDB中实现这样的闭环流程已经颇具可行性,但具体方法仍然非常复杂。大家需要将MongoDB中的变更流、触发器和函数拼凑起来,共同组织成某种封闭式的分析反馈循环。 相信在不久的将来,MongoDB将把这些复杂性要素隐藏在后台,直接提供简单易用的闭环与近实时分析选项。 这绝不是凭空想象,而是技术发展趋势的必然结果。如今,MongoDB已经踏上了这段分析 探索 之旅,我们也期待着它能早传捷报。

(一)加快技术研发,突破产业瓶颈。以掌握原理实现突破性技术创新为目标,把握技术发展方向,围绕应用和产业急需,明确发展重点,加强低成本、低功耗、高精度、高可靠、智能化传感器的研发与产业化,着力突破物联网核心芯片、软件、仪器仪表等基础共性技术,加快传感器网络、智能终端、大数据处理、智能分析、服务集成等关键技术研发创新,推进物联网与新一代移动通信、云计算、下一代互联网、卫星通信等技术的融合发展。充分利用和整合现有创新资源,形成一批物联网技术研发实验室、工程中心、企业技术中心,促进应用单位与相关技术、产品和服务提供商的合作,加强协同攻关,突破产业发展瓶颈。
(二)推动应用示范,促进经济发展。对工业、农业、商贸流通、节能环保、安全生产等重要领域和交通、能源、水利等重要基础设施,围绕生产制造、商贸流通、物流配送和经营管理流程,推动物联网技术的集成应用,抓好一批效果突出、带动性强、关联度高的典型应用示范工程。积极利用物联网技术改造传统产业,推进精细化管理和科学决策,提升生产和运行效率,推进节能减排,保障安全生产,创新发展模式,促进产业升级。
(三)改善社会管理,提升公共服务。在公共安全、社会保障、医疗卫生、城市管理、民生服务等领域,围绕管理模式和服务模式创新,实施物联网典型应用示范工程,构建更加便捷高效和安全可靠的智能化社会管理和公共服务体系。发挥物联网技术优势,促进社会管理和公共服务信息化,扩展和延伸服务范围,提升管理和服务水平,提高人民生活质量。
(四)突出区域特色,科学有序发展。引导和督促地方根据自身条件合理确定物联网发展定位,结合科研能力、应用基础、产业园区等特点和优势,科学谋划,因地制宜,有序推进物联网发展,信息化和信息产业基础较好的地区要强化物联网技术研发、产业化及示范应用,信息化和信息产业基础较弱的地区侧重推广成熟的物联网应用。加快推进无锡国家传感网创新示范区建设。应用物联网等新一代信息技术建设智慧城市,要加强统筹、注重效果、突出特色。
(五)加强总体设计,完善标准体系。强化统筹协作,依托跨部门、跨行业的标准化协作机制,协调推进物联网标准体系建设。按照急用先立、共性先立原则,加快编码标识、接口、数据、信息安全等基础共性标准、关键技术标准和重点应用标准的研究制定。推动军民融合标准化工作,开展军民通用标准研制。鼓励和支持国内机构积极参与国际标准化工作,提升自主技术标准的国际话语权。
(六)壮大核心产业,提高支撑能力。加快物联网关键核心产业发展,提升感知识别制造产业发展水平,构建完善的物联网通信网络制造及服务产业链,发展物联网应用及软件等相关产业。大力培育具有国际竞争力的物联网骨干企业,积极发展创新型中小企业,建设特色产业基地和产业园区,不断完善产业公共服务体系,形成具有较强竞争力的物联网产业集群。强化产业培育与应用示范的结合,鼓励和支持设备制造、软件开发、服务集成等企业及科研单位参与应用示范工程建设。
(七)创新商业模式,培育新兴业态。积极探索物联网产业链上下游协作共赢的新型商业模式。大力支持企业发展有利于扩大市场需求的物联网专业服务和增值服务,推进应用服务的市场化,带动服务外包产业发展,培育新兴服务产业。鼓励和支持电信运营、信息服务、系统集成等企业参与物联网应用示范工程的运营和推广。
(八)加强防护管理,保障信息安全。提高物联网信息安全管理与数据保护水平,加强信息安全技术的研发,推进信息安全保障体系建设,建立健全监督、检查和安全评估机制,有效保障物联网信息采集、传输、处理、应用等各环节的安全可控。涉及国家公共安全和基础设施的重要物联网应用,其系统解决方案、核心设备以及运营服务必须立足于安全可控。
(九)强化资源整合,促进协同共享。充分利用现有公共通信和网络基础设施开展物联网应用。促进信息系统间的互联互通、资源共享和业务协同,避免形成新的信息孤岛。重视信息资源的智能分析和综合利用,避免重数据采集、轻数据处理和综合应用。加强对物联网建设项目的投资效益分析和风险评估,避免重复建设和不合理投资。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13093124.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-30
下一篇 2023-05-30

发表评论

登录后才能评论

评论列表(0条)

保存