企业如何推进智能制造和工业物联网(IIoT)战略

企业如何推进智能制造和工业物联网(IIoT)战略,第1张

目前,很多公司正在积极布局智能制造和工业物联网发展战略。问题是,这些企业是会共同推进两个战略的发展还是分开推进呢?我相信他们会共同推进,但我也可以理解那些把他们看作是分开的人。
在我们讨论这个话题之前,先让我先定义一下术语,因为有很多关于这个的争论。
智能制造:在工厂和整个价值链内实现业务、物理和数字流程的智能化、实时协调和优化。基于所有可用的信息,资源和流程将实现自动化、集成化、被监控和持续评估。(根据MESA International ,MES国际联合会定义)
IIoT:在工业(如组件、产品、产品运输和设备)中使用的物理对象(“物”)中嵌入电子、软件、传感器组成的网络,这个网络能够使物理对象通过互联网协议(IP)收集数据并与控制系统、业务流程和分析交换数据。(根据维基百科“IoT”修改)
现在回到我们的核心问题:两个战略是要共同推进还是分开推进呢?很明显,目前还没有定论。下面是这些观点的一些背景:
工业互联网协会(IIC)说:"通过自动化工业设备和系统之间的通信,IIoT提高了整个工厂的效率,使其更加智能化,"我同意。我相信,IIoT是智能制造的一项有利技术,它的进步将推动智能制造的发展。同样,随着智能制造超越概念,进入公司正在执行的项目,制造商和他们的解决方案提供者将改进支持这些项目的IIoT技术。这两个很可能会被共同推进。
另外:并不是每个人都同意。在最近的MESA调查中,超过三分之一的制造商报告说他们不相信智能制造包括IIoT(参见上图)。我明白这个观点,因为智能制造有很多途径。实际上,IIoT可以在一些可能定义智能制造的正常边界之外使用。
与智能制造相比,IIoT确实发展可能会更快,因为解决整个价值链上的项目是一个超出公司内部的挑战。像通用动力公司、通用磨坊和通用汽车这样的大公司可以展示他们的力量,并帮助推动特定行业的智能制造行动,但是IIoT项目可以取得很大的进展,并在公司的内部提供许多好处。如果消费者市场上的物联网计划提高了工厂内部的期望门槛,那么实现类似的互联互通、数据访问、控制和分析能力也会有压力。
此外,生产仍将涉及人员,以及未配备IIoT的设备和产品。对于一些智能制造方案,IIoT没有也不可能是商业案例,这些情景可能关注人员和价值链流程。
推动第四次工业革命的是什么?
有些人会认为智能制造或IIoT可能导致第四次工业革命。我也有一个观点:智能制造是这场革命的基础,而IIoT不是。即使IIoT的发展比智能制造快得多,我也不认为它足以让生产企业进入下一个生产力阶段。
那么IIoT缺少了什么来推动第四次工业革命呢?首先是企业环境。智能制造不仅整合了工厂或智能连接工厂,还包括智能连接的供应链和贯穿产品生命周期的数字线程。与其他工业革命一样,技术的转变--比如IIoT--必须与新的流程和人们工作的方式协同工作,以达到我们在第四次工业革命中所追求的生产力水平的提高。
IIoT是一项基础技术,但它只做它所做的事情--在"事物"之间创建通信,以便更容易地获取数据和分析。第四次工业革命需要许多其他技术和工艺。其中一些将针对一件设备或生产过程;其他人将在工厂、企业或价值网络上工作。
真正让商界人士兴奋的是,当新技术和新方法将它们整合在一起时,就会扰乱市场,并让公司提供新的服务和与新产品所能产生的数字数据绑定的新价值。例如,基于IoT的智能产品可以向工程师和生产者提供关于产品如何在该领域执行的反馈。基于这些数据,我们能提供什么样的新见解和服务?
这就是为什么我认为,要实现第四次工业革命需要更多的时间。它将把IoT和IIoT引入智能制造策略,以创建新的方法来协调和优化整个价值链中的流程,并向客户交付新的服务级别。

钢铁行业在积极化解过剩产能的基础上加快推进钢铁行业转型升级,当前的重点就是加快智能制造发展,即借助智能制造技术,转变生产管理模式,实现敏捷制造和精细化管理,进而推动钢铁行业的转型升级。

智能制造引领新一轮制造业革命,也是一场具有划时代意义的深刻的工业革命。《中国制造2025》明确坚持创新驱动、智能转型、强化基础、绿色发展,加快我国从制造大国向制造强国转变。推进钢铁行业智能制造是时代发展的必然趋势,也是我国实现钢铁强国的必由之路。

时下,我国钢铁行业正在全面贯彻实施《钢铁工业调整升级规划(2016-2020年)》(以下简称《规划》)。“十三五”期间,我国钢铁工业将进入以结构调整、转型升级为主的发展阶段,也是钢铁工业结构性改革的关键阶段。钢铁行业要积极适应、把握、引领经济发展新常态,落实供给侧结构性改革,以全面提高钢铁工业综合竞争力为目标,以化解过剩产能为主攻方向,坚持结构调整、创新驱动、绿色发展、质量为先、开放发展,加快实现调整升级,提高我国钢铁工业发展质量和效益。

要实现钢铁工业“十三五”规划的目标,钢铁企业必须全面推进智能制造,而《规划》为我国钢铁行业如何推进智能制造指明了方向,确定了目标,指出了路径。

钢企智能制造探索步伐加快

如今,不少钢铁企业已经在智能制造上开拓探索和实践,取得了较好的成效。宝武集团、沙钢等大型钢企采用工业机器人、无人行车、无人台车、无人仓库等智能制造技术来提高劳动效率,降低生产成本,在钢铁生产自动化、库存、营销等关键环节智能化水平先进。

一些大型钢厂将智能制造分成“3+1”模式,即“智能装备、智能工厂、智能互联和基础设施”,进行探索和实施。据介绍,目前,该领域研发的课题主要是钢铁制造全流程在线检测—监测技术及数字化、智能化嵌入技术,分布与集成相结合的余热余能梯级利用和系统回收技术,钢铁生产智能化能源管控与环境优化技术,污染物分布与集中结合的协同控制与一体化脱除技术,钢厂与相关产业互补链接及与周边社会共生共荣生态链接技术,钢铁流程制造和服务一体化网络集成技术,钢铁制造流程物质流、能量流、信息流协同动态调控技术,高性能钢铁产品定制化、减量化生产及装备技术,高性能钢铁产品全生命周期智能化设计、制备加工技术。

从目前来看,不少钢企纷纷进入智能制造领域:

有的钢厂借助“互联网+”、物联网和智能制造技术,依托传感器、工业软件、网络通信系统、新型人机交互方式,实现人、设备、产品等制造要素和资源的相互识别、实时联通,促进钢铁研发、生产、管理、服务与互联网紧密结合,推动钢铁生产方式的定制化、柔性化、绿色化、网络化、智能化。

有些技术、资金实力雄厚的钢铁企业,则以钢铁流程绿色化、智能化集成为目标,重点围绕制造流程结构优化、制造流程技术提升、钢铁制造服务平台建立、新型商业模式建立与运营四大关键路径进行研发。

有的钢厂以关键环节机器换人为抓手,尝试和实践全工序机器换人,提升智能化生产水平,先后建成5000毫米宽厚板和特棒示范智能车间,形成了独具特色的智能制造发展之路。

有的钢厂明确智能制造目标,稳步推进:减少人工作业,提升自动化能力;全面推进建立区域化、工序化的信息监控、管控平台;制订公司智能化制造规划,并成立智能制造推进项目团队,以实现从机械化、自动化、信息化到智能化的逐步转变。

有的钢企确定了智能制造目标,即在未来几年内建设、改造一批智能化产线,完成基于互联网来满足用户个性化需求的智能化研发、生产、销售体系构建,促进企业实现向智能制造模式的转型。

钢企推进智能制造该如何着力?

一家钢企从事自动化生产工作的负责人坦言:“我们公司不是不想尝试智能制造,而是不知道该怎么着手。”

曾有一家大型钢铁企业工程师也向笔者表示,目前,国内钢铁智能化仍处于初级阶段,在实际生产过程中还是以经验为主导,尽管个别生产线有自己的数据库,但一般为生产工艺的数据,在上下游衔接等方面没有形成一个统一的系统。

那么,钢铁行业该如何加快推进智能制造?在一系列钢铁产业发展的高峰论坛上,业内专家就我国钢铁业推进智能制造发表了各自的见解,给钢铁企业诸多的思考和启迪。

业内专家指出,钢铁行业在积极化解过剩产能的基础上加快推进钢铁行业转型升级,当前的重点就是加快智能制造发展,即借助智能制造技术,转变生产管理模式,实现敏捷制造和精细化管理,进而推动钢铁行业的转型升级。智能制造是制造业未来发展的重大趋势,也是当前钢铁行业转型升级、提质增效的重要着力点。早在2015年工信部发布的《2015年智能制造试点示范专项行动实施方案》,决定自2015年启动实施智能制造试点示范专项行动,以促进工业转型升级,加快制造强国建设进程。其中,钢铁行业已被列入工信部的智能制造试点范围。

专家同时强调,推进钢铁行业智能制造是一个庞大的系统工程,涉及资金、技术、人力等诸多方面,系统策划是确保目标一步一步实现的有效方法,不能急功近利、一哄而上,而要稳扎稳打、分步实施、循序渐进,即针对我国钢铁行业和智能制造的特点,逐步推进制造过程智能化。诸如,在重点领域试点建设智能工厂或数字化车间,加快人机智能交互、工业机器人、智能物流管理等技术和装备在生产过程中的应用,促进钢铁制造工艺的仿真优化、数字化控制、状态信息实时监测和自适应控制等的发展。同时,在此基础上全面实施高级计划排程(APS)系统,实现敏捷制造和精准交货。

专家表示,在推进企业决策智能化方面,目前主要以两化深度融合为载体。钢铁智能制造的核心是对信息资源的有效开发和高效利用,目标是提高资源的全局利用效率,其重点在于决策的智能化。为提高资源和能源利用效率,钢铁企业应采用系统优化的思想,建立具有冶炼技术和经济成本的双重模型,实现单部门局部优化与多部门一体化全局优化的平衡。

大数据是传统数据库、数据仓库、商业智能概念外延的扩展和手段。推进大数据的集成应用,关键在于健全钢铁行业信息化基础设施,整合冶金数据资源,突破钢铁行业大数据核心技术,提升钢铁大数据分析应用能力,提高数据安全保障能力,培养复合型大数据人才,组织实施制造业大数据创新应用试点,以推动制造模式变革和冶金行业的转型升级,培育发展冶金产业新业态。

以上由物联传媒转载,如有侵权联系删除

《中国制造2025》明确提出要推进 制造过程智能化,在重点领域试点建设智能工厂/数字化车间,这必将加速智能工厂在工业行业领域的应用推广。

智能工厂是实现智能制造的重要载体,主要通过构建智能化生产系统、网络化分布生产设施,实现生产过程的智能化。

企业基于工业互联网构建的智能工厂原型,主要包括物理层、信息层、大数据层、工业云层、决策层。纵向集成和横向集成均以工业互联网为基础,产品、设备、制造单元、生产线、车间、工厂等制造系统的互联互通,及其与企业不同环节业务的集成统一,则是通过数据应用和工业云服务实现,并在决策层基于产品、服务、设备管理支撑企业最高决策。共同构建了一个智能工厂完整的价值网络体系,为用户提供端到端的解决方案。

随着三维数字化技术的发展,传统的以经验为主的模拟设计模式逐渐转变为基于三维建模和仿真的虚拟设计模式,使未来的智能工厂能够通过三维数字建模、工艺虚拟仿真、三维可视化工艺现场应用,避免传统的信息传递链条的断裂,提高产品研发设计效率,保证产品研发设计质量。

创建的智慧工厂可视化解决方案则是通过三维场景用户可以直观的看到厂房内物料区及每一条产线设备。如 SMT 生产线:印刷机、SPI 检查机、贴片机、回流焊、 AOI 检测设备等。AGV 小车、摄像头、消防设备、空调、电视等所在位置以及对应的设备实时数据、运行状态,均可直观的展示在三维场景之中,通过物联技术实现场景整体联动。Hightopo采用 B/S 架构,在上述设备可视化环节经过模型轻量化处理后,用户无需再花费高价钱去采购高性能的图形工作站来支撑三维可视化系统。

汽车生产流水线 3D 可视化方案,完美模拟了汽车生产车间,再现了汽车生产线制造过程,通过可视化模型的建立,人们可以发挥出丰富的想象力,从而可以将一些抽象的事物以直观的形状表示出来,便于人们的理解;也可以实现将庞大的生产线设备变成可随身携带的视频内容,满足了随时随地展示生产线的要求,使生产线的演示说明更加简便,完善企业的信息化水平,降低汽车生产制造企业运营的成本,企业顺应数字化时代发展,在行业竞争中更具活力。

车间生产可视化可以帮助企业解决以下问题:

1、工序详细调度:通过基于有限资源能力的作业排序和调度来优化车间性能;

2、资源分配和状态管理:指导劳动者、机器、工具和物料如何协调的进行生产,并跟踪其现在的工作状态和刚刚完工情况。

3、产品跟踪和产品清单管理:通过监视工件在任意时刻的位置和状态来获取每一个产品的历史记录,该记录向用户提供产品组及每个最终产品使用情况的可追溯性。

4、过程管理:基于计划和实际产品制造活动来指导工厂的工作流程。

5、质量管理:根据工程目标来实时记录,跟踪和分析产品加工过程的质量,以保证产品的质量控制和确定生产中需要注意的问题。

智能工厂更多面向的是工厂内侧进行优化与升级,也就是说虽然两者都会通过先进的技术,诸如人工智能、物联网等推动企业业务组织架构变更、业务模型更改,但是智能工厂更多是人工劳动的智能化替代、降低运行成本,但是数字化转型是希望构建新的业务企业模式。

与传统的生产监控完全不同,智能工厂可视化的大屏幕上除了工业摄像头的实时显示,还有 3D 模拟全流程动画的实时显示。3D 模拟动画对生产线所有机组、设备状态、生产状态能够实时显示出来。并在两侧 2D 面板显示重要的生产和质量数据。

上图为 SMT 工厂,场景内点击“首页”按钮自动d出,展示实时产量、库存与发货量、原料采购、环保数据与能源系统等信息。与实景相互配合,给所有调度人员更全面的生产信息。

如火电厂内正面可展示一个现代化工厂的现实场景,室内定位包括工厂工人的实时位置、电子围栏的范围、现场的安全情况等等,帮助我们直观的了解当前工厂人员的安全状况。

随着计算机技术的日趋成熟,我国工业的信息化建设得到快速发展。与此同时,企业积累的数据也越来越多,工业数据的爆炸式增长蕴含着巨大的商业价值。然而,在面对客户消费行为的海量数据时,传统的基于大型服务器的数据仓库和数据分析技术难以满足异构数据源数据的应用转化要求。Hightopo提出旨在提高数据资源复用性,统一的、快速响应的、能够多维度深层次直观展示产品销售、财务、采购、物流分析系统。把相对复杂的、抽象的数据通过可视的、交互的方式进行展示,从而形象直观地表达数据蕴含的信息和规律。管理者像在汽车驾驶舱里面对仪表盘一样,直观地监测运营情况,并对异常关键指标预警和挖掘分析。

同时驾驶舱中对原、进厂、费用等关键信息辅以 2D 组态面板呈现,并提供时间维度切换功能,纵观数据发展。可根据 CAD 图、鸟瞰图、设备三视图高精度建模,布局进行 3D 建模,实现生产作业和设备 *** 作的少人化、无人化。

为解决生产数据延时、查看历史数据过程繁琐、查询方式单一等问题,利用数字化看板,增加手机端入口,让员工随时随地查看了解生产数据。打破时空界限,实时通过手机了解生产动态,掌握生产变化。且作业人员提供图形注释。他们能很快理解任务内容并变得熟练起来。从而避免了生产延迟,提高作业效率。

领导驾驶舱是一个为高层管理提供“一站式”决策支持的管理信息中心系统。以驾驶舱的方式梳理整合企业销售业务、财务信息、采购信息、物流信息、项目信息的流程和数据特点,实现了实时和批量数据的处理、数据分析、报表及可视化等功能。为企业加强业财融合、全生命周期的管理分析和项目损益的全景展示提供了有力支撑,实现了企业管理层面的数据,显著提高了销售管理工作的效率和水平。

数字经济已成为全球经济发展的主线,推动着各类产业和全社会的数字化智能化转型。融合 5G、云计算、大数据、边缘计算等技术的工厂智慧解决方案,切实解决企业在生产中存在的行业痛点,在提高生产效率、降低生产成本、保障人员安全方面效果显著,也为方大九钢实现智能化升级提供全面提速。


物联网基础技术:
1、互联网技术,物联网是互联网的延伸和扩展,因此互联网技术是物联网发展的核心技术。
2、信息采集技术,物联网的发展需要信息采集、信息传递和信息处理这三个方面的完全融合,而信息采集是物联网发展的关键基础,物联网要获得发展,必须突破信息采集技术的瓶颈。
3、网络通信技术,剥去物联网的神秘外衣,其实物联网实质上就是在诸多行业和领域已有应用的无线传感网,无线传感网通过节点中内置的不同传感器检出被测环境中的温度、湿度、噪声、光强度、压力、土壤成分,移动物体的速度和方向等信息,并通过内置的数据处理及通信单元完成相关处理与通信任务。
4、物品编码技术,物品编码是物联网的基石,是物联网信息交换内容的核心和关键字,是物品、设备、地点、属性等的数字化名称。
5、数据库技术,在物联网时代,作为代表物品的标签数量是万亿数量级。如此大量的数据需要通过数据库管理。数据存储在当地数据库中,标签阅读器与当地数据库相连接。
扩展资料
物联网的基本特征从通信对象和过程来看,物与物、人与物之间的信息交互是物联网的核心。物联网的基本特征可概括为整体感知、可靠传输和智能处理。
整体感知即可以利用射频识别、二维码、智能传感器等感知设备感知获取物体的各类信息。可靠传输是通过对互联网、无线网络的融合,将物体的信息实时、准确地传送,以便信息交流、分享。
智能处理即使用各种智能技术,对感知和传送到的数据、信息进行分析处理,实现监测与控制的智能化。根据物联网的以上特征,结合信息科学的观点,围绕信息的流动过程,可以归纳出物联网处理信息的功能:

杭州湾smart工厂好。根据查询相关公开信息显示,杭州湾smart工厂采用了智能制造技术,包括物联网、人工智能、机器人等,实现了生产流程的自动化和数字化管理,杭州湾smart工厂采用了先进的智能制造技术,提高了生产效率和质量,并且在环保和节能方面也做出了很大的贡献。

一、将真实的加工制造连接到工业40
如果使用了工业40技术,一个新的加工制造生产线可以实现多达25种的产品变化,同时将产量提高10%,库存减少30%。工业40架构的应用让制造商在生产过程中可以获得更丰厚的投资回报率。
工业40是一场工业的革命,目的是将信息技术(IT)的虚拟世界、机器的物理世界以及互联网合为一体。其中心是将具有IT功能的所有工业领域都整合起来。这些科技提高了灵活度和速度,能够使产品更具有个性化,生产更高效且规模可扩展,以及在生产控制方面具有更高的可变性。机器与机器之间的通讯和先进的机器智能化,提高了工艺的自动化水平,并带来了更多的自我监控以及实时数据。开放的基于Web的平台会增加制造企业的竞争力。
1分布式智能
这里说的分布式智能是指在智能传动和控制技术网络的机器设备中,加入尽可能多的智能和控制功能、或者单独的传动轴,而不是从一个中央处理单元(CPU)来处理所有的动作。
拥有机器层面的过程数据并决定用它做什么,反映出了人们相信一台机器可以经过装备使用过程数据做一些事情并且独自改善工艺流程,诸如实现调整产量、更加有效率的利用能源等目标,而不是依赖“云”来处理所有这些任务。
联网的机器可以与更高的生产线级别、工厂级别以及企业级别的网络进行通讯,从而能够实现对特定事件或特定产品的实时调节。集成了传动的伺服马达和无机柜传动系统将传动组件和运动逻辑顺序放到了单独的轴向上。
  2快速连接
那些允许数据在整个企业架构中自由流动的系统,往往需要持续的投资和改进。一家工业40工厂车间所产生的大数据和信息流,可能会让公司的网络不堪重负。我们该如何改进自动化系统中的硬件和软件的功能,使这种设计流程更简单、花费更少的时间以及更加开放?通讯路径随着其创建和实施而变得更加流畅。在决定应该使用现场总线的什么功能时,应该看一下生产平台是否支持例如OPC
UA(来自于OPC基金会)这样的标准。消除不同供应商系统的障碍,而且对通讯和控制平台采取一种更加开放的方式很重要。
3开放标准和系统
重点是要思考系统到底“开放”到什么程度,是否支持新兴的通讯协议和软件标准,以及开放的独立组件如何让工业40成为现实。
开放标准允许基于软件的解决方案可以更加灵活地集成,并有可能将新的技术移植进现有的自动化架构中。开放的控制和工程软件也沿着这个方向将自动化和IT软件程序之间的间隙弥合。一个开放的控制器核心能够使用常用的高级IT语言(例如Java和C++)来创建自动化应用程序。
一台机器的 *** 作应该支持与智能手机或平板电脑进行简单的连接。软件可以借助控制器与3D模型软件的连接来加快自动化系统的设计和调试。一个运动控制器可以与模型之间发送指令以及接收反馈,使得机器的功能性在机械设计阶段通过运动控制就得到优化。这也让机器测试和编程可以在调试之前进行。在部件订货、组装机器之前,虚拟机器可以用来进行测试并完善设计。
4实时数据整合
在工业40的工厂里,可能利用实时的机器和工厂性能数据来改变自动化系统和生产工艺的管理方式。不用捕捉并分析数月以来有价值的关于生产率、机器停机时间或者能源消耗的数据,支持工业40的平台能够将数据整合到常规的工厂管理报告之中。这会让制造商和机器具备详细的信息来执行快速的工艺和生产变更,以实现产品满足特定客户需求的愿景。
5自适应性
现实世界中的主动性可以让生产更加连贯并以需求为导向。科技帮助生产线变得主动。目标就是让工作站和模块可以适应个性化的客户或产品需求。
在一个制造液压阀的工厂里,一套新的自适应组装生产线在每一件被加工件上都使用射频识别芯片。生产线上的9个智能站会识别出最终产品是如何被装配的,以及哪些工具设置和 *** 作步骤是必须的。每个相关加工件都带有蓝牙标签,会自动将信息传送给装配站。装配步骤信息会根据不同的产品以及相关加工件的技术水平不同而显示出来。该生产线可以生产一批相同尺寸的液压阀,也可以不需要人工干预就能生产25种不同产品型号。不再需要设定时间或者多余的库存。这使得生产线的产量增加了10%,库存减少了30%。
二、让工业40和IIoT在智能工厂里运行
工业40和工业物联网(IIoT)能够为设备(从传感器到大规模控制系统)、数据和分析之间提供更好的连接性,Beckhoff自动化的TwinCAT产品专家Daymon
Thompson这样认为。传感器和系统需要网络连接来共享数据,分析有助于做出更明智的决策。
物联网主要包括4个基本元素:实体的设备、与设备之间的双向连接、数据以及分析。设备可以是小到一个传感器大到一个大规模控制系统中的任何一种。传感器和系统需要与更大的网络进行连接,以共享由传感器或系统产生的数据。对此数据进行的分析会产生可执行的信息,其结果是让人们做出精明的决策。
在IIoT的实际应用中,
企业通过将设备或资产连接到云或者本地信息技术(IT)设施上来进行数据的采集和传送。然后对采集到的数据进行分析,可以发现设备或资产更多的潜在信息,防患于未然。
例如
,监控机械组件运行温度的传感器可以追踪任何异常状况或者偏离底线的情况。这使公司可以主动地处理不希望发生的行为,从而在可能造成有害危险的系统故障加剧之前进行预测性维护,否则这些系统故障可能会导致工厂停机以及生产收益损失。这种类型的信息有助于企业新产品的设计、系统性能效率的提高以及实现利润的最大化。
工业40让加工制造更灵活
在一个生产制造流程,甚至是整个供应链中,通过连接性推动更多的新发现和系统优化,这是工业40的核心概念之一,这种科技进步也被称为第四次工业革命。
工业40工作组成员、德国国家科学与工程院Acatech,将18世纪蒸汽机的发明和广泛使用定义为第一次工业革命。第二次革命是20世纪早期在装配线上使用传送带。第三次革命是在20世纪中叶开发出来的微电子学、PC和可编程逻辑控制器(PLC)。第四次革命是将PC和机器连接到互联网,并启用信息物理系统(CPS)。
工业40要求传统的生产制造工业实现计算机化。使用物联网和信息物理系统的概念会帮助实现“智能工厂”的目标,使生产制造具有前所未有的灵活性和非常高的精益生产效率。在生产制造中,一个显着的特点是重点关注的领域从产品本身扩展到了生产这些产品的工艺上。
制造商需要灵活的生产线来适应快速变化的客户需求。灵活的机器运行能够生产很多类型的产品,通过调整批量大小来获得更高的生产利润,这使得同一个生产线可以运行更复杂的混合产品以适应客户不断变化的需求。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13116823.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-02
下一篇 2023-06-02

发表评论

登录后才能评论

评论列表(0条)

保存