本专题我共整理了10篇文章,来自中国农业科学院农业质量标准与检测技术研究所、南京农业大学、英国林肯大学、华南农业大学、江南大学、国家农业智能装备工程技术研究中心、浙江大学、中国科学院、吉林农业大学、西北农林 科技 大学、国家信息农业工程技术中心等单位。
文章包含农产品质量安全纳米传感器、太阳能杀虫灯、分簇路由算法、农田物联网混合多跳路由算法、水产养殖溶解氧传感器研制、土壤养分近场遥测方法、农机远程智能管理平台、水肥浓度智能感知与精准配比、果园多机器人通信等内容,供大家阅读、参考。
专题--农业传感器与物联网
Topic--Agricultural Sensor and Internet of Things
[1]王培龙, 唐智勇 农产品质量安全纳米传感应用研究分析与展望[J] 智慧农业(中英文), 2020, 2(2): 1-10
WANG Peilong , TANG Zhiyong Application analysis and prospect of nanosensor in the quality and safety of agricultural products[J] Smart Agriculture, 2020, 2(2): 1-10
知网阅读
[2]杨星, 舒磊, 黄凯, 李凯亮, 霍志强, 王彦飞, 王心怡, 卢巧玲, 张亚成 太阳能杀虫灯物联网故障诊断特征分析及潜在挑战[J] 智慧农业(中英文), 2020, 2(2): 11-27
YANG Xing, SHU Lei, HUANG Kai, LI Kailiang, HUO Zhiqiang, WANG Yanfei, WANG Xinyi, LU Qiaoling, ZHANG Yacheng Characteristics analysis and challenges for fault diagnosis in solar insecticidal lamps Internet of Things[J] Smart Agriculture, 2020, 2(2): 11-27
摘要: 太阳能杀虫灯物联网(SIL-IoTs)是一种基于农业场景与物联网技术的新型物理农业虫害防治工具,通过无线传输太阳能杀虫灯组件状态数据,用户可后台实时查看太阳能杀虫灯运行状态,具有杀虫计数、虫害区域定位、辅助农情监测等功能。但随着SIL-IoTs快速发展与广泛应用,故障诊断难和维护难等矛盾日益突出。基于此,本研究首先阐述了SIL-IoTs的结构和研究现状,分析了故障诊断的重要性,指出了故障诊断是保障其可靠性的主要手段。接着介绍了目前太阳能杀虫灯节点自身存在的故障及其在无线传感网络(WSNs)中的体现,并进一步对WSNs中的故障进行分类,包括基于行为、基于时间、基于组件以及基于影响区域的故障四类。随后讨论了统计方法、概率方法、层次路由方法、机器学习方法、拓扑控制方法和移动基站方法等目前主要使用的WSNs故障诊断方法。此外,还探讨了SIL-IoTs故障诊断策略,将故障诊断从行为上分为主动型诊断与被动型诊断策略,从监测类型上分为连续诊断、定期诊断、直接诊断与间接诊断策略,从设备上分为集中式、分布式与混合式策略。在以上故障诊断方法与策略的基础上,介绍了后台数据异常、部分节点通信异常、整个网络通信异常和未诊断出异常但实际存在异常四种故障现象下适用的WSNs故障诊断调试工具,如Sympathy、Clairvoyant、SNIF和Dustminer。最后,强调了SIL-IoTs的特性对故障诊断带来的潜在挑战,包括部署环境复杂、节点任务冲突、连续性区域节点无法传输数据和多种故障诊断失效等情形,并针对这些潜在挑战指出了合理的研究方向。由于SIL-IoTs为农业物联网中典型应用,因此本研究可扩展至其它农业物联网中,并为这些农业物联网的故障诊断提供参考。
知网阅读
[3]汪进鸿, 韩宇星 用于作物表型信息边缘计算采集的认知无线传感器网络分簇路由算法[J] 智慧农业(中英文), 2020, 2(2): 28-47
WANG Jinhong, HAN Yuxing Cognitive radio sensor networks clustering routing algorithm for crop phenotypic information edge computing collection[J] Smart Agriculture, 2020, 2(2): 28-47
摘要: 随着无线终端数量的快速增长和多媒体图像等高带宽传输业务需求的增加,农业物联网相关领域可预见地会出现无线频谱资源紧缺问题。针对基于传统物联网的作物表型信息采集系统中存在由于节点密集部署导致数据传输过程容易出现频谱竞争、数据拥堵的现象以及固定电池的网络由于能耗不均衡引起监测周期缩减等诸多问题,本研究建立了一个认知无线传感器网络(CRSN)作物表型信息采集模型,并针对模型提出一种引入边缘计算机制的动态频谱和能耗均衡(DSEB)的事件驱动分簇路由算法。算法包括:(1)动态频谱感知分簇,采用层次聚类算法结合频谱感知获取的可用信道、节点间的距离、剩余能量和邻居节点度为相似度对被监控区域内的节点进行聚类分簇并选取簇头,构建分簇拓扑的过程对各分簇大小的均衡性引入奖励和惩罚因子,提升网络各分簇平均频谱利用率;(2)融入边缘计算的事件触发数据路由,根据构建的分簇拓扑结构,将待检测各区域变化异常表型信息触发事件以簇内汇聚和簇间中继交替迭代方式转发至汇聚节点,簇内汇聚包括直传和簇内中继,簇间中继包括主网关节点和次网关节点-主网关节点两种情况;(3)基于频谱变化和通信服务质量(QoS)的自适应重新分簇:基于主用户行为变化引起的可用信道改变,或分簇效果不佳对通信服务质量产生的干扰,触发CRSN进行自适应重新分簇。此外,本研究还提出了一种新的能耗均衡策略去能量消耗中心化(假设sink为中心),即在网关或簇头节点选取计算式中引入与节点到sink的距离成正比的权重系数。算法仿真结果表明,与采用K-medoid分簇和能量感知的事件驱动分簇(ERP)路由方案相比,在CRSN节点数为定值的前提下,基于DSEB的分簇路由算法在网络生存期与能效等方面均具有一定的改进;在主用户节点数为定值时,所提算法比其它两种算法具有更高频谱利用率。
知网阅读
[4]顾浩, 王志强, 吴昊, 蒋永年, 郭亚 基于荧光法的溶解氧传感器研制及试验[J] 智慧农业(中英文), 2020, 2(2): 48-58
GU Hao, WANG Zhiqiang, WU Hao, JIANG Yongnian, GUO Ya A fluorescence based dissolved oxygen sensor[J] Smart Agriculture, 2020, 2(2): 48-58
摘要:溶解氧含量的测量对水产养殖具有极其重要的意义,但目前中国市面上的溶解氧传感器存在价格昂贵、不能持续在线测量及更新部件维护困难等问题,难以在水产养殖物联网中大规模推广和发挥作用。本研究基于荧光淬灭原理,利用水中溶解氧浓度与荧光信号相位差的关系进行低成本、易维护溶解氧传感器的研发。首先利用自制备溶氧敏感膜,经激发光照射后产生红色荧光,该荧光寿命可由溶解氧浓度调节;然后利用光信号敏感器件设计光电转化电路实现光信号感知;再以STM32F103微处理器作为主控芯片,编写下位机程序实现激发光脉冲产生,利用相敏检波原理以及快速傅里叶变换(FFT)计算激发光与参照光的相位差,进而转化为溶解氧浓度,实现溶解氧的测量。荧光探测部分与系统主控部分采用分离式设计思想,利用屏蔽排线直接插拔连接,便于传感器探测头的拆卸、更换、维护以及实现远距离在线测量。经测试,本溶解氧传感器的测量范围是0~20 mg/L,响应延迟小于2 s,溶氧敏感膜使用寿命约1年,可以实时不间断地对溶解氧浓度进行测量。同时,本传感器具有测量方便、制作成本低、体积小等特点,为中国水产养殖低成本溶解氧传感器的研发与市场化奠定了良好的基础。
知网阅读
[5]矫雷子, 董大明, 赵贤德, 田宏武 基于调制近红外反射光谱的土壤养分近场遥测方法研究[J] 智慧农业(中英文), 2020, 2(2): 59-66
JIAO Leizi, DONG Daming, ZHAO Xiande, TIAN Hongwu Near-field telemetry detection of soil nutrient based on modulated near-infrared reflectance spectrum[J] Smart Agriculture, 2020, 2(2): 59-66
摘要: 土壤养分作为农业生产的重要指标,含量过少会降低农作物产量,过多则会造成环境污染。因此,快速、准确检测土壤养分对于精准施肥和提高作物产量具有重要意义。基于取样和化学分析的传统方法能够全面准确地检测土壤养分,但检测过程中土壤的取样及预处理过程繁琐、 *** 作复杂、费时费力,不能实现土壤养分的原位快速检测。本研究基于调制近红外光谱,提出了一种土壤养分主动式近场遥测方法,可有效避免土壤反射自然光的干扰。该方法使用波长范围1260~1610 nm的8通道窄带激光二极管作为近红外光源,通过测量8通道激光光束的土壤反射率,建立土壤养分中氮(N)关于土壤反射率的计量模型,实现了N的快速检测。在74组已知N含量的土壤样品中,选取54组作为训练集,20组作为预测集。基于一般线性模型,对训练集中土壤N含量与土壤反射率的定量化参数进行训练,筛选显著波段后的计量模型R2达到097。基于建立的计量模型,预测集中土壤N含量预测值与参考值的决定系数R2达到09,结果表明该方法具有土壤养分现场快速检测的能力。
知网阅读
[6]朱登胜, 方慧, 胡韶明, 王文权, 周延锁, 王红艳, 刘飞, 何勇 农机远程智能管理平台研发及其应用[J] 智慧农业(中英文), 2020, 2(2): 67-81
ZHU Dengsheng, FANG Hui, HU Shaoming, WANG Wenquan, ZHOU Yansuo, WANG Hongyan, LIU Fei, HE Yong Development and application of an intelligent remote management platform for agricultural machinery[J] Smart Agriculture, 2020, 2(2): 67-81
摘要: 本研究针对农机管理实时数据少、农机实时作业监管困难、服务信息不对称等问题,首先提出专业化远程管理平台设计时应具有五大原则:专业化、标准化、云平台、模块化以及开放性。基于这些原则,本研究设计了基于大田作业智能传感技术、物联网技术、定位技术、遥感技术和地理信息系统的可定制化的通用农机远程智能管理平台。平台分别为各级政府管理部门、农机合作社、农机手、农户设计并实现了基于WebGIS 的农机信息库及农机位置服务、农机作业实时监测与管理、农田基础信息管理、田间作物基本信息管理、农机调度管理、农机补贴管理、农机作业订单管理等多个实用模块。研究着重分析了在当前的技术背景下,平台部分关键技术的实现方法,包括采用低精度GNSS定位系统前提下的作业面积的计算方法、GNSS定位数据处理过程中的数据问题分析、农机调度算法、作业传感器信息的集成等,并提出了以地块为核心的管理平台建设思路;同时提出农机作业管理平台将逐步从简单作业管理转向大田农机综合管理。本平台对同类型管理平台的研发具有一定的参考与借鉴作用。
知网阅读
[7]金洲, 张俊卿, 郭红燕, 胡宜敏, 陈翔宇, 黄河, 王红艳 水肥浓度智能感知与精准配比系统研制与试验[J] 智慧农业(中英文), 2020, 2(2): 82-93
JIN Zhou, ZHANG Junqing, GUO Hongyan, HU Yimin, CHEN Xiangyu, HUANG He, WANG Hongyan Development and testing of intelligent sensing and precision proportioning system of water and fertilizer concentration[J] Smart Agriculture, 2020, 2(2): 82-93
摘要: 为解决农场当地当时的复合肥料精准化配料问题,本研究将水肥一体化智能灌溉施肥系统作为研究对象,构建了水肥浓度智能感知与精准配比系统。首先提出现场在线水肥溶液智能感知模型的快速建立方法,利用数据分析算法从传感器实时监测的一系列浓度梯度的肥料溶液中挖掘出模型。其次基于上述模型设计水肥浓度智能感知与精准配比系统的框架结构,阐述系统工作原理;并通过三种水体模拟在线配肥验证了该系统原位指导水肥浓度配比的有效性,同时评价了水体电导率对水肥配比浓度的干扰。试验结果表明,正则化条件下二阶的多项式拟合曲线是表达溶液电导率与水肥浓度的变化关系最优的模型,相关系数R2均大于0999,由此模型可得出用户关心的复合肥各指标浓度。三种水体模拟在线配肥结果表明,水体会干扰电导率导致无法准确反演水肥配比的浓度,相对偏差值超过了01。因此,本研究提出的在线水肥智能感知与精准配比系统实现了消除当地水体电导率对水肥配比准确性的干扰,通过模型计算实现复合肥精准化配比,并得出各指标浓度。该系统结构简单,配比精准,易与现有水肥一体机或者人工配肥系统结合使用,可广泛应用于设施农业栽培、果园栽培和大田经济作物栽培等环境下的精准智能施肥。
知网阅读
[8]孙浩然, 孙琳, 毕春光, 于合龙 基于粒子群与模拟退火协同优化的农田物联网混合多跳路由算法[J] 智慧农业(中英文), 2020, 2(3): 98-107
SUN Haoran, SUN Lin, BI Chunguang, YU Helong Hybrid multi-hop routing algorithm for farmland IoT based on particle swarm and simulated annealing collaborative optimization method[J] Smart Agriculture, 2020, 2(3): 98-107
摘要: 农业无线传感器网络对农田土壤、环境和作物生长的多源异构信息的获取起关键作用。针对传感器在农田中非均匀分布且受到能量制约等问题,本研究提出了一种基于粒子群和模拟退火协同优化的农田物联网混合多跳路由算法(PSMR)。首先,通过节点剩余能量和节点度加权选择簇首,采用成簇结构实现异构网络高效动态组网。然后通过簇首间多跳数据结构解决簇首远距离传输能耗过高问题,利用粒子群与模拟退火协同优化方法提高算法收敛速度,实现sink节点加速采集簇首中的聚合数据。对算法的仿真试验结果表明,PSMR算法与基于能量有效负载均衡的多路径路由策略方法(EMR)相比,无线传感器网络生命周期提升了57%;与贪婪外围无状态路由算法(GPSR-A)相比,在相同的网络生命周期内,第1个死亡传感器节点推迟了两轮,剩余能量标准差减少了004 J,具有良好的网络能耗均衡性。本研究提出的PSMR算法通过簇首间多跳降低远端簇首额外能耗,提高了不同距离簇首的能耗均衡性能,为实现大规模农田复杂环境的长时间、高效、稳定地数据采集监测提供了技术基础,可提高农业物联网的资源利用效率。
知网阅读
[9]毛文菊, 刘恒, 王东飞, 杨福增, 刘志杰 面向果园多机器人通信的AODV路由协议改进设计与测试[J] 智慧农业(中英文), 2021, 3(1): 96-108
MAO Wenju, LIU Heng, WANG Dongfei, YANG Fuzeng, LIU Zhijie Improved AODV routing protocol for multi-robot communication in orchard[J] Smart Agriculture, 2021, 3(1): 96-108
摘要: 针对多机器人在果园中作业时的通信需求,本研究基于Wi-Fi信号在桃园内接收强度预测模型,提出了一种引入优先节点和路径信号强度阈值的改进无线自组网按需平面距离向量路由协议(AODV-SP)。对AODV-SP报文进行设计,并利用NS2仿真软件对比了无线自组网按需平面距离向量路由协议(AODV)和AODV-SP在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能。仿真试验结果表明,本研究提出的AODV-SP路由协议在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能均优于AODV协议,其中节点的移动速度为5 m/s时,AODV-SP的路由发起频率和路由开销较AODV分别降低了365%和709%,节点的移动速度为8 m/s时,AODV-SP的分组投递率提高了059%,平均端到端时延降低了1309%。为进一步验证AODV-SP协议的性能,在实验室环境中搭建了基于领航-跟随法的小型多机器人无线通信物理平台并将AODV-SP在此平台应用,并进行了静态丢包率和动态测试。测试结果表明,节点相距25 m时静态丢包率为0,距离100 m时丢包率为2101%;动态行驶时能使机器人维持链状拓扑结构。本研究可为果园多机器人在实际环境中通信系统的搭建提供参考。
知网阅读
[10]黄凯, 舒磊, 李凯亮, 杨星, 朱艳, 汪小旵, 苏勤 太阳能杀虫灯物联网节点的防盗防破坏设计及展望[J] 智慧农业(中英文), 2021, 3(1): 129-143
HUANG Kai, SHU Lei, LI Kailiang, YANG Xing, ZHU Yan, WANG Xiaochan, SU Qin Design and prospect for anti-theft and anti-destruction of nodes in Solar Insecticidal Lamps Internet of Things[J] Smart Agriculture, 2021, 3(1): 129-143
摘要: 太阳能杀虫灯在有效控制虫害的同时,可减少农药施药量。随着其部署数量的增加,被盗被破坏的报道也越来越多,严重影响了虫害防治效果并造成了较大的经济损失。为有效地解决太阳能杀虫灯物联网节点被盗被破坏问题,本研究以太阳能杀虫灯物联网为应用场景,对太阳能杀虫灯硬件进行改造设计以获取更多的传感信息;提出了太阳能杀虫灯辅助设备——无人机杀虫灯,用以被盗被破坏出现后的部署、追踪和巡检等应急应用。通过上述硬件层面的改造设计和增加辅助设备,可以获取更为全面的信息以判断太阳能杀虫灯物联网节点被盗被破坏情况。但考虑到被盗被破坏发生时间短,仅改造硬件层面还不足以实现快速准确判断。因此,本研究进一步从内部硬件、软件算法和外形结构设计三个层面,探讨了设备防盗防破坏的优化设计、设备防盗防破坏判断规则的建立、设备被盗被破坏的快速准确判断、设备被盗被破坏的应急措施、设备被盗被破坏的预测与防控,以及优化计算以降低网络数据传输负荷六个关键研究问题,并对设备防盗防破坏技术在太阳能杀虫灯物联网场景中的应用进行了展望。
知网阅读
微信交流服务群
为方便农业科学领域读者、作者和审稿专家学术交流,促进智慧农业发展,为更好地服务广大读者、作者和审稿人,编辑部建立了微信交流服务群,有关专业领域内的问题讨论、投稿相关的问题均可在群里咨询。
入群方法: 加我微信 331760296 , 备注: 姓名、单位、研究方向 ,我拉您进群,机构营销广告人员勿扰。
信息发布
科研团队介绍及招聘信息、学术会议及相关活动 的宣传推广
有以下创新点:监控功能系统:根据无线网络获取的植物生长环境信息,如监测土壤水分、土壤温度、空气温度、空气湿度、光照强度、植物养分含量等参数。监测功能系统:在农业园区内实现自动信息检测与控制,通过配备无线传感节点,太阳能供电系统、信息采集和信息路由设备、配备无线传感传输系统,每个基点配置无线传感节点,每个无线传感节点可监测土壤水分、土壤温度、空气温度、空气湿度、光照强度、植物养分含量等参数。实时图像与视频监控功能:农业物联网的基本概念是实现农业上作物与环境、土壤及肥力间的物物相联的关系网络,通物联网智能农业在目前来说就是农业物联网,都是运用的传感技术、传输技术、数据收集技术、控制系统,这些都是属于信息技术的,现在农业上的对信息技术的充分运用,无疑是把农业放在了一个前所未有的高度来发展,国家也对这些也是积极鼓励的,很显然,物联网智能农业是必须要发展起来了,只是时间问题,我很看好,像托普这些早些年做农业仪器的,现在都转身做农业物联网的,都是很有远见的,等到物联网真正发展起来的时候,这些物联网先驱就是龙头了
1物联网主要应用领域
物联网的应用领域广泛,简单介绍几个应用场景:物流与仓储、健康与医疗、智能环境、社交智能交通、智能建筑、文物保护、古迹的实时监测、智能家居、定位导航、物流管理、视频监控、数字医疗等产业都有广泛的应用。
物联网应用范围
2 简单介绍几个应用例子
1)智慧城市
一般利用物联网、人工智能、云边计算、大数据挖掘分析、机器学习和深度学习等技术,还有运用三维可视化大数据平台、物联网云平台、移动终端以及各个智能硬件设备,实现城市物联感知、城市管理、城市服务等功能,提高政府监管服务、决策的智能化水平,形成高效、便捷、便民的新型管理模式,为城市构建智能型,管理型决策平台。
智慧城市下智慧园区
智慧城市主要应用功能包括智能交通系统、智慧能源系统、智慧物流及建筑服务系统、城市指挥中心、智慧医疗、城市公共安全、城市环境管理、政府公共服务平台等八个方面组成。
2)智能农业
智能农业基于物联网技术,通过各种无线传感器实时采集农业生产现场的光照、温度、湿度等参数及农产品生长状况等信息而进行远程监控生产环境。将采集的参数个信息进行数字化和转化后,实时传输网络进行汇总整合,利用农业专家智能系统进行定时、定量、定位云计算处理,及时精确的遥控指定农业设备自动开启或是关闭。
智能农业
3)智能交通
智能交通系统是将先进的电子传感技术、信息技术、数据通信传输技术、控制技术、计算技术以及物联网技术等有效地集成运用于整个交通管理的一个体系,建立起一种能在大范围、全方面发挥作用的,实时、准确、高效的综合交通管理系统。
车联网
3 个人经历
我之前是学习机械的,所以物联网相关知识都是自学的。本科毕业工作几年,发现工业物联网行业是未来的风口。就辞职考研了,研究生期间主要研究的是机电一体化与物联网控制。物联网涉及的知识面比较广,除了在工业方面,它是涵盖单片机、传感器、通信技术、云存储技术、数据可视化和数据挖掘等一系列学科。诸如:嵌入式技术、无线传感网络技术、传感器技术、M2M技术、云计算及中间件技术。我也构建一套智能家居系统。
系统采用传感器测量影响植物生长的光照强度、温湿度、土壤墒情、二氧化碳浓等环境参数,通过物联网将所测量参数传送到管理中心,实现对农作物生长环境实时监测;管理中心对测量数据进行综合分析,按照规则给出控制决策,通过物联网将控制指令下发,由现场控制器实现对各类设施的智能控制,保障农作物的生长环境,降低成本,促进增产增收。管理中心软件可根据农作物种类设置生长环境参数范围和控制决策规则,并对所有测量数据进行存储,可依据条件对历史数据进行管理和查询。系统的构成:智能农田种植环境监测物联网系统,主要由下位机采集系统、上位机软件应用平台及辅助扩展部分组成。下位机信息采集系统中包含土壤墒情监测系统、水肥一体化系统、田间气候观测站、视频图像采集终端等,上位机软件部分又包含电脑显示控制、手机显示控制、LCD显示屏等,辅助扩展部分根据客户需要,可加入农田病虫害防治、农业专家在线指导、农产品质量追溯、线上交易云平台等一系列农业物联网所包含的系统设备。农业大田的各参数传感器,对农田整体环境进行多点实时动态采集,显示装置实时显示农田的温湿度、光照度等数值,能够更加一目了然地展示整个大田的数据全貌。
传感器是系统整个检测环节的重要组成部分,用于将农田环境因子等非电学物理量转变为控制系统可识别的电信号,为系统管理控制提供判断和处理的依据。传感器的主要技术指标有:线性度、灵敏度、迟滞、重复性、分辨率、漂移、精度等。常用传感器主要有温度传感器、湿度传感器、光照传感器、CO2(二氧化碳)传感器、土壤水分传感器、土壤温度传感器以及营养液的盐分(EC)和酸度(PH)传感器等。
智慧农业系统总体解决方案包括以下内容:智慧农业管理平台,极飞农业物联网,农机自动驾驶系统,植保无人机,自动数据传输设备等等来解决类似智能温室大棚,大型农田里的水肥一体化,土壤里的病虫害。智慧农业是当今世界发展的新潮流,根据空间变异,定位、定时、定量地实施一整套现代化农事 *** 作技术与监测管理的系统,是信息技术与农业生产全面结合的一种新型农业。而农业物联网信息化是农业生产的高级阶段,是集新兴的互联网、移动互联网、云计算和物联网技术为一体,依托部署在农业生产现场的各种传感节点,是智慧农业的解决方案。什么是智慧农业?极飞认为,智慧农业就是通过自动的智能农业设备和产品,推动农业产业链改造升级;实现农业精细化、高效化与绿色化,保障农产品安全、农业竞争力提升和农业可持续发展。简单一点来说就是用工具实现降本增效。现在的智慧农业系统一般都是只做到了监控,很多企业都甚至都做不到辅助决策,帮助农民解决种植的根本问题,完全算不上是智慧农业解决方案。极飞智慧农业管理系统是如何解决农民种植工作这个问题的:极飞投入大量成本在中国架设了2300多个RTK导航基站,覆盖超过
35,000 个农村。为了监测打药的最优环境,极飞铺设农田里的物联网,以无人机的使用优化反哺智慧农业的落地,“
有人说智慧农业就是农业物联网,但是初期的物联网设备成本极其高昂,一般的农业生产很难在其有效服务周期覆盖掉安装和运行成本,所以很多地方搞的智慧农业项目就是花巨资搞一大堆的价格昂贵的物联网设备,一两次展示宣传过后,很多设备就不能用了,特别是早期的设备,性能较差,质量不稳定,物联网设备更新换代比较快,平台稳定性和服务及时性太差,基本上都是面子工程。
农田里的物联网设备
如果你对智慧农业或者农业大数据有一定的了解,你一定讲过不少打着智慧农业或者农业大数据平台的各种大屏,虽然各地的大屏样式五花八门,但是基本内容都是差不多的东西,都是本地农业数据的一些可视化图表、GIS图表等内容,这东西就是相当于让你看一些东西看的比原来清楚一些,但是如果说这就是农业大数据平台,我觉得任何一个人只要稍微懂一些计算机,都可以通过一些BI系统或者阿里云的可视化服务模块快速搭建,实际的成本少的可能只要几千块钱左右,那么相比于现在大几十万甚至上百万的智慧农业或者农业大数据项目,政府岂不是当了冤大头?
土壤检测
文章来源:智慧农业是什么?
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)