物联网边带是什么

物联网边带是什么,第1张

当前,物联网(IoT)技术领域充释着各种标准,像NB-IoT、LoRa、SigFox等,他们正通过各自擅长的技术和应用抢夺IoT风口,以争取在这片广阔的市场上取得优势。
这里写描述
NB-IoT是由电信标准延伸而出的,主要是由电信运营商支持,而LoRa则是一个商业运用平台,两者主要区别在于商业运营的模式:NB-IoT基本是由电信运营商来把控运营,所以使用者必须使用它的网关及服务,而LoRa就量对开放一些,有各种不同的组合方式,商业的模式是完全不同的。
技术层面上来看,NB-IoT和LoRa的差异其实并不是很大,属于各有优劣。而相对于某些领域,国内有一些用户在并行使用这两种技术和网络。NB-IoT相对而言是受限于基站的,而LoRa则要加入一个网关相对简单容易,并且总的来说价格要比NB-IOT低廉。用户可以根据需求,增加不同的网关覆盖。所以从覆盖程度上来说LoRa的覆盖程度可能比NB-IoT更广一点。
LPWAN又称LPN,全称为LowPower Wide Area Network或者LowPower Network,指的是一种无线网络。这种无线网络的优势在于低功耗与远距离,通常用于电池供电的传感器节点组网。因为低功耗与低速率的特点,这种网络和其他用于商业,个人数据共享的无线网络(如WiFi,蓝牙等)有着明显的区别。
在广泛应用中,LPWAN可使用集中器组建为私有网络,也可利用网关连到公有网络上去。
LPWAN因为跟LoRaWAN名字类似,再加上最近的LoRaWAN在IoT领域引起的热潮,使得不少人对这两个概念有所混淆。事实上LoRaWAN仅仅是LPWAN的一种,还有几种类似的技术在与LoRaWAN进行竞争。
概括来讲,LPWAN具有如下特点:
• 双向通信,有应答
• 星形拓扑(一般情况下不使用中继器,也不使用Mesh组网,以求简洁)
• 低数据速率
• 低成本
• 非常长的电池使用时间
• 通信距离较远
LPWAN适合的应用:
• IoT,M2M
• 工业自动化
• 低功耗应用
• 电池供电的传感器
• 智慧城市,智慧农业,抄表,街灯控制等等
LoraWAN和Lora之间关系
虽然一样是因为名字类似,很多人会将LoRaWAN与LoRa两个概念混淆。事实上LoRaWAN指的是MAC层的组网协议。而LoRa只是一个物理层的协议。虽然现有的LoRaWAN组网基本上都使用LoRa作为物理层,但是LoRaWAN的协议也列出了在某些频段也可以使用GFSK作为物理层。从网络分层的角度来讲,LoRaWAN可以使用任何物理层的协议,LoRa也可以作为其他组网技术的物理层。事实上有几种与LoRaWAN竞争的技术在物理层也采用了LoRa。
LoraWAN的主要竞争技术
这里写描述
如今市场上存在多个同样使用LoRa作为物理层的LPWAN技术,例如深圳艾森智能(AISenz Inc)的aiCast。aiCast支持单播、多播和组播,比LoRaWAN更加复杂完备。许多LoRaWAN下不可能的应用因此可以实现。
Sigfox使用慢速率的BPSK(300bps),也有一些较有前景的应用案例。
NB-IoT(Narrow Band-IoT)是电信业基于现有移动通信技术的IoT网络。其特点是使用现有的蜂窝通信硬件与频段。不管是电信商还是硬件商,对这项技术热情不减。
关键技术Lora简介
LoRaWAN的核心技术是LoRa。而LoRa是一种Semtech的私有调制技术(2012收购CycleoSAS公司得来)。所以为了便于不熟悉数字通信技术的人们理解,先介绍两个常见的调制技术FSK与OOK。选用这两个调制方式是因为:
1这两个是最简单、最基础、最常见的数字通信调制方式
2在Semtech的SX127x芯片上与LoRa同时被支持,尤其是FSK经常被用来与LoRa比较性能。
OOK
OOK全称为On-Off Keying。核心思想是用有载波表示一个二进制值(一般是1,也可能反向表示0),无载波表示另外一个二进制值(正向是0,反向是1)。
在0与1切换时也会插入一个比较短的空的无载波间隔,可以为多径延迟增加一点冗余以便接收端解调。OOK对于低功耗的无线应用很有优势,因为只用传输大约一半的载波,其余时间可以关掉载波以省功耗。缺点是抗噪音性能较差。
这里写描述
FSK
FSK全称为Frequency Shift Keying。LoRaWAN协议也在某些频段写明除LoRa之外也支持(G)FSK。FSK的核心思想是用两种频率的载波分别表示1与0。只要两种频率相差足够大,接收端用简单的滤波器即可完成解调。
对于发送端,简单的做法就是做两个频率发生器,一个频率在Fmark,另一个频率在Fspace。用基带信号的1与0控制输出即可完成FSK调制。但这样的实现中,两个频率源的相位通常不同步,而导致0与1切换时产生不连续,最终对接收器来讲会产生额外的干扰。实际的FSK系统通常只使用一个频率源,在0与1切换时控制频率源发生偏移。
这里写描述
GFSK是基带信号进入调制前加一个高斯(Gaussian)窗口,使得频率的偏移更加平滑。目的是减少边带(Sideband)频率的功率,以降低对相邻频段的干扰。代价是增加了码间干扰。
对于这一方面的研究实验发现:学习Lora调制技术的一些准备及发现
然而,对于“悠久历史积累”和高安全、易部署等综合优势的LoRa阵营来说,最近几年里,在技术和落地方面虽取得了长足的进步,但离真正的规模、解决行业客户的切实问题是有着不小的差距。那么,究竟是技术壁垒突破较难?产业链生态不健全?亦或者是商业模式限制了从业者对市场规模的想象?对于LoRa产业链的广大从业者而言,找到制约LoRa技术大规模发展的瓶颈,并联手产业合力突围对推动产业良性发展至关重要。

工业互联网不是工业的互联网,而是工业互联的网。它是把工业生产过程中的人、数据和机器连接起来,使工业生产流程数字化、自动化、智能化和网络化,实现数据的流通,提升生产效率、降低生产成本。

从技术架构层面看,工业互联网包含设备层、网络层、平台层、软件层、应用层以及整体的工业安全体系。与传统互联网相比,多了一个设备层。

工业物联网是工业互联网中的「基建」,它连接了设备层和网络层,为平台层、软件层和应用层奠定了坚实的基础。设备层又包含边缘层,总体上,工业物联网涵盖了云计算、网络、边缘计算和终端,自下而上打通工业互联网中的关键数据流。

工业物联网从架构上分为感知层、通信层、平台层和应用层。

随着虚拟人等应用不断发展成熟,对于计算的容量和实时性的要求不断提高。在这种趋势下,我们认为,边缘云计算有望成为元宇宙的重要支撑。作为云计算的延伸,边缘云计算被视为新一轮 科技 革命中必不可少的驱动因素。我们认为,元宇宙对网络传输提出了更大带宽、更低时延、更广覆盖的要求,需要借助边缘计算技术,以保障所有用户获得同样流畅的体验。

1全球数据增长迅速,集中式云计算已无法全面应对,边缘刚需场景涌现,目前中国物联网连接量将从2019年的55亿个增长至2023年的148亿个,年复合增长率达到281%。物联网感知数据量激增,数据类型愈发复杂多样,IDC预测到2025年中国每年产生的数据量将增长486ZB。

2芯片:FPGA同时满足边缘侧对性能、能耗及延迟的要求与集中式云计算不同,边缘云计算所处的物理环境复杂多样,很多时候空间、温度、电源系统都不是最佳的状态。但同时,边缘侧又要求极高的实时性和计算性能,传统CPU架构难以胜任边缘云的需求。英特尔、赛灵思等国际芯片巨头持续加码FPGA芯片,并推出支持CPU+FPGA异构计算的硬件平台,底层芯片产业的繁荣将支撑边缘云计算在各领域的应用,并不断迸发出新的活力。

35G技术的升级加码,Wi-Fi在室内场景形成互补,工信部数据显示,截至2020年中国已开通5G基站超718万个,实现地级以上城市及重点县市的覆盖。预计边缘云计算也会随着5G行业应用的普及分阶段落地。此外,Wi-Fi技术也在向着更高的吞吐量、更大的覆盖面积和更低的时延发展,Wi-Fi在室内场景中的优势使其成为5G的重要补充,两者将共同助力边缘云应用。

4云计算:企业上云常态化,云原生下沉实现云边端一体化,近年来云原生的热度持续高涨,包括容器、微服务、DevOps等在内的云原生技术和理念强调松耦合的架构和简单便捷的扩展能力,旨在通过统一标准实现不同基础设施上一致的云计算体验。相比于虚拟主机,云原生更适合边缘云计算的场景,可以为云边端提供一体化的应用分发与协同管理,解决边缘侧大规模应用交付、运维、管控的问题。

5“新基建”加码,工业互联网等标杆应用引领产业融合,“新基建”是十四五规划的重点方向,通过优化算力资源结构,将高频调用、低时延业务需求分配至边缘数据中心,推动5G承载网络的边缘组网建设,为将算力和网络下沉到边缘创造条件。同时,工业互联网、车联网、远程医疗等产业政策明确提及边缘计算,推动关键技术研究、标准体系建设及软硬件产品研发,促进边缘云在典型产业的融合应用。

应用场景

1视频加速及 AR/VR 渲染

基于移动边缘计算的智能视频加速可以改善移动内容分发效率低下的情况:于无线接入网移动边缘计算服务器部署无线分析应用(Radio Analyticsapplication),为视频服务器提供无线下行接口的实时吞吐量指标,以助力视频服务器做出更为科学的 TCP(传输控制协议)拥塞控制决策,并确保应用层编码能与无线下行链路的预估容量相匹配。另外,由于 AR/VR 信息(用户位置及摄像头视角)是高度本地化的,对这些信息的实时处理最好是在本地(移动边缘计算服务器)进行而不是在云端集中进行,以最大程度地减小 AR 延迟/时延、提高数据处理的精度。

2车联网(智能交通)

将移动边缘计算技术应用于车联网之后,可以把车联网云下沉至高度分布式部署的移动通信基站。移动边缘计算应用直接从车载应用(APP)及道路传感器实时接收本地化的数据,然后进行分析,并将结论(危害报警信息)以极低延迟传送给临近区域内的其他联网车辆,整个过程可在毫秒级别时间内完成,使驾驶员可以及时做出决策。

3工业互联网

边缘计算一直与工业控制系统有密切的关系,具备工业互联网接口的工业控制系统本质上就是一种边缘计算设备,解决工业控制高实时性要求与互联网服务质量的不确定性的矛盾。在基础设施层,通过工业无线和有线网络将现场设备以扁平互联的方式联接到工业数据平台中;在数据平台中,根据产线的工艺和工序模型,通过服务组合对现场设备进行动态管理和组合,并与 MES等系统对接。工业 CPS系统能够支撑生产计划灵活适应产线资源的变化,旧的制造设备快速替换与新设备上线。

4IoT(物联网)网关服务

采取边缘计算技术,边缘计算汇聚节点将被部署于接近物联网终端设备的位置,提供传感数据分析及低延迟响应。其中边缘计算服务器的计算能力和存储能力可为以下5个方面提供服务:业务的汇聚及分发;设备消息的分析;基于上述分析结果的决策逻辑;数据库登录;对于终端设备的远程控制和接入控制。

市场规模

预计2025年规模将超500亿元,年复合增长率达433%,信通院2020年5月调研数据显示,中国企业中仅有不足5%使用了边缘计算,但计划使用的比例高达442%。可以见得,虽然边缘云计算尚处在发展的萌芽期,但未来成长空间非常广阔。根据艾瑞咨询测算,2020年中国边缘云计算市场规模为91亿元,其中区域、现场、IoT三类边缘云市场规模分别达到37亿元、38亿元及16亿元。预计到2025年整体边缘云规模将以440%的年复合增长率增长至550亿元,其中区域边缘云将凭借互动直播、vCDN、车联网等率先成熟的场景实现增速领跑。2030年,中国边缘云计算市场规模预计达到接近2500亿元,2025年至2030年的年复合增长率相比前五年有所下降,现场边缘云中工业互联网、智慧园区、智慧物流等场景将在这一期间快速走向成熟。

相关上市公司

中兴通讯

中兴通讯面向运营商提供全场景MEC解决方案,打破传统封闭的电信网络架构,将移动接入网与互联网深度融合,在网络边缘满足客户的个性化需求。中兴通讯Common Edge边缘计算解决方案包括MEP能力开放平台、轻量化边缘云及面向边缘的全系列服务器和边缘加速硬件,提供通用硬件、专用集成硬件等多种硬件选择,深度融合OpenStack与Kubernetes,为上层MEC应用提供统一的边缘云管理系统,方便运营商因地制宜部署MEC。

网宿 科技

公司的边缘计算平台以云主机、容器、函数计算和网络四大平台作为技术底座,在边缘计算节点上部署边缘云主机、边缘云容器、边缘云函数、SD-WAN、边缘云安全等基础服务,以及内外部的各类应用模块,结合客户的业务场景及需求,尝试进行解决方案的整合和输出。

初灵信息

公司在 5G、AI 技术高速发展的背景下,持续构建以固移智能连接(5G+Fixed)+数据处理(DPI)+AI 为代表的三大边缘计算核心能力。公司多年深耕企业(行业)智能连接网络、垂直行业边缘应用型 DPI(安全、物联网类)、视频及其他行业(企业)的智能应用等技术,初步构成“云边端”协同的边缘计算生态。在市场端,公司除聚焦传统运营商市场外,积极拓展政企行业和大中企业市场,中标多个项目。公司三季度显示,公司与中国联通就边缘计算展开合作,开展了CUNOS在5G环境下的承载能力测试。

引用内容

1 研报《中国边缘云计算行业展望报告》

2 研报《边缘计算:算力网络重要环节,产业方兴未艾》

风险提示

1底层相关技术发展缓慢,边缘计算需求不及预期。

25G 进度不达预期。

我们先来讲讲物联网AR是什么

实际上,物联网并不是一个新概念,但为什么物联网,仍然可以与大数据和云计算技术一起列入第三次信息化浪潮的核心技术,其中一个关键原因就是物联网可以承载更多的新技术,同时物联网也可以深入到产业领域。

物联网在世界上也被称为传感器网络,这是继计算机、互联网和移动通信网络之后的信息产业浪潮,世界上的一切,从手表和钥匙到汽车和建筑,只要嵌入一个微感应芯片,变得智能化,物体就可以自动说话。

借助无线网络技术,人们可以与物体对话,与物体交流,这就是物联网,影片中的场景,通过物联网的逐步实现和推广,每个人的生活都会接近,所谓物联网,在中国也叫传感网,是指将各种信息传感设备与互联网相结合而形成的巨大网络。

ICT信息管理中心负责物联网本地管理,它是物联网信息服务的基础的管理中心,为本地用户提供管理、计划和解析服务;国家物联网信息管理中心负责制定和发布全国总体标准,负责与国际物联网互联,管理企业物联网管理中心;国际物联网信息管理中心负责制定和发布国际物联网框架性物联网标准,负责与各个国家的物联网互联,协调、指导和管理各个国家的物联网信息管理中心等。

重点是在增强虚实结合力、提高交互体验方面,展锐可运用人工智能技术进行空间计算,完成空间定位、地图构造、虚实结合和实时遮挡等,实现厘米级/1°以内的空间定位技术,实现人工智能与5G、AR的结合,更好地进行空间计算,准确定位、地图构建、虚实结合和实时遮挡。

那么全息美与物联网AR又有什么区别呢?

全息美是一种全新的美容人脸扫描技术,利用AR技术,运用的扫描数据进行分析,短时间内分析脸部的情况,进行判断脸部的缺陷与不足,比如皮肤的性质、类型,确定以后,进行精准调整,这就是全息美,它属于医美行业的互联网技术。

物联网连接物理和虚拟世界,物联网近年来成为企业竞争配置的产业,其发展状况良好,在市场上应用反馈也良好,特别是在智能城市、智能家庭、智能安全、工业物联网等方面取得了良好的反响,在物联网应用更广泛的落地时,物联网的各种技术难题。

其中,物联网的重点发展领域包括推进传感器、网络切片、高精度定位等技术创新,协同发展云服务和边缘计算,培育汽车网络、医疗网络、家庭网络产业、医疗网络、医疗网络让整个社会更加体验更真实。

物联网,Internet of Things,简称“IoT”,即通过传感器或物理识别装置等感知技术,对物理世界进行感知,通过ICT通信传输技术将数据传输至物联网云处理平台进行计算和处理,实现人与人、人与物、物与物的链接,进而对物理世界进行管理和控制。一句话解释:互联网的升级迭代版,互联网实现人与人的链接,物联网增加人与物理世界的链接;感知物理世界的变化,并对物理世界进一步的管理和控制

萌芽期:(1991年-2004年):1994年美国麻省理工学院Kevin教授提出物联网概念,1995年,比尔盖茨在《未来之路》中构想物物互联,并未引起广泛关注。1999年,麻省理工学院首先提出物联网的定义。2003年,美国《技术评论》将传感网络技术列为未来生活的十大技术之首。

初步发展期:(2005年-2008年):2005年,国际电信联盟(ITU)发布《ITU互联网报告2005:物联网》,2008年第一届国际物联网大会在瑞士苏黎世举行。

高速发展期(2009年-至今):2009年美国政府将新能源和物联网确定为美国国家战略。2009年温家宝总理在无锡视察时提出“感知中国”,无锡率先建立“感知中国”研究中心,中科院、运营商和多所大学建立物联网研究院。中国正式开始物联网行业战略部署。2010年中国政府将物联网列为关键技术,并宣布物联网是长期发展计划的一部分。2015年,欧盟成立物联网创新联盟。2016年,NB-IoT技术即将进入规模商用阶段。2018年6月,5G通信技术成熟化,第一阶段全功能标准化工作完成,进入产业全面冲刺阶段。

总结中国物联网产业发展,大致经历:

第一阶段:智能消费产品的涌现

2012-2015年期间,消费类物联网产品一夜爆发,过后却慢慢消退。包括智能灯泡、智能插座、智能水壶、智能电饭煲等等智能产品出现在市场上。大致思路是将传统硬件产品,添加上Wi-Fi、蓝牙、ZiBbee等无线技术,再结合APP进行控制。这股热潮来的快、去的也快,因为害怕的稳定性和用户体验存在问题,再加上价格比较高,对于消费者而言性价比不高,市场认可度比较低。

第二阶段:底层技术完善

第二阶段相对于上个阶段,技术有更深层次的突破。这个时候涌现了各种各样的针对物联网的技术,比如NB-IoT、LoRa等新型的传输技术、AI算法、智能语音技术等等,边缘计算、智能计算等计算存储技术走上台,传感器产品也更加的智能化,具有更多的功能。

第三阶段:行业级应用兴起

完成技术突破之后,物联网的应用逐渐从早期的消费类应用往企业级应用发展。更多的应用于城市建设、政府政务、各行各业产业当中。

物联网IoT产业架构分四层:感知层、网络层、平台层、应用层;物联网IoT产业链:端——管——边——云——用

随着云端数据处理能力开始下沉,更加贴近数据源头,使得边缘计算成为物联网产业的重要关口;将来将有75%的数据需要在网络的边缘侧分析、处理和存储。因而物联网产业链由之前的“端——管——云——用”发展为现在的“端——管——边——云——用”;

“端”:物联网终端,主要是完成数据采集以及向网络端发送的作用;包含芯片、感知技术(传感器+识别技术)、 *** 作系统;

“管”:管道层,保证通信的作用,无线连接、卫星和量子通信等方式;

“边”:边缘计算,将集中式架构分解成边缘位置的点;

“云”:云平台,主要进行数据的计算和存储;包含云计算平台和AI技术;按厂商类型分:运营商、ICT、互联网和工业制造厂商以及第三方物联网平台;按商业模式分PaaS和本地部署;按照平台功能可以划分:设备管理平台、连接管理平台、应用开发平台和业务分析平台;

“用”:物联网IoT应用层,落地到不同行业应用场景中;三大业务主线:消费性物联网、政策驱动物联网和生产性物联网;(政策驱动物联网和生产性物联网并称产业物联网)

从产业集聚发展情况来看,我国已初步形成以北京—天津、上海—无锡、深圳—广州、重庆—成都为核心的 环渤海、长三角、珠三角、中西部 地区四大物联网产业集聚区的空间布局。

其中, 环渤海地区 凭借丰富的产学研资源和总部优势,成为我国物联网产业重要的研发、设计和生产制造基地; 长三角地区 以上海、无锡双核发展为带动,整体发展比较均衡,在技术研发与产业化、应用推广方面发挥了引领示范作用; 珠三角地区 是国内物联网市场化最成熟、体系最完备的地区,目前已形成了一批自主的、竞争力强的物联网应用技术成果和信息增值服务模式,产业规模领先其他地区; 中西部地区 软件、信息服务、传感器等领域发展迅猛,成为第四大产业基地,且在自然资源和人力资源方面均存在优势,对物联网产业链底端感知层具有一定的促进作用。

产业集聚区的形成有利于产业规模效应凸显,形成产业链;有助于改善协作条件,节约生产成本;而且能更好的发挥核心城市的辐射带动作用,促进区域一体化发展。目前,四大产业集聚区相互独立、各有特色,汇聚了一批具有全国影响力的龙头企业,产业链逐渐完善,研发机构和公共服务等配套体系基本完备。

物联网平台为设备提供安全可靠的连接通信能力,向下连接海量设备,支撑设备数据采集上云;向上提供云端API,指令数据通过API调用下发至设备端,实现远程控制。

物联网平台也提供了其他增值能力,如设备管理、规则引擎、数据分析、边缘计算等,为各类IoT场景和行业开发者赋能。

如下是共享单车基于物联网平台的解决方案。
物联网平台提供边缘计算能力,支持在离设备最近的位置构建边缘计算节点处理设备数据。

在断网或弱网情况下,边缘计算可缓存设备数据,网络恢复后,自动将数据同步至云端。

提供多种业务逻辑的开发和运行框架,包括场景联动、函数计算和流式计算,各框架均支持云端开发、动态部署。

边缘计算能力允许在最靠近设备的地方构建边缘计算节点,过滤清洗设备数据,并将处理后的数据上传至云平台。
物联网应用可广泛应用于:智能生活、智能工业、智能楼宇、环境保护、农业水利、能源监控等环境。计算平台主要涉及:

开发者使用设备接入SDK,将非标设备转换成标准物模型,就近接入网关,从而实现设备的管理和控制。

设备连接到网关后,网关可以实现设备数据的采集、流转、存储、分析和上报设备数据至云端,同时网关提供规则引擎、函数计算引擎,方便场景编排和业务扩展。

设备数据上传云端后,可以结合云功能,如大数据、AI学习等,通过标准API接口,实现更多功能和应用。

物联网 (IoT) 设备必须连接互联网。通过连接到互联网,设备就能相互协作,以及与后端服务协同工作。互联网的基础网络协议是 TCP/IP。MQTT(Message Queue Telemetry Transport,消息队列遥测传输) 是基于 TCP/IP 协议栈而构建的,已成为 IoT 通信的标准。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13094161.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-30
下一篇 2023-05-30

发表评论

登录后才能评论

评论列表(0条)

保存