IDC预测,到 2020年,全世界范围内的物联网市场将达到17万亿美元。不过,虽然物联网市场在疯狂增长,物联网开发者的数量却增长缓慢。事实上,一份由VisionMobile主导的研究表明,到2020年,物联网开发者的需求量将达到4500万。鉴于物联网解决方案的复杂性,物联网开发者需要掌握多样技能,以精通各种不同的组件和物联网解决方案开发的各个方面也就不足为奇了。
为了在获得投资收益的同时可以利用物联网创造价值,各企业不得不改变我们开发物联网解决方案的方法,以使这个过程不仅更容易,而且要更快速且有效。通过提供使所有开发物联网解决方案相关组件和工具互联的技术, 物联网平台可以解决这种困局。
2、利用物联网生态系统而非包办一切
除了物联网平台外,为了开发一个物联网解决方案,企业还不得不寻找其他组件(比如兼容硬件、扩展、适合第三方的集成、应用程序,等等)。与其筋疲力尽地去尝试构建所有这些内部组件,企业不如把注意力转向生态系统,这些要求生态系统都能够满足。看一看智能手机产业以及其在应用程序开发方面的巨大成就,就能很清楚地知道整个生态系统的共同努力会有什么样的影响力了。
利用生态系统及其现有的产品不仅能实现更高效率,而且会使生态系统中的每一个合作伙伴都能集中精力做到最好,这样最终我们将获得高质量的物联网解决方案。
3、开发满足未来需求的物联网解决方案
随着企业渐渐地将其业务整合到物联网,物联网解决方案的范围和要求也会定期地发生改变。能否有效地逐渐形成一个物联网解决方案,以及这些一直在变化的要求将最终定义解决方案在未来的有效性及价值。因此,选择在任何时候都能够容易地整合第三方系统和产品,并且能够利用其他组件实现扩展功能的物联网技术将不仅能满足企业目前的需求,还能满足未来项目的规模需求。
最后,要确保生态系统的合作伙伴和开发者(他们提供配套技术及开箱即用的功能)支持您选择的物联网技术,因为这样在长期来看会节省您的资源。
4、找到与您的方案完美整合的兼容技术
在开发您的物联网解决方案的过程中,最后您会不得不决定将哪种技术整合到您的解决方案中。这时您立即会想到的决定性因素是成本和功能,您可能还会考虑您打算使用的这些技术是否在物联网平台上进行了测试。
您应该想到要检验一下物联网平台的提供商是否提供了兼容和已测试技术清单,或者能够实现设备容易整合的预构建软件组件。通过这种方法您将节约很多资源,这些节约的资源无疑将是任何潜在节约成本的一部分。而这些仅仅通过基于技术价格做出的决定您可能就已经实现了。
5、促进协同以创造物联网价值
由于生态系统会提供您的解决方案所需的许多组件,所以生态系统在有效开发物联网解决方案中扮演着重要的角色。能否容易地利用生态系统将对您的开发过程产生直接的影响。物联网线上市场允许用户和物联网技术供应商通过简单且有效的途径进行合作并分享资源,这将使双方能够快速地得到结果。此外,通过合作创造价值以及分享预构建组件将使各行业更快地接受物联网。
6、在做任何购买决定前测试物联网技术
通常,在采用物联网技术时,用户在市场中没有多少机会获得任何使用物联网技术的经验。在作出任何购买决定前,您应该试着真正体验一下您打算购买的物联网技术。一些技术供应商会提供开发者论坛,在那里新手和有经验的用户都可以找到指导教程以了解技术的方方面面。
<p>
物联网时代的大数据策略
互联网时代,PC、Pad、智能手机等设备无处不在,数以亿计的用户通过微博、微信、SNS、博客等途径产生大量的自媒体数据,电商、新闻类网站、搜索引擎每时每刻都在记录着丰富的用户行为信息,海量的数据促进了云计算,分布式技术的发展,而这些技术反过来不仅推动了Web和移动互联网的革新,也推动了物联网的飞速前进。现在,我们正逐渐迈入物联网时代,实现万物互联的愿景,如果说之前人是信息生产的主体,那么或许不久的将来设备将成为主角,它们将源源不断地产生与人相关的衣食住行信息,这些信息会通过云计算、数据挖掘等技术实现价值的升华从而为用户提供更优质、贴心的服务。那么物联网时代会产生什么样的数据,应该采用什么样的大数据策略呢?
THINKstrategies 的总经理 Jeff Kaplan 在自己的博文《 当物联网遇见大数据 》中写道:
“你不能使用现在的策略,因为可以被捕获、管理并利用的数据将更加多样化,同时用例也会更加丰富。附加到各种设备和对象上的传感器会产生各种类型的数据。这些数据将会用于各种响应式的、主动的或者 创造性的目的 。IT部门的任务就是与业务部门一起工作,完全理解物联网方面的用例,然后寻找满足业务需求的技术。特别是,IT部门必须识别出最优的分析平台和工具,让业务用户能够获取到需要的数据,分析数据的含义并快速地做出响应。”
Gartner公司的副总裁、著名分析师 Joe Skorupa 认为:
“分布在世界各地的物联网设备将产生大量的输入数据,将所有的数据传送到一个位置进行处理无论从技术上还是从经济上都是无法实现的。最近的趋势——将应用程序集中起来以便于降低成本并增强安全性——并不适合物联网。组织必须将数据集中到多个分布式的小型数据中心中,在此对数据进行初步的处理并发送到一个中心站点进行额外的处理。数据中心管理员需要在这些区域部署更加具有前瞻性的容量以满足业务发展的需要。”
Patrick McFadin则在自己的博文《 物联网:数据都去了哪里? 》中阐述了一个具体的数据策略解决方案。他认为整个过程可以分为三个阶段:产生数据并通过Internet传递、中央系统收集并组织数据、持续的数据分析与使用。
第一阶段需要决定数据创建的标准以及如何通过网络进行传递。Patrick McFadin认为可以通过>
以上是小编为大家分享的关于物联网时代的大数据策略的相关内容,更多信息可以关注环球青藤分享更多干货
物联网的发展能够带给我们更多的便利,并且也能够让越来越多的人实现自己的目标,因为物联网的确是越来越发达的,而且物联网也能够提供更多优势。物联网能够成为越来越多企业运用的载体,而且也能够为企业带来更多实惠。
有很多人都比较看好物联网的发展前景,而且也能够对物联网进行更多的分析和研究。中科院院士谈物联网发展趋势,物联网的发展前景如何?我认为物联网的发展前景特别好,之所以好的原因有三个:
一、物联网的应用领域越来越广。
在这个万物互联的时代,物联网的发展前景的确会越来越好,因为物联网能够有越来越广的应用领域,而且也能够覆盖更广的范围,有越来越多的企业和居民能够使用到物联网。物联网能够带给我们更多的利益,并且也能够让更多人的生活变得越来越简单。
二、物联网的覆盖人群越来越多。
物联网的发展前景之所以这么好,就是因为物联网的确能够覆盖越来越多的人群,能够实现全民使用互联网的目标。物联网受到了越来越多人的重视,而且也能够越来越发达,能够成为更多人的首选。当物联网的覆盖人群越来越多时,就会促进物联网的发展。
三、物联网的价值越来越大。
物联网的确能够更具发展前景的,因为物联网能够发挥越来越大的作用和价值,当越来越多的人都能够认识到物联网的价值时,就能够进一步促进物联网的发展,而且物联网的确能够成为越来越发达而且重要的网络体系。物联网的确能够拥有更高的支持度,而且也能够在无形之中增加更多的使用人数。
总之,物联网的发展前景特别好。
中国发展网7月3日讯 7月2日下午2点半,一场主题为“释放工业物联网的潜力”论坛在2019夏季达沃斯大连举行。《巴伦周刊》高级管理编辑Lauren Rublin现场主持,富士康工业互联网副董事长李杰,密西根大学交大密西根学院荣誉院长及吴贤铭制造科学冠名教授倪军、SCA集团执行董事Bhairavi Jani、SAP执行副总裁兼企业战略主管Deepak Krishnamurthy4位嘉宾一起探讨关于“工业物联网”目前的阶段、挑战及带来的巨大价值。
从左往右依次为《巴伦周刊》高级管理编辑Lauren Rublin,富士康工业互联网副董事长李杰,密西根大学交大密西根学院荣誉院长及吴贤铭制造科学冠名教授倪军、SCA集团执行董事Bhairavi Jani、SAP执行副总裁兼企业战略主管Deepak Krishnamurthy
刘沐琪摄图
工业物联网现今挑战大于发展
现场多名专家都认为,工业物联网目前仍处于早期阶段,信息所有权、数据分享规则制定的相关问题也存在着争议。富士康工业互联网副董事长李杰认为,互联网改变生活工业物联网改变业界。工业物联网本质上就是D2D(DATA TO DECISION),即通过数据做出决策,企业不管是谁先掌握工业物联网并引导转型,谁就有责任和义务进行标准的制定。
密西根大学交大密西根学院荣誉院长及吴贤铭制造科学冠名教授倪军在现场表示非常赞同李杰的观点,同时他也提出,相关学者已经做了大量研究,并早已绘制相关路径图,更多地展示了工业物联网如何改变企业的KPI(关键绩效指标),很多国家的政府也在鼓励这项新的技术,但是从企业的角度和反馈上来讲物联网还处于早期的阶段,特别是数据的分享、安全和所有权问题还处于早期的阶段。
倪军解释,因为物联网类似 社会 互联网,需要人们彼此连接,搜索世界上所有的供应方,而销售方也会有这样的驱动力去搜索。与之不同的是,在工业物联网中,会存在各种潜在的障碍,去阻碍这样的连接和搜索。例如,在工业物联网当中涉及到商业机密,企业通常不愿意和友商共享这些数据。
SCA集团执行董事Bhairavi Jani表示,现今一个产品的问世需要一系列不同的零部件,生产过程中涉及到大量的供应链不仅仅是独立且孤立的,供应链中存在着海量数据对物流企业来说蕴藏着很大的发展机会。工业物联网不仅仅涉及到现代化的生产,并且涉及到整个的产品生产、消费、运输等全产业周期。
SAP执行副总裁兼企业战略主管Deepak Krishnamurthy认为,工业物联网需要有一个通用的语言才能信息共享从而创造价值。目前,工业物联网仍处于通用语言开发的初期。他表示,倪军教授所说的“信息所有权”是一个比较棘手和敏感的问题,同时也是复杂的 社会 性的问题,在国际化的供应链中,如何进行跨国的分享数据也是目前世界工业物联网共同面临的问题,同样也是SAP目前试图解决的问题。
至于数据分享规则制定的规律,富士康工业互联网副董事长李杰认为,富士康一直在引导业界转型,他举例说明,富士康有175万个机床,这些机床在制造环节会产生大量的数据,通过数据改进绩效是不少供应商的愿望。因此这些供应商希望与富士康合作,从而更快实现需求响应。不同的数据来源联系起来就需要保持一个标准,对于规模相对较小的企业,李杰认为这并非意味着小企业毫无作为。事实上,大型供应商会分享给小企业,这些小企业必须有更快的进程,从而更敏捷地填补大企业的空白以及大企业没有认识到的机会。
工业物联网释放更大价值和机会
SAP执行副总裁兼企业战略主管DeepakKrishnamurthy提出工业物联网已经释放出大量的机会和价值,SAP进军更多消费品领域期待创造更多价值、开放更多市场,也将会有更多的合作伙伴。工业产品不再是过去生产制造的模式,工业物联网用到的设备高能效,在生产过程中减少碳的排放。
富士康工业互联网副董事长李杰认为,工业物联网改变业界主要有三点,第一是用前所未有的方式更快生产;第二是运用智能手机就可以实现更大规模更加灵活的远程管理;三是基于事实、证据、数据,通过询证的方式作出判断,从而更加可持续发展。
专家纷纷在现场用实际案例举证工业物联网在未来将释放出怎样的价值和机会。富士康工业互联网副董事长李杰提出“灯塔”项目,该项目跟世界经济论坛合作,给想做工业物联网的公司提供从传统产业模式转化为先进的产业模式的范例,通过垂直客户和供应链的整合,用教训经验推动生态系统的转变。
密西根大学交大密西根学院荣誉院长及吴贤铭制造科学冠名教授倪军举例 汽车 整车厂商和IT之间的合作,通用跟生产机器人的厂家合作,产权转移给最终用户,思科提供安全的网络方案收集机器人数据第三方,预测机器人停工的时间,机器人把空闲几分钟有效利用起来可以节约几百万美元,同时生产机器人的公司可以通过数据了解自己的产品未来需要改进的方面。
SCA集团执行董事Bhairavi Jani讲了两个案例,一是三个做消费产品的客户使用工业物联网,供应链收集客户信息更加敏捷。二是初创企业在使用技术帮助农户根据市场需求来实现生产,带来了经济效益和 社会 效益。
SAP执行副总裁兼企业战略主管Deepak Krishnamurthy带来了SAP和微软有一个开放数据信息服务合作项目,这些消费数据整合在一起,越来越多的企业参与进来,在这个平台可以相互合作可以提出具有共性的价值主张,帮助客户实现更大的价值。
工业物联网是指在工业中应用物联网技术,实现工业特有的价值增值的技术模式。所有物联网都是为了实现万物互联,特别是物与物的互联,但是工业物联网又有其专有属性,原因是与工业物联网相对的消费物联网本身的联网密度、联网的实时性、联网物的异质化要求都不高,而工业物联网的要求主要表现在联网密度、联网实时性及联网异质化三个方面。
思考所有问题都需要从宏观到微观的细化过程,工业物联网也不能例外,我认为对工业物联网进行深度思考,需要从以下五个维度进行分析,否则将会要么带来一叶障目,要么带来好高骛远。
首先需要我们思考的问题是,工业物联网的价值、意义和目的是什么;第二个是工业物联网需要连什么的问题,这是一个范围的概念;第三个需要我们思考的是连入物联网的物的层级问题,也就是深度的问题;第四个需要我们思考的是实现物联的价值成本分析;第五个需要我们思考的是如何建设工业物联网。
互联网实现了计算机与计算机的连接,或者说实现了人与人的连接,这个连接带来了人的交互的便利,在这个基础上涌现出很多全新的、颠覆性的商业模式,例如,电子商务、即时通讯,社交媒体等等;而物联网将实现人与物、物与物的连接,同样我们也期望带来全新的、颠覆性的商业模式,甚至更进一步,期望带来人类生活、生产方式的全新的颠覆性的模式。
作为物联网主战场的工业物联网,人们对其的期许是在工业设计、制造、流通环节带来革命性的变革,为传统工业注入新的活力,提供新的势能,驱动工业在更高维度上发展、创新、乃至变革。随着计算、存储能力的提升,特别是大数据、人工智能的发展,任何行业对数据获取手段都提出了前所未有的要求。对数据获取手段的要求主要表现在四个特征,第一是高效性;第二是准确性;第三是实时性;第四是经济型;在当前技术能力下,能够同时满足这四个特征的就是工业物联网,首先,芯片技术已经发展到一个具有较强计算能力的MCU在美元以下,RFID芯片价格甚至已经到美分这个量级,使得工业物联网有了物质基础,同时满足了经济性要求;近三十年的通讯技术的发展,从模拟到数字,从简单调制到复杂调制技术的商用化,使无线通讯可以很廉价地覆盖几百米甚至数公里的范围,满足了数据获取的密集部署要求,同时由于工业物联网的永久在线的特征,使工业物联网满足数据获取的高效性、实时性要求;微电子技术在近年也发生了突飞猛进的发展,不论在价格上还是在进度上都有了长足的突破,满足了数据获取的准确性。
总而言之,工业物联网的出现是在以下几个条件成熟时涌现出来的不可逆转的趋势:
1、快速变化的市场需要数据支撑,产生了市场对数据获取的急切要求;
2、MCU的发展使得计算能力快速提升;
3、以调制技术为核心的通讯技术发展为联网建立的管道基础;
4、传感技术,特别是以MEMS为标志的微电子技术的发展给予感知世界提供的保证;
工业物联网不是规划出来的,是各种技术与需求发展进化的产物,是生活、生产、经济发展到一定高度后自然而然出现的,是在需求的驱动下,众多行业创新带了的自然产物。
通过工业物联网,可以把传统经济中不可数字化之物数字化,可以把传统不可数字化之行为数字化,可以把传统不可能变为可能,甚至变为容易获得、解决的方案。
这个问题是第一个问题的延续,如果不考虑经济性,那么我们可以说工业物联网连接一切可连接之物,但是,当我们在做一个务实的、有价值的方案时就不能不考虑可行性及经济性,那么工业物联网连什么呢?我们认为这是一个从哪里来到哪里去的问题,我们通过上面对价值、意义和目的分析可知,我们应该从目的反推,一切从目的出发,时刻盯紧企业需要弥补的最关键环节,例如,如果对量化OEE有需求,那么我们就要连接设备状态;如果要减少在制品,那么我们就要对在制品进行追踪;如果能源消耗对企业是重中之重,那么我们就要把能效物联化,等等。世界上不存在同样的两片树叶,同样地,世界上也不存在同样的两个企业,我们只能对企业本身进行深入分析,紧紧聚焦于企业价值,在保证经济性的基础上,确定工业物联网的实施范围方案。联网范围一个核心点是连入物的属性,也就是说我们通过分析连入物的属性与企业建设工业物联网目标的耦合度,决定需要实施工业物联网的广度。
通过分析工业物联网连什么后,我们得到了连入物的内容,接下来需要我们决定是对每个/每类连入物我们该数字化哪些属性,这里遇到工业物联网特有的一个障碍,需要连入工业物联网的物的可连通性问题, 特别是在设备互联时,可连通性表现的特别突出,例如,有的设备具有开放的通讯协议和可用的通讯接口,有的设备不开放协议等等,那么可连通性就是对方案供应商的很大的考验,我们的经验是有四种方案可供选择:
1、使用设备开放的协议;
2、使用设备自带的传感器;
3、添加新的传感器;
4、改变观察侧面及维度,使用全新的采集模式;
其中第四条,改变观察的侧面和维度,使用全新的连接方式是使用第一性原理,避开设备不开放协议或接口的阻碍,避开被设备供应商牵着鼻子走的方向,从本质上获取数据。例如:通过能效检测获得设备的使用状态,通过震动传感分析设备部件的故障、甚至是转速等,只要通过第一性原理从你需要的信息入手,而不是被动地从设备可以提供的数据入手来提供物联解决方案的方式。直接把我们需要的信息做为目标,观察除了直接连接设备外,我们还能够如何获得需要的信息,因为只有我们获得的数据能够与设备提供的数据在信息上能够“同构”即可。例如,我们可以在我们的物联设备上安装一个震动传感器,从传感器获得的数据中,我们即得到了设备是否开机,又得到了是否启动工作,同时还得到设备的转速。如果不用第一性原理,而是硬要跟设备互联,那至少要采集三个数据,并且未必设备能够给你。这就是典型的边缘计算的案例,边缘计算的计算规则一定要具有定制能力,可以说边缘计算一定是一个知识容器,可以方便地把客户、厂家,甚至是第三方的知识融入的容器,我们开发的支持脚本的设备已经具有了初步的边缘计算的功能,我们需要在这个方面继续加大支持力度。
所以,通过分析企业价值和物的可连通性,我们就可以明确定义需要连入物层级,也就明确了连入物的连接深度;
在连入物联网的物的层级中一个重要的概念是管理粒度,对于制造业来说,连入物的管理粒度大概分为如下几个层级:
1、传感级;
2、设备级;
3、产线级;
4、车间级;
5、企业级;
也就是说我们要在经济性可行的前提下定义数据获取的粒度。理论上讲,细粒度一定比粗粒度更好,更有价值,但是当加入成本分析后,可能并不一定粒度越细越好,需要按照各种制约因素找到一个平衡点。
价值成本永远在企业行为中持有权值最高的赞同或者否决的一票,通过前三项分析,我们仅剩下最后一个问题没有解决,这也是关乎价值成本的关键:管理粒度问题,我们到底需要在多细的粒度下进行管理?这带来了一个哲学问题:世界是不是需要黑盒子。什么意思呢?当我们确定一个管理粒度后,比管理粒度更细的信息将被隐藏在黑盒子中,这个黑盒子将成为我们分析深度或者认知深度的制约因素和约束条件。我们可以通过价值成本分析来找到这个平衡点,从而明确黑盒子的大小,并最终确定连入工业物联网的物的特性。
我们的期许是工业物联网建设的价值观,其他一起都是方法论。首先,我们在规划物联网时要本着既要有高瞻远瞩,又要有务实可行的精神。在思考黑盒子的大小时我们要高瞻远瞩,设计方案尽可能地以黑盒子尽量小为目标,而实施方案则按照价值成本分析选择合适的黑盒子的大小,也就是选择合适的管理粒度,从而保证投入收益的平衡,甚至我们可以把黑盒子尽量定义的大些,用以验证工业物联网的可行性,最大可能地降低工业物联网实施的风险。
总之,我们应该从以几个方案来确定工业物联网的建设原则:
1、期望获得什么结果?
2、期望用什么方式获得想要的结果?
3、需要信息基础提供什么?
4、工业物联网是否能够获得这些信息?
5、工业物联网如何获得这些信息?
6、获得这些信息的性价比如何?
7、回归分析,评估预期结果是否符合经济利益?
8、落地实施。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)