随着物联网的逐渐铺开,人们已经在生活中看到了越来越多的物联网模块:智能水表,共享单车,等等。目前的物联网仍然主要由运营商推动,物联网模块需要使用标准蜂窝协议与基站通讯。由于基站需要覆盖尽可能大的面积,因此物联网模块需要能做到在距离基站很远时仍能通讯,这就对于物联网模块的射频发射功率有了很高的要求;从另一个角度来说,物联网模块在做无线通讯时仍然需要消耗高达30mA的电流,这使得目前的物联网模组仍然需要配合较高容量的电池(如五号电池)才能工作,这也导致了物联网模组的尺寸很难做小。
为了能进一步普及物联网,必须克服这个功耗以及尺寸的限制。例如,如果未来要把物联网做到植入人体内,则不可能再搭配五号电池,而必须使用更小的电池甚至使用能量获取系统从环境中获取能量彻底摆脱电池的限制。为了实现这个目标,从通讯协议上说,可以使用更低功耗的自组网技术,类似BLE;而从电路实现上,则必须使用创新电路来降低功耗。
能量获取技术
根据之前的讨论,目前电池的尺寸和成本都已经成为了限制IoT设备近一步进入潜在市场的瓶颈。那么,有没有可能使用从环境中获得能量来支持物联网节点工作呢这种从环境中获取能量来支持物联网节点工作的模块叫做“能量获取”(energy harvesting),目前能量获取电路芯片的研究已经成为了研究领域的热门方向。
目前最成熟的能量获取系统可以说是太阳能电池。传统太阳能电池能提供较好的能量获取效率,但是付出的代价是难以集成到CMOS芯片上。最近,不少研究机构都在使用新型CMOS太阳能电池,从而可以和物联网节点的其他模块集成到同一块芯片上,大大增加了集成度并减小模组尺寸。当然,集成在CMOS芯片上的太阳能电池需要付出低能量输出的代价,目前常见的CMOS片上太阳能电池在室内灯光下能提供nW等级的功率输出,而在强光下能提供uW级别的功率输出,这就对物联网模组的整体功耗优化提出了很高的要求。另一方面,也可以将能量获取与小尺寸微型电池配合使用,当光照较好时使用太阳能电池而在光照较弱时使用备用电池,从而提升整体物联网模组的电池寿命。
除了太阳能电池外,另一个广为人知的环境能量就是WiFi信号。今年ISSCC上,来自俄勒冈州立大学的研究组发表了从环境中的WiFi信号获取能量的芯片。先来点背景知识:WiFi的最大发射功率是30dBm(即1W),在简单的环境里(即没有遮挡等)信号功率随着与发射设备的距离平方衰减,在距离3m左右的距离信号功率就衰减到了1uW(-30dBm)左右,而如果有物体遮挡则会导致功率更小。俄勒冈州立大学发表的论文中,芯片配合直径为15cm的天线可以在非常低的无线信号功率(-33dBm即500nW)下也能工作给电池充电,能量获取效率在5-10%左右(即在距离发射源3m的情况下输出功率在50nW左右)。因此,WiFi信号也可以用来给物联网模组提供能量,但是其输出功率在现实的距离上也不大,同样也需要节点模组对于功耗做深度优化。
另外,机械能也可以作为物联网节点的能量获取来源。压电效应可以把机械能转换为电能,从而使用压电材料(例如压电MEMS)就能为物联网节点充电。使用压电材料做能量源的典型应用包括各种智能城市和工业应用,例如当有车压过减速带的时候,减速带下的物联网传感器上的压电材料可以利用车辆压力的机械能给传感器充电并唤醒传感器,从而实现车辆数量统计等。这样,机械压力即可以作为需要测量的信号,其本身又可以作为能量源,所以在没有信号的时候就无需浪费能量了!压电材料的输出功率随着机械能的大小不同会有很大的区别,一般在nW-mW的数量级范围。
唤醒式无线系统
传统的IoT无线收发系统使用的往往是周期性通讯或主动事件驱动通讯的方案。周期性通讯指的是IoT节点定期打开与中心节点通讯,并在其他时间休眠;事件驱动通讯则是指IoT节点仅仅在传感器监测到特定事件时才与中心节点通讯,而其它时候都休眠。
在这两种模式中,都需要IoT节点主动与中心节点建立连接并通讯。然而,这个建立连接的过程是非常消耗能量的。因此,唤醒式无线系统的概念就应运而生。
什么是唤醒式无线系统就是该该系统在大多数时候都是休眠的,仅仅当主节点发射特定信号时才会唤醒无线系统。换句话说,连接的建立这个耗费能量的过程并不由IoT节点来完成,而是由中心节点通过发送唤醒信号来完成。
当建立连接的事件由中心节点来驱动时,一切都变得简单。首先,中心节点可以发射一段射频信号,而IoT节点可以通过能量获取(energy harvesting)电路从该射频信号中获取能量为内部电容充电。当IoT节点的电容充电完毕后,无线连接系统就可以使用电容里的能量来发射射频信号与中心节点通讯。这样一来,就可以做到无电池 *** 作。想象一下,如果不是使用唤醒式无线系统,而是使用IoT主动连接的话,无电池就会变得困难,因为无法保证IoT节点在需要通讯的时候在节点内有足够的能量。反之,现在使用唤醒式系统,中心节点在需要IoT节点工作时首先为其充电唤醒,就能保证每次IoT节点都有足够能量通讯。
那么,这样的唤醒式无线系统功耗有多低呢在2016年的ISSCC上,来自初创公司PsiKick发表的支持BLE网络的唤醒式接收机在做无线通讯时仅需要400 nW的功耗,而到了2017年ISSCC,加州大学圣地亚哥分校发表的唤醒式接收机更是把功耗做到了45 nW,比起传统需要毫瓦级的IoT芯片小了4-6个数量级!
来自UCSD的45 nW超低功耗唤醒式接收机
反射调制系统
唤醒式接收机主要解决了无线链路中如何低功耗接收信号的问题,但是在如果使用传统的发射机,则还是需要主动发射射频信号。发射机也是非常费电的,发射信号时所需的功耗常常要达到毫瓦数量级。那么,有没有可能在发射机处也做一些创新,降低功耗呢
确实已经有人另辟蹊径,想到了不发射射频信号也能把IoT节点传感器的信息传输出去的办法,就是由华盛顿大学研究人员提出的使用发射调制。反射调制有点像在航海和野外探险中的日光信号镜,日光信号镜通过不同角度的反射太阳光来传递信息。在这里,信号的载体是太阳光,但是太阳光能量并非传递信号的人发射的,而是作为第三方的太阳提供的。类似的,华盛顿大学研究人员提出的办法也是这样:中心节点发射射频信号,IoT节点则传感器的输出来改变(调制)天线的发射系数,这样中心节点通过检测反射信号就可以接收IoT节点的信号。在整个过程中IoT节点并没有发射射频信号,而是反射中心节点发出的射频信号,这样就实现了超低功耗。
华盛顿大学的Shyam Gollakota教授率领的研究组在反射调制实现的超低功耗IoT领域目前已经完成了三个相关项目。去年,他们完成了passive WiFi和interscatter项目。Passive WiFi用于长距离反射通信,使用WiFi路由器发射功率相对较高的射频信号,而IoT节点则调制天线反射系数来传递信息。多个IoT节点可以共存,并使用类似CDMA扩频的方式来同时发射信息。interscatter则用于短距离数据传输,使用移动设备发射功率较低的射频信号,而IoT节点则调制该射频信号的反射来实现信息传输的目的。Passive WiFi和interscatter芯片的功耗都在10-20微瓦附近,比起动辄毫瓦级别的传统IoT无线芯片小了几个数量级,同时也为物联网节点进入人体内等应用场景铺平了道路。
Passive WiFi(上)与Interscatter(下)使用反射调制,分别针对长距离与短距离应用。
Passive WiFi和Interscatter还需要使用电信号因此需要供电,而Gollakota教授最近发表的Printed WiFi则是更进一步,完全不需要供电了!
在物联网的应用中,许多需要检测的物理量其实不是电信号,例如速度,液体流量等等。这些物理量虽然不是电物理量,但是由于目前主流的信号处理和传输都是使用电子系统,因此传统的做法还是使用传感器电子芯片把这些物理量转化为电信号,之后再用无线连接传输出去。其实,这一步转化过程并非必要,而且会引入额外的能量消耗。Printed WiFi的创新之处就是使用机械系统去调制天线的反射系数,从而通过反射调制把这些物理量传输出去。这样,在IoT节点就完全避免了电子系统,从而真正实现无电池工作!
目前,这些机械系统使用3D打印的方式制作,这也是该项目取名Printed WiFi的原因。
上图是Printed WiFi的一个例子,即转速传感器。d簧、齿轮等机械器件在上方测速仪旋转时会周期性地闭合/打开最下方天线(slot antenna)中的开关,从而周期性地(周期即旋转速度)改变最下方天线的反射特性,这样中心节点只要通过反射射频信号就能读出旋转速度。最下方的图是该传感器在不同转速时的反射信号在时间域的变化情况,可见通过反射信号可以把转速信息提取出来。
超低功耗传感器
物联网节点最基本的目标就是提供传感功能,因此超低功耗传感器也是必不可少。目前,温度、光照传感器在经过深度优化后已经可以实现nW-uW数量级的功耗,而在智能音响中得到广泛应用的声音传感器则往往要消耗mW数量级甚至更高的功耗,因此成为了下一步突破研发的重点。
在声音传感器领域,最近的突破来自于压电MEMS。传统的声音传感器(即麦克风)必须把整个系统(包括后端ADC和DSP)一直处于活动待机状态,以避免错过任何有用的声音信号,因此平均功耗在接近mW这样的数量级。然而,在不少环境下,这样的系统其实造成了能量的浪费,因为大多数时候环境里可能并没有声音,造成了ADC、DSP等模组能量的浪费。而使用压电MEMS可以避免这样的问题:当没有声音信号时,压电MEMS系统处于休眠状态,仅仅前端压电MEMS麦克风在待命,而后端的ADC、DSP都处于休眠状态,整体功耗在uW数量级。而一旦有用声音信号出现并被压电MEMS检测到,则压电MEMS麦克风可以输出唤醒信号将后面的ADC和DSP唤醒,从而不错过有用信号。因此,整体声音传感器的平均功耗可以在常规的应用场景下可以控制在uW数量级,从而使声音传感器可以进入更多应用场景。
超低功耗MCU
物联网节点里的最后一个关键模组是MCU。MCU作为控制整个物联网节点的核心模组,其功耗也往往不可忽视。如何减小MCU的功耗MCU功耗一般分为静态漏电和动态功耗两部分。在静态漏电部分,为了减小漏电,可以做的是减小电源电压,以及使用低漏电的标准单元设计。在动态功耗部分,我们可以减小电源电压或者降低时钟频率来降低功耗。由此可见,降低电源电压可以同时降低静态漏电和动态功耗,因此能将电源电压降低的亚阈值电路设计就成了超低功耗MCU设计的必由之路。举例来说,将电源电压由12V降低到05V可以将动态功耗降低接近6倍,而静态漏电更是指数级下降。当然,亚阈值电路设计会涉及一些设计流程方面的挑战,例如如何确定亚阈值门电路的延迟,建立/保持时间等都需要仔细仿真和优化。在学术界,弗吉尼亚大学的研究组发布了动态功耗低至500nW的传感器SoC,其中除了MCU之外还包括了计算加速和无线基带。在已经商业化的技术方面,初创公司Ambiq的Apollo系列MCU可以实现35uA/MHz的超低功耗,其设计使用了Ambiq拥有多年积累的SPOT亚阈值设计技术。在未来,我们可望可以看到功耗低至nW数量级的MCU,从而为使用能量获取技术的物联网节点铺平道路。
结语
随着物联网的发展,目前第一代广域物联网已经快速铺开走进了千家万户。然而,广域物联网节点由于必须满足覆盖需求,因此射频功耗很难做小,从而限制了应用场景(例如人体内传感器等无法使用大容量电池的场景)。局域物联网将会成为物联网发展的下一步,本文介绍的能量获取技术配合超低功耗无线通信、MCU和传感器可望让物联网节点突破传统的限制,在尺寸和电池寿命方面都得到革命性的突破,从而为物联网进入可植入式传感器等新应用铺平道路。
以上由物联传媒转载,如有侵权联系删除
新型电力系统的“新”主要表现为以下几个方面:
电源结构由可控连续出力的煤电装机占主导,向强不确定性、弱可控性出力的新能源发电装机占主导转变。
负荷特性由传统的刚性,纯消费性向柔性、生产与消费兼具型改变。
电网形态方面,传统电力系统是单向逐级输电为主,新型的包括交直流混联大电网、微电网、局部直流电网和可调节负荷的能源互联网。
运行特性的转变,传统电网是由“源随荷动”的实时平衡模式,大电网一体化控制模式。
新型电力系统是向“源网荷储”协同互动的非完全实时平衡模式,大电网与微电网协同控制模式转变。新型电力系统基本五大特征是清洁低碳、安全可控、灵活高效、智能友好、开放互动。
在新型电力系统下,电网运行逐渐呈现智能化、数字化的特点。发展“源网荷储一体化”运行急需“云大物移智链边”其中的云计算、大数据、电力物联网、边缘计算等技术手段,让电网系统配备拥有海量数据处理分析、高度智能化决策等能力的云端解决方案。从而实现各类能源资源整合、打通能源多环节间的壁垒,让“源网荷储”各要素真正做到友好协同。
数字技术为新型电力系统建设带来诸多新可能:广泛互联互通、全局协同计算、全域在线透明、智能友好互动。因此,新型电力系统建设必然要求数字技术与能源技术深度融合、广泛应用,实现电网数字化转型。电网数字化转型与新型电力系统构建需要相互作用、相融并进,没有电网数字化转型就没有新型电力系统。
智慧“双碳”微电网场景进行数字孪生,有效实现源网荷储一体化管控。整体场景采用了轻量化建模的方式,重点围绕智慧园区电网联通中的源、网、荷、储四方面的设备和建筑进行建模还原。
采用轻量化重新建模的方式,支持 360 度观察虚拟园区内源网荷储每个环节的动态数据,通过自带交互,即可实现鼠标的旋转、平移、拉近拉远 *** 作,同时也实现了触屏设备的单指旋转、双指缩放、三指平移 *** 作不必再为跨平台的不同交互模式而烦恼。
还搭建过智慧电力可视化解决方案,以数字化为载体,依托数据共享优势,将专业横向融合,打破系统间的信息壁垒,把不同类型的分布式资源“聚沙成塔“,构建源网荷储一体化互动体系。实现从能源生产侧到应用侧的数据监测、数据融合、数据显示、设备维护联动管控,让“源网荷储”各要素真正做到友好协同。
围绕电厂负荷监测、调节策略、执行考核与效果分析三个层级,部署一套具备自主调控、快速响应、科学研判的综合性、多功能、集约化智慧电力综合管控平台。
可视化大屏将碎片化、小规模、多类型的分布式电源(Distributed Generator, DG)、储能系统、柔性负荷等众多可调节资源进行聚合协调。从负荷预测、运行效果、调度优化、电网互动、策略配置、市场交易等维度出发,贯穿了发、输、变、配、用各个环节。深化电力需求侧管理,实现对分布式资源的实时采集与科学配置。同时为并网运行后,对大电网的调频、调峰、调压等做辅助支撑,缓解电网运行压力。
应用丰富的图表组件,选以分类、组合、排序等风格,简化数据浅显易懂,让分类施策取代粗放管理,让系统量化分析取代决策者主观判断,让决策者一眼望穿负荷特性,并在必要的时刻及时调整配网运行方式。在强化电厂的运行调控能力的同时,也提高了经济效益降低防范风险。
可视化大屏有效聚合可控负荷的模式,突破传统电力系统之间的界限,充分激发和释放用户侧灵活调节能力,通过市场化因素引导用户用电行为调整负荷曲线,促进能源供应效益最大化。过去离散刻板的静态数据在Hightopo可视化技术的加持下,充分激发了数字的活力,赋予动态的加载效果,更加利于揭示数据之间复杂关系。
同样也支持采用 3D 轻量化建模形式,将多种复杂的电力管理信息聚集在虚拟仿真环境下,结合专业分析预测模型,对运维设备、运行状态、控制系统进行实时动态采集与多角度并行分析,辅助决策者管理工作的颗粒度更精细、响应更敏捷、行为更智能。
新型电力系统发电侧重主体发生变化了,以后以光伏和风电等新能源发电为主,这样就会从原来集中式电源模式变成“集中和分布式”共同发展的模式。同时由于光伏和风电具有波动性、间歇性和随机性的特点,所以储能在新型电力系统的运作中就变得尤为重要。所以新型电力系统就是要建立“源网荷储”的运作模式,也就是电源、电网、负荷、储能各环节协调互动,实现安全稳定的运行。
可视化把不同类型的分布式资源“聚沙成塔“,构建源网荷储一体化互动体系。实现从能源生产侧到应用侧的数据监测、数据融合、数据显示、设备维护联动管控,让“源网荷储”各要素真正做到友好协同。
该培训计划内容如下:1、物联网基础知识:介绍物联网的基本概念、技术架构、应用场景等,帮助学员了解物联网的基本原理和应用。
2、电力物联网应用:介绍电力物联网在电力生产、输配电、用电管理等方面的应用,帮助学员了解电力物联网的应用场景和实际应用。
3、物联网技术:介绍物联网相关的技术,包括传感器技术、无线通信技术、云计算技术等,帮助学员了解物联网技术的基本原理和应用。
4、数据分析与处理:介绍数据分析与处理的基本方法和工具,帮助学员了解如何对物联网产生的大量数据进行分析和处理。A股中大涨的公司都有的特点就是,不单要有实力,还要有市场追捧的热度才能行,这篇文章就跟大家聊聊电力物联网这个话题,介绍几家有实力有热度的龙头!
国电南瑞:该公司是我国电力自动化、轨道交通监控的技术、设备、服务供应商和龙头企业。
西力科技:公司在配用电新业务方面, 通过已经开发的智能计量网关、 智慧插座等产品拓展市场应用布局, 并加强与通信运营公司的合作, 深耕电力物联网市场。最近很多机构都非常看好该公司!
威胜信息:该公司的话,电力物联网经验丰富,坚持技术创新,引领国内电力物联网通信网关技术标准,市场份额名列前茅,在智慧水务、燃气、消防、工商业园区等领域系统布局涵盖应用层、网络层、感知层的整体方案,物联网国内连接数超过一亿用户,海外连接数超过一千万用户。
三德科技:这家公司的产品很多,公司燃料智能化管控系统是基于燃料管理的客观需求,具有感知、识别、记忆、决策等智能特征,可实现在线监测、远程监视、自动报警、控制、诊断和维护等功能,有效实现燃料全过程无人干预、智能管理,最终达成火电企业安全、经济、环保运行之目标,成为电力物联网的一环。公司产品获得了一批高质量客户的青睐,其中包括国投、华电等代表性集团客户。
红相股份:该公司与杭州趣链科技有限公司经友好协商一致,双方就泛在电力物联网等领域开展合作的事宜,达成《战略合作框架协议》。
以上的这几家公司,都算是整个行业里的龙头,都有很大的发展潜力,值得投资者们都研究一下,希望这篇文章能给正在寻找投资方向的朋友们一些启发!
什么是“泛在电力物联网”?要建一个什么样的泛在电力物联网?
01
为什么要建泛在电力物联网?
国家电网公司在2019年两会报告中提出建设世界一流能源互联网企业的重要物质基础是要建设运营好“两网”,这里所说“两网”分别是“坚强智能电网”和“泛在电力物联网”。泛在电力物联网这个名词首次出现在国家电网公司的两会报告中,成为和坚强智能电网相提并论的重点工作。
首先来看国网2019年1号文件是怎么说的:在2019年1月13日发布的国家电网有限公司2019年1号文件中,排在年度重点工作首位的就是:推动电网与互联网深度融合,着力构建能源互联网。具体内容是:“持之以恒地建设运营好以特高压为骨干网架、各级电网协调发展的坚强智能电网……。充分应用移动互联、人工智能等现代信息技术和先进通信技术,实现电力系统各个环节万物互联、人机交互,打造状态全面感知、信息高效处理、应用便捷灵活的泛在电力物联网,为电网安全经济运行、提高经营绩效、改善服务质量,以及培育发展战略性新兴产业,提供强有力的数据资源支撑。承载电力流的坚强智能电网与承载数据流的泛在电力物联网,相辅相成、融合发展,形成强大的价值创造平台,共同构成能源流、业务流、数据流“三流合一”的能源互联网。”
可以认为一号文件中对泛在电力物联网的定义以及在能源换联网中的重要地位作出了明确地官方解释。一号文件的重点工作之二是:培育壮大发展新动能,创新能源互联网业态。其具体内容是:研究探索利用变电站资源建设运营充换电(储能)站和数据中心站的新模式,积极推动公司通信光纤网络、无线专网和电力杆塔商业化运营,拓展服务客户新空间。大力开拓电动汽车、电子商务、智能芯片、储能、综合能源服务等新兴业务,促进新兴业务和电网业务互利共生、协同发展。一号文件的重点工作之三是:扩大开放合作共享,打造能源互联网生态圈。具体内容是:充分利用电网数据、技术、标准优势,加强与新经济和互联网企业合作,积极参与新能源、智能制造、智能家居、智慧城市等新兴业务领域的开拓建设,加快构建围绕能源互联网发展的产业链、生态圈。
从一号文件中可以看出国网未来将通过建设电力互联网发展与互联网经济相关的新业态,包括新能源、智能制造、智能家居、智慧城市等新业务。非传统领域的新业态已经和传统电网业务处于同等重要的地位,实际上,所谓所谓新能源、智能家居、智慧城市,都可以被囊括进“泛在电力物联网”。总地来看,“坚强智能电网”仍是国网业务的基本盘,坐稳输-变-配-用-售环节的既定业务范围,在增量配网试点和配售电侧改革不断深入的背景下坚守传统阵地,抵御“外部的野蛮人”,是国网今后工作的“拿分项”;而在国有企业改革走向深水区,电改大势倒逼,国网新一代领导层逐步稳定之际,提出“泛在电力物联网”概念,则是主动出击开拓新方向的求变之举,是国网今后工作的“发力点”。
国网内部对于公司发展和业务调整,有一定的共识和紧迫感,主要集中于以下几个方面:一是随着新能源发电占比升高,电网形态日趋复杂,电力潮流和电网故障演化机理不断由可预见向难以预见演变,这对电网的安全稳定运行提出了更高要求;二是电改推进、政府及社会对电价下调的要求,导致企业经营面临瓶颈;三是在互联网经济与数字经济的蓬勃发展下,社会经济形态发生着深刻变化,在改革即将进入深水区之际,如果没有做好未来这几年的发展转型,通信运营商现在面临的困境可能就是国网的明天。而借着“泛在电力物联网”的东风,继续在传统强电部门深耕,加强信息化,还是着力发展电动汽车、综合能源服务等新业务,需要一个有力的规划纲领作为指导。
02
什么是“泛在电力物联网”?要建一个什么样的泛在电力物联网?
物联网的概念由 MIT 的 Kevin Ashton在1998年首次提及,他指出将
RFID技术和其他传感器技术应用到日常物品中构造一个物联网。紧接着的第二年由 Kevin Ashton 带头建立的 Auto-ID center
对物联网的应用进行了更为清晰的描述:依靠全球 RFID 标签无线接入互联网,使得从剃须刀到欧元纸币再到汽车轮胎等数百万计的物品能够被持续地跟踪和审计。
电力行业对“物联网”的理解是:物联网是一个实现电网基础设施、人员及所在环境识别、感知、互联与控制的网络系统。其实质是实现各种信息传感设备与通信信息资源的(互联网、电信网甚至电力通信专网)结合,从而形成具有自我标识、感知和智能处理的物理实体。实体之间的协同和互动,使得有关物体相互感知和反馈控制,形成一个更加智能的电力生产、生活体系。从而衍生出泛在智能电网——基于通信技术的全业务泛在电力物联网-泛在电力物联网概念。
各国在建设现代电网的过程中都用到了物联网,但对其应用的侧重点则各有不同。在欧洲,提升供电安全性、节能减排、发展低碳经济是各国积极发展智能电网的主要原因,在这种驱动力下,欧洲电力行业对物联网的应用更倾向于清洁能源和环保方向;在日本,可再生能源接入、节能降耗和需求响应是日本发展智能电网的主要驱动力,日本电力行业对于物联网的应用主要在于对新能源发电监控和预测、智能电表计量、微网系统监控等领域;在中国,物联网技术为提高电网效率、供电可靠性提供了技术支撑,RFID技术、各类传感器、定位技术、图像获取技术等使仓库管理、变电站监控、抢修定位与调度、巡检定位、故障识别等业务实现灵活、高效、可靠的智能化应用。
目前国网对泛在电力物联网的具体定义还未形成,将传统电力生产、传输、消费的所有环节信息化,都可以称为泛在电力物联网。就目前国网的技术储备而言,增强电网的感知、通信、计算和分析能力,是其可预见的发展方向。2018年的国网信通工作会议上就提出了“打造全业务泛在电力物联网,建设智慧企业,引领具有卓越竞争力的世界一流能源互联网企业建设”的工作目标,并提出了建设国网-电力物联网SG-eIoT
(electric Internet of Things)的技术规划。预计将综合运用“大云物移智”等信通新技术,与新一代电力系统相
互渗透和深度融合,实时在线连接能源电力生产和消费各环节的人、机、物,全面承载并贯通电网生产运行、企业经营管理和对外客服服务等业务。在终端层表现为万物互联的连接能力,在网络层表现为无处不在、无时不有的通信能力,在平台层表现为对全景设备和数据的管控能力。在2018年国网信通工作会议上制定的规划来看,整个“SG-eIoT”系统在技术上将分为终端、网络、平台、运维、安全等五大体系,打通输电业务、变电业务、配电业务、用电业务、经营管理等五大业务场景,通过统一的物联网平台来接入各业务板块的智能物联设备,制订各类电力终端接入系统的统一信道、数据模型、接入方式,以实现各类终端设备的即插即用。
有意思的是,国网一直以来虽然没有明确喊出电力物联网的口号,却已经有了相当的技术积累。国网的信息化水平近年来也不断提升,目前国网系统接入的终端设备超过5亿只(其中47亿只电表,各类保护、采集、控制设备几千万台),规划到2030年,接入SG-eIoT系统的设备数量将达到20亿,整个泛在电力物联网将是接入设备最大的物联网生态圈;经过D5000、调控云等系统改造和升级,国调中心在电网观测、控制水平已经称得上世界先进,输电网基本做到可观、可控、能控、在控;各地配电自动化系统建设也在推进当中,规划到2020年完成全网95%的配电自动化覆盖率,各种在线监测、智能预警系统比比皆是;基于PMS20系统,主要设备的全生命周期管理在近两年内也能基本完成;通信网络建设如火如荼,无线专网、保护专网陆续上马;国网智慧车联网平台目前已经连接全社会80%的公共充电桩以及4万多辆电动汽车。想要在近年内交一份能够写出足够多亮点的成绩单,问题应该不大。
笔者认为,国家电网作为世界五百强第2的旗帜性央企,应该有更高要求拿出真正的可以定义行业发展方向的技术方案,要么具备成熟的、可复制的海外技术输出能力,被海外能源企业接纳,例如华为通信解决方案,支付宝/微信移动支付;要么具备强烈提升用户体验、能直接让用户感受代际差异的新服务水平,如高铁。就供电可靠性、电网安全稳定性等方面而言,进一步提升的空间和产生的社会效应都已有限。泛在电力物联网应该向着智慧小区/智慧城市整体能源解决方案、智慧交通整体能源供给方案、智慧能源套餐及交易模式、用户能效分析及用户画像、智能家居与用能管理等方面延伸。虽然国家电网是国内每年电气专业研究生就业的首选单位,是每年获取专利数最多的企业,甚至超越了华为,但国家电网作为一家科技公司的形象在公众心中依然没有建立起来,电力用户期待获得更多的知情权和参与感,例如得到用电诊断、科学用电方案、差异化电价信息等增值服务。在前有堵截后有追兵的行业背景下,要“建成世界一流的能源互联网企业”,只有深刻改变用户习惯,才能进一步赢得发展的先机。
03
建设泛在电力物联网应规划先行
一般情况下,抛出一个战略性概念后,国网公司会在组织机构、科技研发、重点工程等方面共同发力,并使之成为今后3-5年的主要方向。按以往规律,国网的新概念往往由相关利益部门主张并提出,上升形成公司战略后由原提出部门出主力班底进行战略规划、科研投入和工程运作。新战略的实施情况,有时受制于公司其他利益部门对该战略的支持和配合力度。国网领导班子对新成立部门的支持力度、其他利益部门对新成立部门的配合力度往往关系着新战略的整体推进效果。相对于我国政府和企业过往一些实施相对成功的战略,国网的风格还有些遵循丛林法则,主要由强势部门和地方公司利益驱动,在领导层取得首肯后立即上马项目,一定程度上缺乏规划引领的顶层设计,导致重复建设、技术路线多样,虽然每年都涌现出数量众多“世界一流”的技术或工程,却难以形成合力,在国际上和社会上缺乏“中国高铁”这样的名片技术。
物联网技术虽然在电网有着广阔的应用和前景,但也面临一些发展问题。从技术上来看,感知层的传感器数据准确性、传感器在复杂环境下的故障率、数据传输的及时性、无线传输的安全性等都是亟待解决的问题。受到可靠性、成本、原有管理制度等多种因素的制约,物联网产业一直推进缓慢。制定合理的长期规划,对指导物联网在电网发展具有重要意义。
因此,国网应组织科研单位牵头,遵循目标导向,按照我国不同地区电网技术基础及资源禀赋,设定泛在电力物联网近期目标及中长期技术规划,尽快明确重点项目及技术攻关方向,集中力量突破既定关键技术。此外,利用好自身科研人才和科研力量,必要时与外部企业及科研力量联合,突破传统电力生产-科研-设备研发利益窠臼,走出电网成熟技术的舒适区,从微创新转变为模式创新,真正成长为具备全球影响、全民感受的科技巨头。
店里物联网不是弱电。根据查询相关公开信息显示,电力物联网通常采用高速、高带宽的网络架构,涵盖的范围也比较广泛,在一些特定场合的应用中具有相当重要的作用。而弱电系统主要是指低电压状态下的通信和数据传输系统,如电话、网络、广播、安防等设施,其通信电缆的电压等级一般在1000V以下,因此,电力物联网与弱电系统的定位和用途是不同的。虽然电力物联网与普通低压电力系统一样采用了数字通信、传感技术和互联网技术,但电力物联网的主要目的是实现对用电设备的远程监测、能源管理和控制,从而提高电力系统的安全性、可靠性和效率。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)