小米在财报中有分析称,2021年二季度较一季度收入有所增加,主要是由于智能手机、IoT与生活消费产、互联网服务等部分收入增加所致。其中,2021年第二季度,智能手机的ASP上升,主要是由于公司高端智能手机的销售额增加所致。
小米电视在中国市场已经连接10个季度销量排第一了,而在全球也排第5,可以证明小米的产品是受大家喜欢的。
小米的物联网方面,目前小米的AlOT平台已经连接的设备数高达374亿台,这或许意味着小米的AlOT平台,已经是全球连接数最多的物联网平台了。
能取得这样的成就,主要是因为小米在基因中就蕴含着创新精神。
在最新的《人民日报》内容当中还有一个知名大厂被点名表扬,那就是我们耳熟能详的—小米。我们都知道,小米早在几年前就实现了自研澎湃芯片的量产,在上个月更是将澎湃C1的芯片装在了刚发布的新机——小米折叠屏手机MIX FOLD当中。
小米在北京的智能工厂,这家工厂又称“黑灯工厂”。至于为什么这么称呼,据说是因为在生产小米折叠屏手机MIX FOLD时,该工厂从加工过程到安装途中都做到了全自动化,全程没有一个人工参与,就连工厂里的照明灯也不需要打开。“黑灯工厂”之称也因此而来。
其实小米的胜出并没有花哨的秘诀,而是依靠持续不断的创新。小米在屏幕、影像、充电、工艺等核心技术领域,近年来厚积薄发,多方位引领行业创新。全力冲击苹果最优势的高端市场的小米,最终拼出了属于中国品牌的全球第二。
为了呈现更好的产品,小米在技术和创新上都有很大的进步,单单是2021年第一季度,小米的研发支出达到30亿元,同比增长61%,持续性增长的研发投入,让小米在技术方面取得了接连突破。
充电方面,小米已经实现全球领跑。小米11Ultra首发了硅氧负极电池,高能量密度、高寿命、高性能的硅氧负极电池,提升了新的行业门槛。5月末,小米公布了全新一代的快充技术,行业范围内首次实现200W有线快充+120W无线快充的规格。
相信小米能够成功,相信小米在未来的日子里,小米能够坚持初心、越战越勇,加油!姓名:陈心语 学号:21009102266 书院:海棠1号书院
转自: 2020年中国人工智能+物流发展研究报告_应用 (sohucom)
嵌牛导读
近年来,中国物流业在互联网经济的催动下发展较快,在成本不断攀升、效率提升缓慢的背景下,物流业最迫切的需求即“降本增效”。人工智能技术及相关软硬件产品的加入能够在运输、仓储、配送、客服等环节有效降低物流企业的人力成本,提高人员及设备的工作效率,是缓解物流业顽疾的一味良药。
本报告中的“人工智能 + 物流”指的是基于人工智能技术的软硬件产品及服务在物流活动各环节中的实际落地应用。 2019年人工智能+ 物流的市场规模为159亿元,预计到2025年市场规模将接近百亿。在物流各环节的应用分布方面,仓储与运输占比较大,两者占比之和超过八成。
人工智能在物流中的应用方向可以大致分为两种,一是以AI技术赋能的如无人卡车、AMR、无人配送车、无人机、客服机器人等智能设备代替部分人工 ;二是通过计算机视觉、机器学习、运筹优化等技术或算法驱动的如车队管理系统、仓储现场管理、设备调度系统、订单分配系统等软件系统 提高人工效率。代替人工方向的AI应用市场前景广阔,但受技术水平和政策限制等因素影响,落地条件尚不成熟,还需要较长的培育时间。提效方向的AI应用已具备一定的技术基础,但实际场景散落在物流业务体系中的各个角落,场景清晰度不高,空间不足。
目前,人工智能在物流领域还处于探索之中,但从已经取得的成果来看,“人工智能+物流”的确能够给物流企业在降本增效层面带来收益。物流企业应该以立足当下、着眼长远的原则,以辅助管理、提升效率为短期目标,寻找自身业务链条中能够被 AI 技术赋能的环节并通过试点论证,稳步推进;对未来有望打破物流现有业态的前沿应用做好技术储备。AI公司一方面要把握与物流企业与电商平台的合作机会,在不断地测试积累中打磨核心技术;另一方面也要灵活运用自己研发的技术与产品,在关注物流行业的同时寻找其他的适配领域和变现途径,具备一定的造血能力,以待机会到来之时能够迅速响应物流领域的市场需求。
嵌牛鼻子人工智能运用于物流行业。
嵌牛提问人工智能在物流行业有什么运用呢?
嵌牛正文
物流业的核心痛点
成本增速高于收入增速,物流效率提升缓慢
尽管中国物流业近年来一直保持着较快的发展速度,但随着人力资源、土地资源等要素成本的不断提高,中国物流企业的成本增长速度始终高于收入增速,国家发改委与中国物流与采购联合会共同发布的《全国重点物流企业统计调查报告》中的数据显示,2007-2016年国内重点企业物流业务成本年均增速为105%,比收入增速高07个百分点。在行业成本居高不下的背景下,国内物流行业的效率一直处于较低水平。以社会物流总费用与GDP比率为例,2019年全国社会物流总费用达到146万亿元,占GDP比率为147%。尽管这一比率近年来总体上呈持续下降态势,但下降速度非常缓慢,与发达国家8-9%的水平相比仍有非常大的差距,与全球平均水平(12%)比起来也尚有一段距离。
物流业与人工智能的契合之处
AI是物流降本增效的良药,物流亦是AI展示能力的舞台
物流业的核心痛点决定了该行业最迫切的需求即“降本增效”,物流企业的自动化、信息化转型升级都是为实现降本增效目的而做出的努力。人工智能技术产品的加入能够进一步推动物流业向“智慧物流”发展,更大限度地降低人工成本、提升经营效率。对于人工智能行业而言,随着技术的不断迭代,人工智能不再是高悬于天上的空中楼阁,“商业落地”已成为人工智能企业发展到当前阶段鲜明的主题词。从落地难度及发展前景来看,业务流程清晰、应用场景独立、市场空间巨大的物流业无疑是人工智能落地的绝佳选择。
人工智能+物流概念界定
关键词:人工智能技术、软硬件产品及服务、落地应用
本报告中所阐述的“人工智能+物流”指的是基于人工智能技术(机器学习、深度学习、计算机视觉、自动驾驶等)的软硬件产品及服务(无人卡车、无人机/无人车、智能调度系统等)在物流活动各环节(运输、仓储、配送、客服等)中的实际落地应用。“人工智能+物流”是物流科技的新形态,本报告对“人工智能+物流”的研究范围主要集中在物流活动中的运输、仓储、配送及客服四个环节,分析研究人工智能技术及产品在上述物流作业流程中的应用情况与效果。
人工智能+物流发展环境
利好政策与企业及用户的需求鼓励物流业积极拥抱人工智能
近年来,物流行业发展基础和整体环境发生显著变化,新兴技术广泛应用、包裹数量爆发增长、用户体验持续升级等因素对物流企业的运作思路、商业模式、作业方式提出新需求、新挑战。作为物流行业转型升级的新动能,人工智能进入物流领域的时间尽管相对较短,但发展环境非常有利。政策层面,国务院、发改委等政府相关部门纷纷出台物流相关政策及规划,鼓励企业利用人工智能技术及产品降低物流成本、提升物流效率;经济层面,一方面全国物流业总收入始终处于稳定增长状态,另一方面物流总费用依然居高不下,企业亟需进一步控制物流成本,“人工智能+物流”的空间极为广阔;社会层面,“人工智能+物流”既能满足城市居民对提升即时物流服务效率的需求,又可拓展快递快运的服务边界以惠及农村居民。
人工智能+物流的核心技术
计算机视觉应用最为广泛,自动驾驶有望先于其他行业落地
目前,在物流行业实现应用的人工智能技术主要以深度学习、计算机视觉、自动驾驶及自然语言理解为主。物流领域中,深度学习在运输路径规划、运力资源优化、配送智能调度等场景中发挥至关重要的作用;计算机视觉是现阶段物流领域应用最广的人工智能技术,智能仓储机器人、无人配送车、无人配送机等智能设备都以视觉技术为基础,此外,计算机视觉还能实现运单识别、体积测量、装载率测定、分拣行为检测等多项功能;自动驾驶技术是运输环节智能化的核心技术,尽管尚未正式投入使用,但头部企业的无人卡车已经开始在特定路段进行实地路测和试运行;自然语言理解主要用于物流企业,尤其是快递快运企业的智能客服系统,该技术能有效降低企业在客服环节的人工成本。
人工智能+物流产业链分析
产业链尚不成熟,角色界限比较模糊
人工智能+物流产业链与传统物流产业链差异最大的地方在于,其上下游关系并非泾渭分明,或者说人工智能+物流的产业链还不太成熟,AI公司、物流企业、电商平台都在产业链中扮演重要角色,AI公司通过直客模式或集成商渠道向下游客户提供AI+物流相关产品与技术服务,而物流企业与电商平台也通过建立研发团队、成立科技子公司等方式研究开发AI技术在物流各环节中的可行应用,三者之间存在合作加潜在竞争的关系,生态比较开放。
人工智能+物流产业图谱
人工智能+物流市场规模
现有市场规模159亿元,仓储与运输环节的应用占比较高
AI公司进入物流领域的时间尚短,产业链下游物流企业与电商平台在人工智能产品技术自主研发中的不遗余力也令解决方案提供方们可选择的入局角度相当有限。从供给侧能够获取的收入来看,2019年人工智能+物流领域的市场规模为159亿元,随着技术能力的提升和行业理解的加深,预计到2025年市场规模将接近百亿水平。人工智能在物流各环节的应用分布方面,智能仓储与智能运输占比较大,两者占据了八成以上的份额;智能配送的落地环境尚不成熟,现阶段规模较小,但未来想象空间极大;智能客服的应用场景较为单一,在各环节中占比最小。
智能运输中的人工智能应用
人工智能在运输中的应用方向集中在无人卡车及车辆管理
运输是物流产业链条的核心环节,也是物流成本构成的重要内容,运输费用在社会物流总费用中的占比始终在50%以上。但由于运输环境及运输设备的复杂性,现阶段人工智能在物流运输中的应用尚处于起步阶段。目前国内人工智能在物流运输环节的应用集中于公路干线运输,主要有两大方向:一种是以自动驾驶技术为核心的无人卡车;另一种是基于计算机视觉与AIoT产品技术,为运输车辆管理系统提供实时感知功能。人工智能赋能物流运输的最终形态必然将是由无人卡车替代人工驾驶卡车,尽管近两年自动驾驶在卡车领域进展顺利,无人卡车在港区、园区等相对封闭的场景中已经开始进入试运行阶段,但与实际运营的距离尚远。未来数年内,人工智能在物流运输中的商业化价值主要体现在车辆状态监测、驾驶行为监控等功能。艾瑞认为,2019年国内人工智能+物流运输的市场规模为61亿元,预计到2025年超过30亿元。
智能运输丨无人卡车
无人卡车的商业化前夜已经到来,但大规模应用仍需时日
近年来,自动驾驶技术的开发与应用一直深受各界关注,与无人卡车相比,无人驾驶乘用车往往更吸引普通民众的眼球。从技术角度出发,应用在无人卡车上的自动驾驶技术与乘用车并无二致,其系统架构同样是由感知层、决策层与执行层组成,感知载体也都以摄像头、激光雷达、毫米波雷达、超声波雷达等传感器为主。但对于目前尚处在实验阶段的无人驾驶车辆而言,城市路况的复杂程度和不确定因素给无人驾驶乘用车的商业化道路带来极大的障碍。反观物流领域,港口、物流园区、高速公路等道路运输主要场景的封闭性较高,运输路线相对较为固定,测试数据的获取与积累也更容易。从商业化的进程来看,以图森未来为代表的L4级别自动驾驶卡车已经率先进入到了试运营阶段,无人卡车的商业化序幕正在缓缓拉开。但这只是无人卡车在物流运输中的初步尝试,目前仍然存在技术稳定性有待验证、可测试路段较少、国内甩挂运输份额较小等诸多问题还未解决,无人卡车距离大规模商业化应用尚需时日。
智能运输丨车队管理系统
实时感知车辆与司机状态,适用于各类运输车辆
无人卡车能够从根本上颠覆整个物流运输流程,但可预见的是在未来一段相当长的时间内,国内公路运输的主力依然会是规模不一的物流企业及其管理的车队。目前,国内人工智能赋能物流运输的主要形式是基于计算机视觉技术与AIoT技术,在车队管理系统中实现车辆行驶状况、司机驾驶行为、货物装载情况的实时感知功能,使系统在车辆出现行程延误、线路异常和司机危险行为(瞌睡、看手机、超速、车道偏离等)时进行风险报警、干预和取证判责,并最终达到提升车队管理效率、减少运输安全事故的目的。与无人卡车的“替代性”功效不同,车队管理系统中所应用的计算机视觉技术是在对原有物联网功能的补充与拓展,依然是以辅助者的角度来帮助司机和车队管理者,其感知设备是后装形式的车载终端,决策来自系统平台,对车辆的控制和动作执行要通过司机手动完成。因此就现阶段而言,融入人工智能技术的车队管理系统在适用性和商业化程度上领先于无人卡车。
智能仓储中的人工智能应用
目前仍以点状应用散落于整个智能仓储系统的各个子系统中
物流业是一个“动静结合”的产业,运输与配送代表着物流的“动”,仓储则代表物流的“静”。为了提升效率,物流产业对仓储也有“动”起来的强烈需求,智能仓储即通过物联网、大数据、人工智能、自动化设备及各类软件系统的综合应用,让传统静态仓储也朝着动静结合的方向进行转变。智能仓储属于高度集成化的综合系统,一般包含立体货架、有轨巷道堆垛机、出入库输送系统、信息识别系统、自动控制系统、计算机监控系统、计算机管理系统以及其他辅助设备组成的智能化系统等。因此在智能仓储中,商品的入库、存取、拣选、分拣、包装、出库等一系列流程中都有各种类型物流设备的参与,同时需要物联网、云计算、大数据、人工智能、RFID等技术的支撑。从目前来看,人工智能在智能仓储系统中的应用还不够成熟,仍以货物体积测算、电子面单识别、物流设备调度、视觉引导、视觉监控等多种类型的点状应用散布于整个系统的各个环节当中。
智能仓储丨仓储现场管理
仓内管理——规范员工行为、减少货物损失、降低理赔风险
人工智能在智能仓储中的应用领域之一是在仓储现场管理场景中,其实现途径是以高清摄像头为硬件载体,通过计算机视觉技术监测并识别仓储现场中人员、货物、车辆的行为与状态。根据作业环境,我们可以将人工智能技术在仓储现场管理中的具体应用分为仓内现场管理与场院现场管理。计算机视觉技术在仓内现场管理的应用场景一是针对仓内工作人员的行为进行实时监测,识别并记录暴力分拣、违规搬运等容易对货物、包裹造成破坏及损伤的行为,采集行为实施人员的相关信息;二是监测仓内流转的货物、包裹的外观情况,识别并判断包裹的破损情况,对存在明显破损的包裹进行预警上报。在仓内现场管理中引入计算机视觉技术,能够起到监督与规范员工行为、降低货物破损与丢失概率、减少理赔成本等作用。
智能仓储丨AMR
仓储AMR市场尚处于起步阶段,未来六年CAGR达367%
尽管AMR具备柔性部署、自主灵活等优势,但AMR产品技术门槛较高,国内能够实现量产且推动项目落地的企业相对较少,AMR市场尚处于起步阶段,还需要一段市场验证时间。而随着落地项目带来的数据积累以及算法的不断优化打磨,AMR将会逐步得到更为广泛的应用,其市场发展前景极为可观。艾瑞认为,2019年国内仓储AMR的市场规模为68亿元,未来数年,AMR市场规模将以高速增长状态迅速扩张,预计到2025年,国内仓储AMR的市场规模将超过40亿元。
智能仓储丨设备调度系统
基于深度学习与运筹优化算法,提升设备群体的智能化程度
随着AS/RS、AGV、AMR、穿梭车、激光叉车、堆垛/分拣机器人等不同类别的自动化及智能化设备越来越多地进入到仓储环境中,设备的调度与协同成为影响设备工作效能的关键因素之一。如果把仓储环境中的各类设备比作一只足球队,那么设备调度系统就相当于球队的教练,负责制定球队战术、选择出场球员以及指挥球员跑位等工作。早期仓储设备的调度与控制主要是以WCS(仓库控制系统)为载体,接收WMS/ERP等上层系统的指令后,控制着设备按照既定设计的运行方式进行工作。而在人工智能技术,尤其是深度学习与运筹优化算法的驱动下,设备调度系统在准确性、灵活性、自主性方面取得显著提升。以AGVS为例,基于大规模聚类、约束优化、时间序列预测等底层算法,AGV智能调度系统能够灵活指挥数百乃至上千台AGV完成任务最优匹配、协同路径规划、调整货架布局、补货计划生成等多项业务,并随数据积累与学习不断自主优化算法。可以说,AI算法加持的设备调度系统能够在一定程度上将系统自身的智能赋予设备本体,使设备群体的智能化程度得以提升。
智能配送中的人工智能应用
理论上市场空间极为广阔,但仍需要较长时间培育
配送是货物流动过程的最后环节,也是物流链条上人力资源投入最重的环节。以快递业与即时配送行业为例,全国快递员数量在2018年就已突破300万,工作灵活性较强的即时配送行业所需人力更甚于快递行业,2019年,仅在美团点评平台上领取过收入的骑手数量就高达3987万人。对于旨在降低人力成本和提高人力效能的人工智能而言,配送领域的应用前景相当广阔,且场景清晰明确。从“替代人工”角度来看,配送中的人工智能核心应用集中于无人配送领域,实现形式是无人配送车与配送无人机;从“辅助管理”角度来看,人工智能主要应用在即时配送领域的订单分配系统中,为系统提供订单数量预估、订单实时匹配、订单路径规划等能力。人工智能在物流配送领域的施展空间极大,但受限于技术稳定度不足、成本与收益不匹配、监管政策严格等因素,无人配送在商业落地层面尚处在萌芽阶段;而即时配送中的订单分配系统尽管已广泛使用深度学习及优化算法,但其核心技术都由各大平台自研自用,软硬件供应商并无获利空间。艾瑞认为,2019年国内人工智能+物流配送的市场规模为19亿元,预计到2024年超过10亿元。
智能配送丨无人配送
无人配送车——城市环境中自动驾驶技术的“降维”落地
无人配送车是应用在快递快运配送与即时物流配送中低速自动驾驶无人车,其核心技术架构与汽车自动驾驶系统基本一致,都是由环境感知、车辆定位、路径规划决策、车辆控制、车辆执行等模块组成。由于无人配送车的运行环境里有着大量的非机动车与行人,路面复杂程度要高于机动车道,因此对于超声波雷达、广角摄像头等近距离传感器的依赖度更高,环境感知算法的侧重点与汽车、卡车等机动车自动驾驶系统也有所不同。但在人口、车辆密集的城市环境中,无人配送车无疑是比无人驾驶乘用车更加适合自动驾驶技术落地的载体,首要原因是无人配送车的体积小、车速低,出现事故的风险与造成人身伤害甚至死亡的概率较低;此外,无人配送的场景非常丰富,落地初期可以选择边界相对清晰、环境相对简单、对新技术接受度高的高科技园区、高等院校等场景,在技术成熟度提升和政策支持的前提下逐步向写字楼、小区等环境扩张,为自动驾驶算法的迭代与进化积累大量的数据资源。
配送无人机——测试为主,可行的应用场景有限
无人机起源于军事领域,早期的发展驱动力是为了减少飞行员伤亡以及应对极端情况,近年来消费级无人机市场也异常火爆。最早将无人机引入物流领域的是亚马逊于2013年提出的Prime Air业务,国内以顺丰、京东为代表的快递、电商巨头也纷纷跟进,推出物流无人机战略。人工智能技术在配送无人机领域的应用原理与自动驾驶并无本质上的差异,主要区别有两点:一是无人机搭载的传感器种类更为繁杂,环境感知算法对数据融合技术的要求更高;二是无人机配送中可选择的路径明显多于车辆,路径上的海拔、地貌、气候等客观约束条件都会对无人机的配送行为产生影响,此外,出于安全考虑,路径规划还需要尽量避开人群聚集区与关键设施,因此配送无人机的路径规划算法更加复杂。2015年至今,快递、电商巨头以及无人机产品技术供应商们通过大量的试验与测试不断打磨提升物流无人机的技术稳定度、探索科学的运营模式。基于国内的人口密度、居住条件、政策限制等现实条件,配送无人机目前较为可行的应用场景在于偏远山区配送、医药资源紧急配送、应急保障物资配送等。
智能配送丨订单分配系统
以“大数据+算法”之力实现订单与运力的最优匹配
鉴于无人配送距离大规模落地较远,可预见的是未来相当长的一段时间内快递及外卖“小哥”仍然会是物流配送的主力军。现阶段人工智能在物流配送中发挥的主要作用是通过订单分配系统合理匹配运力与需求,提升配送效率,有效解决配送资源配置问题。尤其是对配送时效性要求非常高的即时物流领域,在引入基于机器学习与运筹优化算法的订单分配系统后,将行业发展初期使用的效率较低的骑手抢单模式和人工派单模式转变为系统派单模式。即时物流订单分配本质上可以看作是带有若干复杂约束的动态车辆路径问题(DVRP),订单分配系统的工作原理是以大数据平台收集的骑手轨迹、配送业务、实时环境等内容作为基础数据,通过机器学习算法得到预计交付时间、预计未来订单、预计路径耗时等预测数据,最后基于基础数据和预测数据,利用运筹优化模型与算法进行系统派单、路径规划、自动改派等决策行为。订单分配系统给企业带来效率提升的最直接表现即配送时长明显下降,以美团为例,在应用了自主研发的O2O即时配送智能调度系统后,美团外卖的订单平均配送时长由2015年的41分钟缩短至28分钟,降幅达到了317%。
智能客服
2025年物流领域智能客服业务规模有望突破77亿元
物流领域的智能客服特指以智能语音和NLP技术为代表的客服机器人。从服务类型上可以分为以语音导航、业务识别、智能派单、坐席辅助为主的语音智能客服和以文字查询、业务识别为主的文字智能客服,二者分别服务于电话呼入和客户端、小程序等终端入口。2019年物流领域智能客服业务规模约为11亿元,其中语音与文字智能客服份额比约为6:4,按供给侧发展规律预计,2025年整体业务规模约为77亿元,年复合增长率为391%。因云呼叫中心逐渐替代传统呼叫中心业务,市场中供智能客服发展的基础环境逐渐完善,智能客服市场发展平稳向上,服务内容从面向消费者的前台形式向面向管理的中后台形式拓展,未来市场有望基于语音人机交互形式的拓展而打开新的想象空间。
人工智能+物流应用总体评价
人工智能+物流发展策略——物流企业
厚积薄发:立足当下的点状应用与着眼长远的技术储备
对于物流企业来说,衡量是否要在原有的生产经营体系中引入某种技术或软硬件产品,唯一标准是该技术与自身业务融合后能够在多大程度上实现“降本增效”,人工智能亦不例外。物流企业,尤其是引领行业的头部企业们对“人工智能+物流”大多秉持着积极且谨慎的态度,一方面通过自建研发团队以及与AI技术输出方开展合作的形式在自动驾驶、智能机器人、无人机等AI前沿应用领域试图取得实质性突破;另一方面基于深刻的行业理解,在自身业务体系中寻找适合成熟度较高的AI技术“即插即用”的场景,在小范围试点应用的基础上评估应用成果并根据实际效果选择优化推广或暂时弃用,在不断地尝试中积累数据与经验、逐步建立企业的AI技术应用逻辑与应用体系。总体而言,目前物流企业较为合理的“人工智能+物流”发展策略首先要立足当下,应用方向以辅助管理、提升效率为主,将计算机视觉、智能语音等AI技术与机器学习、运筹优化等AI算法融入实际业务中形成若干能够为企业带来效益的点状应用;其次要着眼长远,对落地条件尚不成熟且未来发展前景广阔的无人卡车、无人机等应用适当投入研发力量或采用联合开发、注资收购等方式,做好技术储备,在窗口期真正到来时占据市场先机。
人工智能+物流发展策略——AI企业
多重适配:适合切入的场景有限,AI企业需要一核多用
作为“人工智能+物流”中的技术输出方,目前国内物流相关AI企业的主要业务是向物流企业、电商平台等提供基于自动驾驶、计算机视觉、智能语音、自然语言理解等AI技术的软硬件产品。由于进入物流领域的时日尚短,AI企业对物流行业理解不深导致赋能场景挖掘能力有限,涉及物流内部业务核心的类似于订单分配系统的场景又难以触达,大部分AI企业选择从自动驾驶卡车、无人配送车、无人机等具备较大市场想象空间但技术成熟度稍显不足或落地条件不够完备的应用场景入局,短期内很难取得实质性突破。因此,对于AI企业来说,其“人工智能+物流”发展策略中最关键的还是要致力于提升自身核心产品技术的领先性与稳定度,具备向客户提供较为成熟的软硬件产品的能力是企业发展的根基;其次要积极与物流企业深入合作,以标杆项目和实战数据说话;此外,要灵活运用核心技术与产品,在关注物流行业的同时寻找其他的适配领域和变现途径,例如无人物流车的低速自动驾驶技术同样可以驱动无人清扫车、无人零售车等,使企业具备一定的造血能力,而不是一味地接受资本输血,生存下去的初创企业才有机会等到真正的窗口期到来。2017年中国半导体封装测试技术与市场年会已经过去一个月了,但半导体这个需要厚积薄发的行业不需要蹭热点,一个月之后,年会上专家们的精彩发言依然余音绕梁。除了“封装测试”这个关键词,嘉宾们提的最多的一个关键词是“物联网”。因此,将年会上的嘉宾观点稍作整理,让我们再一起思考一下物联网时代的先进封装。
智能手机增速放缓
半导体下游市场的驱动力经历了几个阶段,首先是出货量为亿台量级的个人电脑,后来变成十亿台量级的手机终端和通讯产品,而从2010年开始,以智能手机为代表的智能移动终端掀起了移动互联网的高潮,成为最新的杀手级应用。回顾之前的二三十年,下游电子行业杀手级应用极大的拉动了半导体产业发展,不断激励半导体厂商扩充产能,提升性能,而随着半导体产量提升,半导体价格也很快下降,更便宜更高性能的半导体器件又反过来推动了电子产业加速发展,半导体行业和电子行业相互激励,形成了良好的正反馈。但在目前, 智能手机的渗透率已经很高,市场增长率开始减缓,下一个杀手级应用将会是什么?
物联网可能成为下一个杀手级应用
根据IHS的预测,物联网节点连接数在2025年将会达到700亿。
从数量上来看,物联网将十亿量级的手机终端产品远远抛在后面,很可能会成为下一波的杀手级应用。但物联网的问题是产品多样化,应用非常分散。我们面对的市场正从单一同质化大规模市场向小规模异质化市场发生变化。对于半导体这种依靠量的行业来说,芯片设计和流片前期投入巨大,没有量就不能产生规模效应,摊销到每块芯片的成本非常高。
除了应对小规模异质化的挑战, 物联网需要具备的关键要素还包括 :多样的传感器(各类传感器和Sensor Hub),分布式计算能力(云端计算和边缘计算),灵活的连接能力(5G,WIFI,NB-IOT,Lora, Bluetooth, NFC,M2M…),存储能力(存储器和数据中心)和网络安全。这些关键要素会刺激CPU/AP/GPU,SSD/Memory,生物识别芯片,无线通讯器件,传感器,存储器件和功率器件的发展。
物联网多样化的下游产品对封装提出更多要求
物联网产品的多样性意味着芯片制造将从单纯追求制程工艺的先进性,向既追求制程先进性,也最求产品线的宽度发展。物联网时代的芯片可能的趋势是:小封装,高性能,低功耗,低成本,异质整合(Stacking,Double Side, EMI Shielding, Antenna…)。
汽车电子的封装需求: 汽车电子目前的热点在于ADAS系统和无人驾驶AI深度学习。全球汽车2016年产销量约为8000万台,其中中国市场产销量2800万台,为汽车电子提供了足够大的舞台。ADAS汽车系统发展前景广阔,出于安全考虑,美国NHTSA要求从2018年5月起生产的汽车需要强制安装倒车影像显示系统。此外,车道偏离警示系统(LDW),前方碰撞预警系统(FCW),自动紧急刹车系统(AEBS),车距控制系统(ACC),夜视系统(NV)市场也在快速成长。中国一二线城市交规越来越严格也使得人们对ADAS等汽车电子系统的需求提升。ADAS,无人驾驶,人工智能,深度学习对数据处理实时性要求高,所以要求芯片能实现超高的计算性能,另外对芯片和模块小型化设计和散热也有要求,未来的汽车电子芯片可能需要用25D技术进行异构性的集成,比如将CPU,GPU,FPGA,DRAM集成封装在一起。
个人移动终端的封装需求: 个人消费电子市场也将继续稳定增长,个人消费电子设备主要的诉求是小型化,省电,高集成度,低成本和模块化。比如个人移动终端要求能实现多种功能的模块化,将应用处理器模块,基带模块,射频模块,指纹识别模块,通讯模块,电源管理模块等集成在一起。这些产品对芯片封装形式的要求同样是小型化,省电,高集成度,模块化,芯片封装形式主要是“Stack Die on Passive”,“Antenna in SiP”,“Double Side SiP等。比如苹果的3D SiP集成封装技术,从过去的ePOP & BD PoP,发展到目前的是HBW-PoP和FO-PoP,下一代的移动终端封装形式可能是FO-PoP加上FO-MCM,这种封装形式能够提供更加超薄的设计。
5G 网络芯片的封装需求: 5G网络和基于物联网的NB-IOT网络建设意味着网络芯片市场将会有不错的表现。与网络密切祥光的大数据,云计算和数据中心,对存储器芯片和FPGA GPU/CPU的需求量非常大。通信网络芯片的特点是大规模,高性能和低功耗,此外,知识产权(IP)核复杂、良率等都是厂商面临的重要问题。这些需求和问题也促使网络芯片封装从Bumping & FC发展到25D,FO-MCM和3D。而TSV技术的成功商用,使芯片的堆叠封装技术取得了实质性进展,海力士和三星已成功研发出3D堆叠封装的高带宽内存(HBM),Micron和Intel等也正在联合推动堆叠封装混合存储立方体(HMC)的研发。在芯片设计领域,BROADCOM、GLOBAL FOUNDRIES等公司也成功引入了TSV技术,目前已能为通信网络芯片提供25D堆叠后端设计服务。
上游晶圆代工厂供应端对封装的影响
一方面,下游市场需求非常旺盛,另外一方面,大基金带领下的资本对晶圆代工制造业持续大力投资,使得上游的制造一直在扩充产能据SEMI估计,全球将于2017年到2020年间投产62座半导体晶圆厂,其中26座在中国大陆,占全球总数的42%。目前晶圆厂依然以40
nm以上的成熟制程为主,占整体晶圆代工产值的60%。未来,汽车电子,消费电子和网络通信行业对芯片集成度、功能和性能的要求越来越高,主流的晶圆厂中芯和联电都在发展28nm制程,其中台积电28nm制程量产已经进入第五年,甚至已经跨入10Xnm制程。
随着晶圆技术节点不断逼近原子级别,摩尔定律可能将会失效。如何延续摩尔定律?可能不能仅仅从晶圆制造来考虑,还应该从芯片制造全流程的整个产业链出发考虑问题,需要 对芯片设计,晶片制造到封装测试都进行系统级的优化。 因此, 晶圆制造,芯片封测和系统集成三者之间的界限将会越来越模糊。 首先是芯片封测和系统集成之间出现越来越多的子系统,各种各样的系统级封装SiP需要将不同工艺和功能的芯片,利用3D等方式全部封装在一起,既缩小体积,又提高系统整合能力。Panel板级封装也将大规模降低封装成本,提高劳动生产效率。其次,芯片制造和芯片封测之间出现了扇入和扇出型晶圆级封装,FO-WLP封装具有超薄,高I/O脚数的特性,是继打线,倒装之后的第三代封装技术之一,最终芯片产品具有体积小,成本低,散热佳,电性能优良,可靠性高等优势。
先进封装的发展现状
先进封装形式在国内应用的越来越多,传统的TO和DIP封装类型市场份额已经低于20%,
最近几年,业界的先进封装技术包括以晶圆级封装(WLCSP)和载板级封装(PLP)为代表的21D,3D封装,Fan Out WLP,WLCSP,SIP以及TSV,
2013年以前,25D TSV封装技术主要应用于逻辑模块间集成,FPGA芯片等产品的封装,集成度较低。2014年,业界的3D TSV封装技术己有部分应用于内存芯片和高性能芯片封装中,比如大容量内存芯片堆叠。2015年,25D TSV技术开始应用于一些高端GPU/CPU,网络芯片,以及处理器(AP)+内存的集成芯片中。3D封装在集成度、性能、功耗,更小尺寸,设计自由度,开发时间等方面更具优势,同时设计自由度更高,开发时间更短,是各封装技术中最具发展前景的一种。在高端手机芯片,大规I/O芯片和高性能芯片中应用广泛,比如一个MCU加上一个SiP,将原来的尺寸缩小了80%。
目前国内领先封装测试企业的先进封装能力已经初步形成
长电科技王新潮董事长在2017半导体封装测试年会上,对于中国封测厂商目前的先进封装技术水平还提到三点:
SiP 系统级封装: 目前集成度和精度等级最高的SiP模组在长电科技已经实现大规模量产;华天科技的TSV+SiP指纹识别封装产品已经成功应用于华为系列手机。
WLP 晶圆级封装 :长电科技的Fan Out扇出型晶圆级封装累计发货超过15亿颗,其全资子公司长电先进已经成为全球最大的集成电路Fan-In WLCSP封装基地之一;晶方科技已经成为全球最大的影像传感器WLP晶圆级封装基地之一。
FC 倒装封装: 通过跨国并购,国内领先企业获得了国际先进的FC倒装封装技术,比如长电科技的用于智能手机处理器的FC-POP封装技术;通富微电的高脚数FC-BGA封装技术;国内三大封测厂也都基本掌握了16/14nm的FC倒装封装技术。
从2018年开始,多款基于氮化镓技术开发的快充充电器相继量产,氮化镓也正式开启了在消费类电源领域商用。
近日,氮化镓半导体材料被正式写入“十四五规划”中,这就意味着氮化镓产业将在未来的发展中获得国家层面的大力扶持,前景十分值得期待。
氮化镓(gallium nitride,GaN)属于第三代半导体材料,其运行速度比传统硅(Si)技术加快了二十倍,并且能够实现高出三倍的功率,用于尖端快速充电器产品时,可以实现远远超过现有产品的性能,在尺寸相同的情况下,输出功率提高了三倍。
氮化镓新技术应用领域广阔,覆盖5G通信、人工智能、自动驾驶、数据中心、快充等等,这其中快充市场发展最为迅猛,成为先进技术普惠大众的一个标杆应用,可谓是人人都能享受到新技术从实验室走向市场的便利;而快充出货量、需求量庞大,也反哺了氮化镓技术的不断迭代。快充与氮化镓,堪称天生一对。
凭借优秀的性能,两年来氮化镓技术在快充电源方面的发展一路突飞猛进,普及速度十分快,获得越来越来越多品牌客户和消费者的认可。而作为氮化镓快充的核心器件,GaN功率芯片也一直都是大家关注的焦点。
充电头网通过长期跟踪调研了解到,近两年时间里,业内GaN功率芯片供应商也从起初的一两家迅速增长至十余家。今天这篇文章就是带大家详细的了解一下当前快充领域的氮化镓功率芯片领域的主要玩家。
众多厂商入局氮化镓功率器件
面对日益增长的快充市场,全球范围内已有纳微、PI、英诺赛科、英飞凌、意法半导体、Texas Instruments、GaNsystems、艾科微、聚能创芯、东科半导体、氮矽 科技 、镓未来、量芯微、Transphorm、能华、芯冠 科技 等16家氮化镓功率芯片供应商。
值得一提的是,英诺赛科苏州第三代半导体基地在去年9月举行设备搬入仪式。这意味着英诺赛科苏州第三代半导体基地开始由厂房建设阶段进入量产准备阶段,标志着全球最大氮化镓工厂正式建设完成,同时也预示中国功率半导体步入一个崭新时代。
充电头网通过整理了解到,目前市面上合封氮化镓芯片可分为以下四种类型:
控制器+驱动器+GaN:这种方式以老牌电源芯片品牌PI为代表,其基于InSOP-24D封装,推出了十余款合封主控、氮化镓功率器件、同步整流控制器等的高集成氮化镓芯片,PowiGaN芯片获众多品牌青睐,成为了合封氮化镓快充芯片领域的领导者。
此外在本土供应商中,东科半导体率先推出两款合封氮化镓功率器件的主控芯片DKG045Q和DKG065Q, 对应的最大输出功率分别为45W和65W。这两款芯片在节约系统成本,加速产品上市方面均有着巨大的优势,并有望在2021年量产。
驱动器+GaN:这种合封的氮化镓功率芯片以纳微半导体为主要代表,其为业界首家推出内置驱动氮化镓功率芯片的厂商,凭借精简的外围设计,获得广大工程师及电源厂商青睐,在2020年底,达成芯片出货量突破1300万颗的好成绩。
驱动器+2GaN:合封两颗氮化镓功率器件以及驱动器的双管半桥产品,其集成度较传统的氮化镓功率器件更高。这类产品应用于ACF架构,以及LLC架构的氮化镓快充产品中,可以实现更加精简的外围设计。目前纳微半导体、英飞凌、意法半导体等厂商在这类合封氮化镓芯片方面均有布局。
驱动器+保护+GaN:纳微半导体近期推出了新一代氮化镓功率芯片NV6128,集成GaN FET、驱动器和逻辑保护器件。将保护电路也加入氮化镓器件中,通过整合开关管和逻辑电路,可得到更低的寄生参数以及更短的响应时间。该芯片可以实现数字输入,功率输出高性能,电源工程师可基于此设计出更快更小更高速的电源。
氮化镓芯片品牌盘点
以下排名不分先后,仅按照品牌首字母排序,方便读者查阅。
ARK艾科微
艾科微电子专注于高功率密度整体方案开发, 并以解决高功率密度电源系统带来的痛点与瓶颈为使命, 核心团队具备超过 20 年专业经验于功率半导体产业, 我们透过不断的创新及前瞻的系统架构并深入结合功率器件及高效能封装, 来实现高品质、高效能与纯净的电源系统,以满足市场对未来的需求。
艾科微在AC/DC 快充方案上不仅推出原副边芯片, 另有自主的开发MOSFET功率器件。伴随各种应用上电子产品针对高功率密度之强烈需求,我们承诺持续投资、创新、研发并一同与我们的合作伙伴引领市场、开创未来。
Cohenius聚能创芯
青岛聚能创芯微电子有限公司成立于2018年7月,公司坐落于青岛国际创新园区,主要从事第三代半导体硅基氮化镓(GaN)的研发、设计、生产和销售,专注于为业界提供高性能、低成本的GaN功率器件产品和技术解决方案。
聚能创芯掌握业界领先的GaN功率器件与应用设计技术,致力于整合业界优势资源,打造GaN器件开发与应用生态系统,为PD快充、智能家电、云计算、5G通讯等提供国产化核心元器件支持。
背靠上市公司赛微电子(300456)与知名投资基金支持,聚能创芯建立了业界领先的管理和技术团队。在产品研发与量产过程中,始终坚持高品质与高可靠性的要求。在得到合作伙伴广泛认同的同时,逐步成为第三代半导体领域的国际知名企业。
在消费类电源领域,聚能创芯面向快充应用国产化GaN材料和器件技术解决方案,并基于现有的氮化镓功率器件推出全新65W、100W、120W氮化镓快充参考设计。
Corenergy能华
江苏能华微电子 科技 发展有限公司是由留美归国博士于2010年创建。团队汇集了众多海内外的专业人才,是一家专业设计、研发、生产、制造和销售高性能氮化镓外延、晶圆、器件及模块的高 科技 公司。
氮化镓(GaN)是新一代复合半导体的代表,江苏能华已建立了GaN功率器件生产线。项目计划总投资50个亿,分期投资。预计第一期投资超10个亿。公司于2017年搬入张家港国家再制造产业园,新厂房占地3万平方,拥有万级、千级以及百级的无尘车间,并配备有先进的生产设备以及专业的技术人员。
DANXI氮矽 科技
成都氮矽 科技 有限公司是一家专注于第三代半导体氮化镓功率器件与IC研发的 科技 型公司,专注于氮化镓功率器件及其驱动芯片的设计研发、销售及方案提供,公司两位创始人均拥有超过5年的氮化镓领域相关研发经验。
氮矽 科技 于2020年3月发布国内首款氮化镓超高速驱动器DX1001,同年4月推出国内多款量产级别的650V氮化镓功率芯片DX6515/6510/6508,搭配该公司的驱动芯片,进军PD快充行业。
值得一提的是,氮矽 科技 还推出了业内最小尺寸、最强散热能力的650V/160mΩ氮化镓晶体管,引领氮化镓产业革命。基于现有的氮化镓功率器件,氮矽 科技 推出4套国产GaN快充参考设计,丰富快充电源工程师的产品选型需求。
DONGKE东科
安徽省东科半导体有限公司于2009年成立,总部位于安徽省马鞍山市,主要从事开关电源芯片、同步整流芯片、BUCK电路电源芯片等产品研发、生产和销售;并成立深圳及无锡全资子公司和印度公司,负责全球市场销售及技术支持。
东科半导体在北京、青岛、无锡、深圳多地成立研发中心,多名海归博士主持研发 探索 ,在安徽马鞍山拥有2万平方米的封装车间和品质实验室,拥有DIP-8/SOP-8/SM-7/SM-10/TO-220等多种产品封装能力;在东科半导体总部成立的马鞍山集成电路国家实验室,具备对芯片进行开封、失效分析、中测、划片、高低温测试等多种分析能力,为公司产品品质和供货提供可靠保障。
针对快充领域的应用,东科半导体推出了业界首颗合封氮化镓功率器件的电源芯片,成为了国产氮化镓快充发展史上的里程碑。
GaN system氮化镓系统公司
GaN Systems于2008年成立于加拿大首都渥太华,创始人是前北电的资深功率半导体专家。公司专注于增强型氮化镓功率器件的开发,提供高性能、高可靠性的增强型硅基GaN HEMT功率器件。
GaN Systems拥有专利的GaN芯片设计,GaNPx 芯片级封装技术和市场上最全的650V和 100V产品系列,涵盖了从小功率消费电子到几十kW以上工业级电源应用。
GaN Systems采用无晶圆厂模式,与世界级代工厂和供应链合作。产品自2014年开始量产以来,在全球范围服务超过2000家客户。在中日韩和北美及欧洲设有销售分公司和应用支持。据了解,目前GaN Systems的氮化镓功率芯片已经进入飞利浦快充供应链。
GaNext镓未来
珠海镓未来 科技 有限公司成立于2020年10月,公司致力于第三代半导体GaN-on-Si器件技术创新和领先。通过高起点、强队伍等,实现GaN技术的国产化,推动GaN器件的技术的,并且通过电源系统的创新设计,实现能源的绿色、高效利用。
公司创始团队由3位资深GaN-on-Si技术/产业专家构成,以深港微电子学院于洪宇教授和美国知名氮化镓公司研发VP领衔,前华为GaN产业共同创始人加盟,构建了完整的技术、制造、市场的铁三角,厚积薄发。通过成熟领先的产品,推动GaN技术国产化,依托中国巨大电源应用市场和国家第三代半导体产业政策的支持,向氮化镓产业顶峰进军,助力国家第三代半导体产业目标的突破。
GaNPower量芯微
苏州量芯微半导体有限公司是加拿大GaNPower International Inc在中国注册成立的公司。GaNPower于2015年在加拿大成立,总部位于加拿大温哥华市。GaNPower是全球氮化镓功率器件行业的知名公司,目前产品主要为涵盖不同电流等级及封装形式的增强型氮化镓功率器件及氮化镓基电力电子先进应用解决方案。
苏州量芯微半导体公于2019年荣获苏州工业园区第十三届金鸡湖 科技 领军人才称号;《氮化镓功率器件及相关产业化应用》被列为政府重点扶持项目。公司的氮化镓功率器件产品荣获行业权威大奖:2020年ASPENCORE中国IC设计成就奖之年度功率器件奖。公司目前拥有40项美国和中国的专利及申请。
据悉,量芯微半导体已经推出650V氮化镓功率器件,适用于45W-300W快充。
Innoscience英诺赛科
英诺赛科 科技 有限公司成立于2015年12月,国家级高新技术企业,致力于研发和生产8英寸硅基氮化镓功率器件与射频器件;英诺赛科是全球最大的氮化镓功率器件IDM 企业之一, 拥有氮化镓领域经验最丰富的团队、先进的8英寸机台设备、加上系统的研发品控分析能力,造就英诺赛科氮化镓产品一流品质和性能的市场竞争优势。
自从2017年建立全球首条8英寸增强型硅基氮化镓功率器件量产线以来, 目前英诺赛科已经发布和销售多款650V以下的氮化镓功率器件,产品的各项性能指标均达到国际先进水平,能广泛应用于多个新兴领域, 如快充、5G 通信、人工智能、自动驾驶、数据中心等等。
目前,英诺赛科已经建成了全球最大的氮化镓工厂,在USB PD氮化镓快充市场,英诺赛科650V高压氮化镓功率器件已经在努比亚、魅族、MOMAX、ROCK等众多知名品牌产品中得到应用,并在近期推出第二代InnoGaN产品,性能较上一代有显著提升。
此外,英诺赛科还推出了多款低压GaN功率器件,适用于同步整流、DC-DC电压转换以及激光雷达等领域。在全球市场中,英诺赛科是少有具备氮化镓高压、低压全品类产品线的IDM芯片原厂。
infineon英飞凌
英飞凌 科技 股份公司是全球领先的半导体 科技 公司,我们让人们的生活更加便利、安全和环保。英飞凌的微电子产品和解决方案将带您通往美好的未来。2020财年(截止9月30日),公司的销售额达85亿欧元,在全球范围内拥有约46,700名员工。2020年4月,英飞凌正式完成了对赛普拉斯半导体公司的收购,成功跻身全球十大半导体制造商之一。
英飞凌电源与传感系统事业部提供应用广泛的电源、连接、射频(RF)及传感技术,让充电设备、电动工具、照明系统在变得更小、更轻便的同时,还能提升能效。新一代的硅基/宽禁带半导体解决方案(碳化硅/氮化镓)将为5G、大数据及可再生能源应用,带来前所未有的突出性能和可靠性。
高精度XENSIV 传感器解决方案为物联网设备赋予了人类的感官功能,让这些设备能够感知周遭的环境,并做出“本能”反应。音频放大器产品扩充了电源与传感系统事业部的产品线,让智能音箱及其它音频应用设备能够提供卓越的音质体验。
Navitas纳微
纳微半导体是全球领先氮化镓功率IC公司,成立于2014年,总部位于爱尔兰,拥有一支强大且不断壮大的功率半导体行业专家团队,在材料、器件、应用、系统、设计和市场营销方面,拥有行业领先的丰富经验,公司创始者拥有320多项专利。
GaNFast功率IC将GaN功率(FET)与驱动,控制和保护集成在一起,可为移动、消费电子、企业、电动交通和新能源市场提供更快的充电,更高的功率密度和更强大的节能效果。纳微在GaN器件、芯片设计、封装、应用和系统的所有方面已发布和正在申请的专利超过120项,已完成生产并成功交付了超过1300万颗GaNFast氮化镓功率IC,产品质量和出货量全球领先。
近期,纳微半导体也推出了最新一代氮化镓功率芯片NV6128,内置驱动和保护功能,适用于大功率快充产品。凭借优异的产品性能,纳微半导体已经成为小米、OPPO、联想、戴尔、LG等众多知名品牌的氮化镓芯片供应商,基于GaNFast芯片开发的产品多达百余款。
PI
Power Integrations 是一家专注于高压电源管理及控制领域的高性能电子元器件及电源方案的供应商,总部位于美国硅谷。
PI所推出的集成电路和二极管为包括移动设备、家电、智能电表、LED灯以及工业应用的众多电子产品设计出小巧紧凑的高能效AC-DC电源。SCALE 门极驱动器可提高大功率应用的效率、可靠性和成本效益,其应用领域包括工业电机、太阳能和风能系统、电动 汽车 和高压直流输电等。
自1998年问世以来,Power Integrations的EcoSmart 节能技术已节省了数十亿美元的能耗,避免了数以百万吨的碳排放。由于产品对环境保护的作用,Power Integrations的股票已被归入到由Cleantech Group LLC及Clean Edge赞助的环保技术股票指数下。
充电头网拆解了解到,PI的氮化镓芯片已被小米、OPPO、ANKER、绿联、belkin等多个品牌的快充产品采用。此外,PI还推出了全新的MinE-CAP IC,用于快充充电器时,体积可缩小40%。
ST意法半导体
意法半导体(STMicroelectronics; ST)是全球领先的半导体公司,提供与日常生活息息相关的智能的、高能效的产品及解决方案。意法半导体的产品无处不在,致力于与客户共同努力实现智能驾驶、智能工厂、智慧城市和智能家居,以及下一代移动和物联网产品。享受 科技 、享受生活,意法半导体主张 科技 引领智能生活(lifeaugmented)的理念。意法半导体2018年净收入966亿美元,在全球拥有10万余客户。
目前,ST意法半导体推出了一款GaN半桥器件,内置驱动器和两颗氮化镓,并基于该芯片推出了一套推出65W氮化镓快充参考设计。
Texas Instruments德州仪器
德州仪器 (Texas Instruments)是全球领先的半导体公司,致力于设计、制造、测试和销售模拟和嵌入式处理芯片。数十年来,TI一直在不断取得进展,推出的80000多种产品可帮助约100000名客户高效地管理电源、准确地感应和传输数据并在其设计中提供核心控制或处理,从而打入工业、 汽车 、个人电子产品、通信设备和企业系统等市场。
2020年11月10日,德州仪器推出了650V和600V两款氮化镓功率器件,进一步丰富拓展了其高压电源管理产品线。与现有解决方案相比,新的GaN FET系列采用快速切换的22 MHz集成栅极驱动器,可帮助工程师提供两倍的功率密度和高达99%的效率,并将电源磁性器件的尺寸减少59%。
Transphorm
Transphorm公司致力于设计、制造和销售用于高压电源转换应用的高性能、高可靠性的氮化镓(GaN)半导体功率器件。Transphorm持有数量极为庞大的知识产权组合,在全球已获准和等待审批的专利超过1000多项 ,是业界率先生产经JEDEC和AEC-Q101认证的GaN FET的IDM企业之一。
得益于垂直整合的业务模式,Transphorm公司能够在产品和技术开发的每一个阶段进行创新——包括设计、制造、器件和应用支持。充电头网拆解了解到,此前ROMOSS推出的一款65W氮化镓充电器内置的正式Transphorm公司的GaN器件。
XINGUAN芯冠 科技
大连芯冠 科技 有限公司是全球领先的第三代半导体氮化镓外延及器件制造商,致力于硅基氮化镓外延与功率器件的研发、设计、生产和推广,拥有先进的外延材料与功率器件生产线,提供650V全规格的功率器件产品,电源功率的应用覆盖几十瓦到几千瓦范围。广泛应用于消费类电子(快充、大功率适配器等)、工业电子与 汽车 电子等领域。
芯冠氮化镓功率器件的特点是兼容标准MOS驱动,应用设计简单;抗击穿电压高达1500V以上,使用安心。
充电头网总结
从三年前GaN技术开始在消费类电源领域商用,到如今市售GaN快充已经多达数百款,市场发展速度可谓是突飞猛进。这一方面是借助各大手机、笔电厂商陆续入局的产生的品牌影效应,另一方面也离不开氮化镓快充生态的日趋完善。
就充电头网本次不完全统计,已经布局快充市场的氮化镓芯片供应商已经多达16家,方案多达数百款;并且涵盖了多样化的封装方式,完全可以满足当前快充电源市场对核心器件的选型需求。
相信随着国家十四五规划对氮化镓产业的大力扶持,入局氮化镓功率芯片的厂商数量将越来越多。不仅产品类型将会的得到进一步完善,更重要的是当氮化镓产业呈现规模化发展后,电源厂商开发氮化镓快充的成本将会得到优化;而氮化镓功率芯片也将成为越来越多高性能快充电源产品的首选。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)