边缘计算网关是什么,有哪些功能呢?

边缘计算网关是什么,有哪些功能呢?,第1张

TG452边缘计算网关拥有强劲的边缘计算能力,分担部署在云端的计算资源,在物联网边缘节点实现数据优化、实时响应、敏捷连接、模型分析等业务,使AI时代下的数字化物联网更进一步。

边缘计算网关功能

1、具备超强边缘计算能力

如何让数据能够低成本且高效地传输到云或者远程终端,意义重大。

而具备了超强边缘计算能力的物联网网关,通过数据处理权限的下放,就近处理。不需要担心远程通信传输不畅通的问题,与普通物联网网关相关有着巨大的功能优势。

2、兼容多平台接入及设备主流协议

支持包括阿里云/华为云/微软/亚马逊/施耐德/西门子等平台接入;兼容多种设备主流工业实时以太网协议和工业总线协议,如Modbus tcp/rtu、profinet、 profibus-dp、opc ua等协议。

宏桥智慧云盒,即边缘计算物联网网关,是智慧灯杆发挥城市物联感知能力的核心组件。在智慧灯杆中装入智慧云盒,能够在智慧灯杆附近俯视范围内的地面及地下,建立小型物联网络,将各类智能硬件设备串联,采集智能终端设备的各类数据,并将数据传输到智慧物联网管理平台。智慧云盒串联智慧灯杆上挂载的智能设备,解析不同硬件协议,形成统一的信息传输通道;“云盒”集成无线通讯模组,可以打造以智慧灯杆为中心的区域物联感知;每一个智慧“云盒”都有一个唯一的设备编码,是智慧灯杆在物联网管理平台上面的设备“IP”便于打造智慧灯杆和物联感知设备的地理网格,打造全域物联感知。宏桥智慧“云盒”具备强大算力,可以打造智慧灯杆的边缘计算能力。具备边缘计算的智慧灯杆,可以理解成遍布城市各个角落的特殊的“机器人”。智慧灯杆具备智能设备的联动策略执行能力,感知设备与执行设备可以自行联动,自动执行联动策略;宏桥智慧“云盒”同时具备视频识别能力,智慧灯杆更是一台敏捷的监控机器人,解决非结构化视频数据的分析效率和资源瓶颈问题。

1高效分布式
必须是高效的分布式系统。物联网产生的数据量巨大,仅中国而言,就有5亿多台智能电表,每台电表每隔15分钟采集一次数据,一天全国智能电表就会产生500多亿条记录。这么大的数据量,任何一台服务器都无能力处理,因此处理系统必须是分布式的,水平扩展的。为降低成本,一个节点的处理性能必须是高效的,需要支持数据的快速写入和快速查询。
2实时处理
必须是实时处理的系统。互联网大数据处理,大家所熟悉的场景是用户画像、推荐系统、舆情分析等等,这些场景并不需要什么实时性,批处理即可。但是对于物联网场景,需要基于采集的数据做实时预警、决策,延时要控制在秒级以内。如果计算没有实时性,物联网的商业价值就大打折扣。
3高可靠性
需要运营商级别的高可靠服务。物联网系统对接的往往是生产、经营系统,如果数据处理系统宕机,直接导致停产,产生经济有损失、导致对终端消费者的服务无法正常提供。比如智能电表,如果系统出问题,直接导致的是千家万户无法正常用电。因此物联网大数据系统必须是高可靠的,必须支持数据实时备份,必须支持异地容灾,必须支持软件、硬件在线升级,必须支持在线IDC机房迁移,否则服务一定有被中断的可能。
4高效缓存
需要高效的缓存功能。绝大部分场景,都需要能快速获取设备当前状态或其他信息,用以报警、大屏展示或其他。系统需要提供一高效机制,让用户可以获取全部、或符合过滤条件的部分设备的最新状态。
5实时流式计算
需要实时流式计算。各种实时预警或预测已经不是简单的基于某一个阈值进行,而是需要通过将一个或多个设备产生的数据流进行实时聚合计算,不只是基于一个时间点、而是基于一个时间窗口进行计算。不仅如此,计算的需求也相当复杂,因场景而异,应容许用户自定义函数进行计算。
6数据订阅
需要支持数据订阅。与通用大数据平台比较一致,同一组数据往往有很多应用都需要,因此系统应该提供订阅功能,只要有新的数据更新,就应该实时提醒应用。而且这个订阅也应该是个性化的,容许应用设置过滤条件,比如只订阅某个物理量五分钟的平均值。
7和历史数据处理合二为一
实时数据和历史数据的处理要合二为一。实时数据在缓存里,历史数据在持久化存储介质里,而且可能依据时长,保留在不同存储介质里。系统应该隐藏背后的存储,给用户和应用呈现的是同一个接口和界面。无论是访问新采集的数据还是十年前的老数据,除输入的时间参数不同之外,其余应该是一样的。
8数据持续稳定写入
需要保证数据能持续稳定写入。对于物联网系统,数据流量往往是平稳的,因此数据写入所需要的资源往往是可以估算的。但是变化的是查询、分析,特别是即席查询,有可能耗费很大的系统资源,不可控。因此系统必须保证分配足够的资源以确保数据能够写入系统而不被丢失。准确的说,系统必须是一个写优先系统。
9数据多维度分析
需要对数据支持灵活的多维度分析。对于联网设备产生的数据,需要进行各种维度的统计分析,比如从设备所处的地域进行分析,从设备的型号、供应商进行分析,从设备所使用的人员进行分析等等。而且这些维度的分析是无法事先想好的,而是在实际运营过程中,根据业务发展的需求定下来的。因此物联网大数据系统需要一个灵活的机制增加某个维度的分析。
10支持数据计算
需要支持数据降频、插值、特殊函数计算等 *** 作。原始数据的采集可能频次挺高,但具体分析时,往往不需要对原始收据进行,而是数据降频之后。系统需要提供高效的数据降频 *** 作。设备是很难同步的,不同设备采集数据的时间点是很难对齐的,因此分析一个特定时间点的值,往往需要插值才能解决,系统需要提供线性插值、设置固定值等多种插值策略才行。工业互联网里,除通用的统计 *** 作之外,往往还需要支持一些特殊函数,比如时间加权平均。
11即席分析和查询
需要支持即席分析和查询。为提高大数据分析师的工作效率,系统应该提供一命令行工具或容许用户通过其他工具,执行SQL查询,而不是非要通过编程接口。查询分析的结果可以很方便的导出,再制作成各种图标。
12灵活数据管理策略
需要提供灵活的数据管理策略。一个大的系统,采集的数据种类繁多,而且除采集的原始数据外,还有大量的衍生数据。这些数据各自有不同的特点,有的采集频次高,有的要求保留时间长,有的需要多个副本以保证更高的安全性,有的需要能快速访问。因此物联网大数据平台必须提供多种策略,让用户可以根据特点进行选择和配置,而且各种策略并存。
13开放的系统
必须是开放的。系统需要支持业界流行的标准SQL,提供各种语言开发接口,包括C/C++,Java,Go,Python,RESTful等等,也需要支持Spark,R,Matlab等等,方便集成各种机器学习、人工智能算法或其他应用,让大数据处理平台能够不断扩展,而不是成为一个孤岛。
14支持异构环境
系统必须支持异构环境。大数据平台的搭建是一个长期的工作,每个批次采购的服务器和存储设备都会不一样,系统必须支持各种档次、各种不同配置的服务器和存储设备并存。
15支持边云协同
需要支持边云协同。要有一套灵活的机制将边缘计算节点的数据上传到云端,根据具体需要,可以将原始数据,或加工计算后的数据,或仅仅符合过滤条件的数据同步到云端,而且随时可以取消,更改策略。

作者 | 网络大数据

来源 | raincent_com

随着物联网的演变和发展,所有可以想象到的东西(或事物)和产业都将变得更加智能:智能家居和智慧城市、智能制造机械、智能汽车、智能健康等等。无数被授权收集和交换数据的东西正在形成一个全新的网络——物联网——一个可以在云中收集数据、传输数据和完成用户任务的物理对象网络。

物联网和大数据正在走向胜利之路。不过,要想从这一创新中获益,还需要解决一些挑战和问题。在本文中,我们很高兴与大家分享多年来在物联网咨询领域积累的知识。

物联网大数据如何应用

首先,有多种方法可以从物联网大数据中获益:在某些情况下,通过快速分析就足够了,而一些有价值的见解只有在经过深入的数据处理之后才能获得。

实时监测。通过连网设备收集的数据可以用于实时 *** 作:测量家中或办公室的温度、跟踪身体活动(计算步数、监测运动)等;实时监测在医疗保健中被广泛应用(例如,获取心率、测量血压、糖分等);它还成功地应用于制造业(用于控制生产设备)、农业(用于监测牛和作物)和其他行业。

数据分析。在处理物联网生成的大数据时,我们有机会超越监测,并从这些数据中获得有价值的见解:识别趋势,揭示看不见的模式并找到隐藏的信息和相关性。

流程控制和优化。来自传感器的数据提供了额外的上下文情境信息,以揭示影响性能和优化流程的重要问题。

▲交通管理:跟踪不同日期和时间的交通负荷,以制定出针对交通优化的建议,例如,在特定时间段增加公共汽车的数量,看看是否有改观,以及建议引入新的交通信号灯方案和修建新的道路,以减少街道的交通拥堵状况。

▲零售:跟踪超市货架中商品的销售情况,并在商品快卖完之前及时通知工作人员补货。

▲农业:根据传感器的数据,在必要时给作物浇水。

预测性维护。通过连网设备收集的数据可以成为预测风险、主动识别潜在危险状况的可靠来源,例如:

▲医疗保健:监测患者健康状态并识别风险(例如,哪些患者有糖尿病、心脏病发作的风险),以便及时采取措施。

▲制造业:预测设备故障,以便在故障发生之前及时解决。

还应注意的是,并非所有的物联网解决方案都需要大数据(例如,如果智能家居拥有者要借助智能手机来关灯,则可以在没有大数据的情况下执行此 *** 作)。重要的是要考虑减少处理动态数据的工作量,并避免存储将来没有用处的大量数据。

物联网中的大数据挑战

除非处理大量数据以获取有价值的见解,否则这些数据完全没用。此外,在数据收集、处理和存储方面还有各种挑战。

▲数据可靠性。虽然大数据永远不会100%准确,但在分析数据之前,请务必确保传感器工作正常,并且用于分析的数据质量可靠,且不会因各种因素(例如,机器运行的不利环境、传感器故障)而损坏。

▲要存储哪些数据。连网设备会产生万亿字节的数据,选择存储哪些数据和删除哪些数据是一项艰巨的任务。更重要的是,一些数据的价值还远远没有显现出来,但将来您可能需要这些数据。如果您决定为将来存储数据,那么面临的挑战就是以最小的成本做到这一点。

▲分析深度。一旦并非所有大数据都很重要,就会出现另一个挑战:什么时候快速分析就足够了,什么时候需要进行更深入的分析以带来更多价值。

▲安全。毫无疑问,各个领域的连网事物可以让我们的生活变得更加美好,但与此同时,数据安全也成一个非常重要的问题。网络罪犯可以侵入数据中心和设备,连接到交通系统、发电厂、工厂,并从电信运营商那里窃取个人数据。物联网大数据对于安全专家来说还是一个相对较新的现象,相关经验的缺失会增加安全风险。

物联网解决方案中的大数据处理

在物联网系统中,物联网体系架构的数据处理组件因输入数据的特性、预期结果等而不同。我们已经制定了一些方法来处理物联网解决方案中的大数据。

数据来自与事物相连的传感器。“事物”可以是任何物体:烤箱、汽车、飞机、建筑、工业机器、康复设备等。数据可以是周期性的,也可以是流式的。后者对于实时数据处理和迅速管理事物至关重要。

事物将数据发送到网关,以进行初始数据过滤和预处理,从而减少了传输到下一个物联网系统中的数据量。

边缘分析。在进行深入数据分析之前,有必要进行数据过滤和预处理,以选择某些任务所需的最相关数据。此外,此阶段还可以确保实时分析,以快速识别之前在云中通过深度分析所发现的有用模式。

对于基本协议转换和不同数据协议之间的通信,云网关是必需的。它还支持现场网关和中央物联网服务器之间的数据压缩和安全数据传输。

连网设备生成的数据以其自然格式存储在数据湖中。原始数据通过“流”进入数据湖。数据保存在数据湖中,直到可以用于业务目的。清理过的结构化数据存储在数据仓库中。

机器学习模块根据之前积累的历史数据生成模型。这些模型定期(例如,一个月一次)用新数据流更新。输入的数据被累积并应用于训练和创建新模型。当这些模型经过专家的测试和批准后,控制应用程序就可以使用它们,以响应新的传感器数据发送命令或警报。

总结

物联网产生大量数据,可用于实时监控、分析、流程优化和预测性维护等。然而,应该记住,从各种格式的海量数据中获得有价值的见解并不是一件容易事情:您需要确保传感器工作正常,数据得到安全传输和有效处理。此外,始终存在一个问题:哪些数据值得存储和处理。

尽管存在一些挑战和问题,但应记住,物联网的发展势头强劲,并可以帮助多个行业的企业开辟新的数字机遇。

UNO-238充分考虑紧凑空间安装需求,优化了IO接口的排布,所有的IO接口都安排在正面和一侧,使其可以很方便的安装在设备角落。此外,为满足物联网高带宽无线通讯的需求,UNO-238提供了一个M2 2230 (E-key) 和一个M2 3042/3052 (B-key)接口用来扩展WiFi模块和4G/5G通讯模块。另外,UNO-238还自带了GPIO和CAN总线,满足工业现场数据采集和控制的需求,可以支持多种工厂应用,例如工厂自动化,设备自动化和制造执行系统(MES) *** 作。

边缘计算(Edge Computing)是一种分布式计算范式,它将数据处理和计算任务从云端(数据中心)转移到网络边缘的设备上。简单来说,边缘计算就是在靠近数据产生源的地方进行数据处理和分析。

通俗地讲,边缘计算就像把数据处理任务从一个远程大脑(云端数据中心)移到离你更近的小脑(边缘设备,如手机、智能家居设备等)。这样做的好处有以下几点:

降低延迟:因为数据处理和计算离数据产生的地方更近,所以响应速度更快,可以实现实时或近实时处理。

减少带宽消耗:在边缘设备上处理数据可以减少向云端传输大量数据的需求,降低带宽消耗和成本。

提高数据安全性:将数据处理和存储在边缘设备上,可以降低数据在传输过程中的风险,提高数据安全性。

分布式计算:通过在多个边缘设备上分散计算任务,可以实现分布式计算,降低对单个数据中心的依赖。

边缘计算在物联网(IoT)、自动驾驶汽车、智能城市、增强现实等领域有广泛应用,可以提高系统性能、响应速度和可靠性。然而,边缘计算也存在一定的挑战,例如设备资源有限、安全问题和设备管理等。

边缘计算是网络中最靠近物或数据源头融合网络、计算、存储、应用核心能力的分布式开放平台,就近提供边缘智能服务。在更靠近终端的网络边缘上提供服务是边缘计算最大的特点,在数据处理的时效性与有效性方面成为云计算的有力补充。

根据多年边缘计算场景探索和落地实践,边缘计算已呈现出两大明显发展态势。第一个趋势是边缘赋能,将它提炼一下,称为“X+边缘”,这里X代表各个行业,即边缘计算为各行各业赋能。包括在汽车、建工、桥隧、物流、金融、移动、通信、CDN、农业、畜牧、AGV、机器人、无人机、工业、物联网等都有规模化落地案例。

第二个趋势是边缘计算的跨域融合,将它提炼一下,称为“边缘+X”,这里X代表其他新兴技术领域,例如大家熟悉的人工智能,以及区块链、隐私计算等技术。我们在落地过程中已经遇到越来越多这些方面的融合场景。

总体来说,当下,边缘计算的形态是个运行时,新的场景、跨域融合等技术挑战不断被提出,包括在边缘任务卸载、去中心化协作式机器人等领域仍面临不小的挑战。

边缘计算有许多的应用场景,概括起来主要有以下十点,应用一:改进医疗设备性能和数据管理
在医疗场景下,边缘计算主要帮助医疗保健体系的IT基础架构,具体来说,是防止医疗设备管理的应用程序发生延迟。在边缘计算的支持下,无需构建集中的数据中心,可对关键数据进行本地化,在安全性、响应速度和有效性上有更佳表现。
应用二:本地零售的实时数据分析
边缘计算的主要目的,是让运算尽可能接近数据源。在零售场景中,以往企业都是将各分支的数据汇总到中心位置进行分析,再进行决策和行动。而通过边缘计算,零售店铺可以在本地就进行数据处理和优化,这样组织的行动反馈就能更快更及时。
应用三:让虚拟现实更生动
在技术支持下,本地设备可以大大提升用户的参与程度,用户也可以有更生动、更即时的增强现实体验。在这个前提下,越来越多的企业将进行转型。
应用四:加速数据分析
在这一场景下,通过本地计算能力,在数据分析早期就引入较高智能水平的运算。这样可以使得数据更为清晰,从而加快企业的分析和决策速度。在云计算场景中,运算对智能化和精准度的要求较低,主要是在后期应用中使用,故而分析数据需要花费更多时间。
应用五:智能制造
其实边缘计算在智能制造方面属于基础层面的构架。在生产车间采进行“近实时”分析,可以提升运营效率,并增加边际效益从而提高利润。此外,通过边缘计算系统来收集数据、制造智能化工具过程中,可以及时识别异常情况,尽量避免产线停顿。
应用六:消除过剩数据
传统的云计算架构不可避免地会导致多余数据堆积在云存储里,比如物联网的感应数据等。这些数据大多都是无用的,对企业来说花费成本区储存这项数据基本上是没有必要的。边缘计算可以做到只向云端传输有效数据,让流程更为优化。
应用七:让安保系统响应更快速
对于那些建有庞大又复杂的安保系统的企业来说,边缘计算非常实用,它可以有效筛选出关键信息防止带宽的浪费。举例来说,动作捕捉摄像机如具备运算能力,就可以只上传有价值的信息。
应用八:现实数据收集
在零售环境下,物联网、数字标签、IP光纤都是实现边缘计算的基础配置。未来我们的业务将依赖规模在万亿级别的数据挖掘和集成。边缘计算通过本地设备和传感器,协同云端一起收集现实数据,能够做到这个量级的数据聚合。
应用九:降低运营成本减少存储需求
在边缘计算加成下,收集到的数据无需在本地和中央服务器之间穿梭,就可以让本地设备知道要执行哪个功能。这样就可以节省运营成本和存储设备的投入了。
应用十:让诊断与治疗更有针对性
这虽然也是医疗场景的应用,但这里的边缘计算更专注提升病患的康复体验。医疗物联网设备在边缘计算应用下,可以更快更早地检测出病人的异常健康数据。这就可以让医生的诊断措施和医疗干预来得更及时。此外,随着可穿戴系统的普及,存储设备及传感器的成本也会不断下降。在边缘计算技术的帮助下,看病就医将从“被动治疗”转变为AI辅助下的实时的、预测性的保健式医疗。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13093738.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-30
下一篇 2023-05-30

发表评论

登录后才能评论

评论列表(0条)

保存