云计算大数据物联网之间的区别与联系 2250字左右我写论文

云计算大数据物联网之间的区别与联系 2250字左右我写论文,第1张

随着社会迅速发展,人类逐渐进入大数据的时代,而物联网与云计算作为近年来的热点,受到了业内不少人士的关注。据业界人士分析,大数据的前景与物联网以及云计算这两者之间的关系非常密切,那么,真像业界人士所说的那样它们之间存在着不一样的关系呢?下面,我们就来了解一下大数据与物联网、云计算之间的关系吧。
大数据概念
巨量资料(big data),或称大数据、海量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。“大数据”是由数量巨大、结构复杂、类型众多数据构成的数据集合,是基于云计算的数据处理与应用模式,通过数据的整合共享,交叉复用,形成的智力资源和知识服务能力。
大数据市场格局
具体意义上来讲,早在20世纪90年代“数据仓库之父”的Bill Inmon便提出了“大数据”的概念。大数据之所以在最近走红,主要归结于互联网、移动设备、物联网和云计算等快速崛起,全球数据量大大提升。可以说,移动互联网、物联网以及云计算等热点崛起在很大程度上是大数据产生的原因。
我们通过分析,形象的知道大数据与移动互联网、物联网以及传统互联网的关系。物联网,移动互联网再加上传统互联网,每天都在产生海量数据,而大数据又通过云计算的形式,将这些数据筛选处理分析,提前出有用的信息,这就是大数据分析。
大数据与云计算
云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。近几年,云计算的概念受到了学术界、商界,甚至政府的热捧,一时间云计算无处不在,这真让同时代其他的IT技术相形见绌,无地自容。
本质上,云计算与大数据的关系是静与动的关系;云计算强调的是计算,这是动的概念;而数据则是计算的对象,是静的概念。如果结合实际的应用,前者强调的是计算能力,或者看重的存储能力;但是这样说,并不意味着两个概念就如此泾渭分明。大数据需要处理大数据的能力(数据获取、清洁、转换、统计等能力),其实就是强大的计算能力;另一方面,云计算的动也是相对而言,比如基础设施即服务中的存储设备提供的主要是数据存储能力,所以可谓是动中有静。
如果数据是财富,那么大数据就是宝藏,而云计算就是挖掘和利用宝藏的利器!没有强大的计算能力,数据宝藏终究是镜中花;没有大数据的积淀,云计算也只能是杀鸡用的宰牛刀。
大数据与物联网
物联网是一个基于互联网、传统电信网等信息承载体,让所有能够被独立寻址的普通物理对象实现互联互通的网络。
大数据与物联网之间的关系是相铺相成的。物联网产生大数据。美国人前几年医院一年产生500个数据,IMT1。4TB数据等各种的数据通过传感器产生,也有在网上直接产生的,我们现在处于大数据时代,物联网一分钟可以产生非常多的东西,苹果下载2万余次,一分钟会上传10万条新微博,全世界物联网上虚拟网络上,产生了大量的数据。
物联网产生的大数据与一般的大数据有不同的特点。物联网的数据是异构的、多样性的、非结构和有噪声的,更大的不同是它的高增长率。物联网的数据有明显的颗粒性,其数据通常带有时间、位置、环境和行为等信息。物联网数据可以说也是社交数据,但不是人与人的交往信息,而是物与物,物与人的社会合作信息。
除此之外,大数据助力物联网,不仅仅是收集传感性的数据,实物跟虚拟物要结合起来。今天北京交通堵塞,但是并不知道堵塞原因,如果政府发布消息和市民微博发布消息结合起来就知道发生什么事,物联网要过滤,过滤要有一定模式。

关于物联网,你别被这5个大数据忽悠了

但它的概念非常模糊。在一些谈话中,不同的参与者用“大数据”所表示的意思可能有以下三种:1大量的数据;2超出传统数据库功能的数据集;3使用软件工具来分析前两个意义的数据集。

物联网最显著的效益就是它能极大地扩展我们监控和测量真实世界中发生的事情的能力。车间经理知道如果发动机发出呜呜声就说明出现了问题。一个有经验的房主知道烘干机的通风系统可能会被线头塞住,从而导致安全隐患。数据系统最终给予了我们精确理解这些问题的能力。

然而,挑战在于使这些让信息更有价值的系统和商业模型不断发展。想一下智能恒温器在峰值功率很紧张的情况下,公用事业单位和第三方能源服务企业想要每分钟准确更新能源消耗情况:通过精确调整能源并最大化节省能源,使得夏季普通的一天和节约用电的一天能够有明显的区别。但如果把时间缩短到午夜至凌晨四点间,对信息的需求就不是那么急迫了:数据主要在确定长期趋势时才能有价值。

现在从消费者的角度思考。15分钟的数据更新间隔都有可能导致超负荷。这不仅仅没有价值,还可能会造成贬低它价值的麻烦事。相反,消费者所需要的不过是一份能够指明一些趋势的月度总结表。

我经常跟人们讨论关于“数据价值”的挑战。下面的列表总结了数据的一般类别以及制造商和服务提供商所追求的机会。

五种大数据类型

状态数据

冷库中的空气压缩机是否正常运作它们中是否有一个已经罢工了不用担心,状态数据可以提供供应商和消费者关于物联网的实时动态数据。

状态数据是物联网数据中最普遍、最基础的一种。事实上所有事都会产生类似的数据,并把它作为基础。在许多市场中,状态数据更多地被用作进行更复杂分析的原材料,但它也具有它自身的重要价值。

看看Streetline是怎样找到停车位的——它创造了能够提醒订阅者空余车位的系统。当然,长期的数据能帮到城市规划者,但对于消费者来说,实时状态数据才是最重要的。

定位数据

我的货物到哪儿了它到达目的地了吗定位服务是GPS应用的必然趋势。GPS非常强大,但在室内、人潮拥挤的地方以及快速变化的环境中的效果并不明显。那些试图追踪托盘以及机械叉车的人可能会需要实时信息。

作为早期的物联网市场,农业领域也需要充分利用位置数据,因为农场主通常需要在很大的地理面积上定位自己的设备。我们已经看到了一些能够帮助人们定位钥匙的消费品的出现,这意味着在为商业和工业用户提供服务的领域存在着更大的市场,尤其是在时间紧迫时,这些领域有大量的资产需要追踪的情况下。Foursquare针对油漆仓库的发展就是抓住了这样一个巨大的机遇。

个性化数据

不要用个人数据来拒绝个性化数据。个性化数据指的是关于个人偏好的匿名数据。消费者自然会对自动化产生怀疑。因为一些住宅管理系统比起你的舒适更关心节省的成本,所以往往你不想困在一个昏暗的办公室或者冰冷的酒店客房。自动化技术同样也存在安全隐患。

尽管如此,自动化也是不可避免的。没有人会为了节省475美元而不停地用手指来试恒温器的温度。同样,那些依靠人工交互的照明系统也失败了(一些智能照明生产者希望用他们的传感器数据告诉商店的管理者何时应该打开结账通道)。挑战将围绕开发应用程序和产品规则而展开。

可供行为参考数据

把这个看作是有后续计划的状态数据。建筑物消耗了整个国家电力的73%,并且其中一大部分(根据EPA显示,最高达到30%)被浪费了。为什么呢因为对于大多数建筑物的所有者来说:能源是次要的问题。他们虽也想解决这一问题,但担心成本、精力以及一些棘手的局面所产生的损失会超出收益。

对于这一问题相应地产生了两种方法:1能够改变系统实时状态的自动化技术;2能够使人们改变行为习惯或者做长线投资的说服力。Opower开创了关于说服力的解决方案,也就是提供用户及其邻里之间使用能源的对比数据。根据他们自己的研究,这些具有说服力的数据能使能耗降低2到3个百分点。

反馈数据

你了解你的顾客的真实想法吗你也许认为你了解,但是你可能错了。在不远的将来,生产者还能分析从已销售的产品中获取的数据,从而更好地了解产品在现实世界中的使用情况。现在大部分公司并不太了解他们产品的使用状况。这些产品从分销商处装运,从零售商处销售,最后进入了千家万户。而使用者和生产者可能永远都不会有交集。

物联网创造了一个从消费者到生产者的反馈回路,在这里产品生产者可以通过适度水平的隐私、安全以及匿名性来检验产品的实际表现,并鼓励持续的产品改进和创新。

以上是小编为大家分享的关于关于物联网,你别被这5个大数据忽悠了的相关内容,更多信息可以关注环球青藤分享更多干货

物联网是新一代信息技能的重要组成部分,由字面意思可以看出就是物物相连的互联网。

物联网一般来说包含感知层、网络层、使用层。相应的,而他的技能体系则包含感知层技能、网络层技能、使用层技能、公共技能等。

感知层:数据收集与感知首要用于收集物理国际中发作的物理事情和数据,包含各类物理量、标识、音频、视频数据。物联网的数据收集触及传感器、RFD、多媒体信息收集、二维码和实时定位等技能。

网络层:完成愈加广泛的互连功用,可以把感知到的信息无障碍、高可靠性、高安全性地进行传送,需求传感器网络与移动通信技能、互联网技能相融合。通过十余年的快速开展.移动通信、互联网等技能已比较老练,根本可以满意物联网数据传输的需求。

使用层:首要包含使用支撑平台子层和使用服务子层。其间使用支撑平台子层用于支撑跨职业、跨使用、跨体系之间的信息协同、同享、互通的功用。使用服务子层包含智能交通、智能医疗、智能家居、智能物流、智能电力等职业使用。

公共技能:不属于物联网技能的某个特定层面,而是与物联网技能架构的三层都有联系,它包含标识与解析、安全技能、网络办理和服务质量办理。

简略讲,物联网是物与物、人与物之间的信息传递与 *** 控。

物联网技术架构的最底层是感知技术,也是物联网获取信息和实现物体控制的首要环节。物联网的技术体系框架包括感知层技术、网络层技术、应用层技术和公共技术。
1 感知层:数据采集与感知主要用于采集物理世界中发生的物理事件和数据,包括各类物理量、标识、音频、视频数据。物联网的数据采集涉及传感器、RFID、多媒体信息采集、二维码和实时定位等技术。传感器网络组网和协同信息处理技术实现传感器、RFID 等数据采集技术所获取数据的短距离传输、自组织组网以及多个传感器对数据的协同信息处理过程。
2 网络层:实现更加广泛的互联功能,能够把感知到的信息无障碍、高可靠性、高安全性地进行传送,需要传感器网络与移动通信技术、互联网技术相融合。经过十余年的快速发展,移动通信、互联网等技术已比较成熟,基本能够满足物联网数据传输的需要。
3应用层:应用层主要包含应用支撑平台子层和应用服务子层。其中应用支撑平台子层用于支撑跨行业、跨应用、跨系统之间的信息协同、共享、互通的功能。应用服务子层包括智能交通、智能医疗、智能家居、智能物流、智能电力等行业应用。
4 公共技术:公共技术不属于物联网技术的某个特定层面,而是与物联网技术架构的三层都有关系,它包括标识与解析、安全技术、网络管理和服务质量(QoS)管理。

需要的技术很多。

现在国内重点支持的关键技术研发项目:
1.超高频和微波RFID芯片设计、产品的技术研发;
2.微型和智能传感器技术研发;
3.无线传感器网络自组网技术研发;
4.低功耗无线传感器节点产品技术研发;
5.物联网数据传输中间件技术研发;
6.面向行业应用海量数据的数据挖掘技术研发;
7.图像视频智能分析和识别技术研发;
8.物联网安全等级保护和安全测评技术研发。

物联网市场规模持续稳步增长 云平台成为竞争核心领域

物联网市场规模持续稳步增长

2017年以来,全球物联网市场规模持续稳步增长,跨界应用不断兴起。我国物联网数据规模及多样性持续扩大,行业生态体系逐步完善,细分领域创新成果不断涌现,产业技术和应用发展进入落地关键期。

前瞻前瞻产业研究院发布的《中国物联网行业应用领域市场需求与投资预测分析报告》统计数据显示,2013年全球物联网市场规模达398亿美元,同比增长21%,到了2017年全球物联网市场规模达到了798亿美元,同比增长14%。预计2018年全球物联网市场规模将突破1000亿美元,达到1036亿美元,同比增长30%。

物联网发展呈现新特点与趋势分析

1、全球物联网设备数量爆发式增长,物联网解决方案渐趋成熟。2017年以来,全球物联网设备规模、普及率和企业级应用项目的爆发式增长,物联网解决方案渐趋成熟。数据显示,2017年全球物联网设备数量强劲增长,达到84亿台,首次超过人口数量。全球物联网市场有望在十年内实现大规模普及,到2025年市场规模或将成长至39-111万亿美元。

2、中国物联网市场规模突破万亿,物联网云平台成为竞争核心领域

2017年,我国物联网市场逐步回归理性,进入实质性发展阶段,全年市场规模突破1万亿元,年复合增长率超过25%,其中物联网云平台成为竞争核心领域,预计2021年我国物联网平台支出将位居全球第一。具体来看,C端用户(个人用户)更加关注物联网设备带来的实际智能体验,B端用户(行业用户/企业用户)则更加关注物联网应用的投入产出比。

3、物联网细分领域热度出现分化,技术演进驱动应用产品向智能、便捷、低功耗方向发展

2017年以来,物联网在交通、物流、环保、医疗、安防、电力等领域逐渐得到规模化验证,“物联网+行业应用”的细分市场开始出现分化,智慧城市、工业物联网、车联网、智能家居成为四大主流细分市场。芯片、智能识别、传感器、区块链、边缘计算等物联网相关新技术的迭代演进,加快驱动物联网应用产品向智能、便捷、低功耗以及小型化方向发展。

4、中国物联网重点上市企业营收达48338亿元,同比增长207%,创近五年新高

2017年,我国沪深板块52家及港股板块11家重点物联网上市企业营业收入及增长率均创近五年新高,概念股交易趋于活跃,亏损面收窄,企业净利润总额波动增长,总体盈利情况出现好转。

5、无锡持续深化国家传感网创新示范区建设,累计建成、获得20多个物联网相关国家级品牌

2017-2018年,无锡持续强化应用试点示范,健全完善技术创新体系,物联网产业发展路线图进一步细化,与实体经济融合发展进程逐步加快,“一核两翼多元”产业格局凸显。截至2017年底,无锡物联网营业收入2437亿元,拥有物联网企业超过2000家,发明专利申请量2500多件,承接的物联网工程遍及全球60多个国家700多座城市,其中国家级重大应用示范工程21个,牵头制定国际标准“物联网参考架构”,正式掌握顶层架构标准主导权,已累计建成、获得20多个物联网相关国家级品牌,全球影响力稳步提升。

中国物联网行业生态体系日趋完善,但仍存在一些发展瓶颈。市场与产业协同不足,行业标准政出多门,高端产品研发能力有待提高,网络基础设施亟待全面升级,数据隐私和安全问题仍然突出等。

中国物联网产业应加大研发投入力度,提升原始创新能力;夯实物联网应用基础,推动企业转型升级;促进产业协同,加快开发消费端规模化应用产品;积极参与国际标准制定,加强标准互 *** 作研究;明晰安全防护思路,各有侧重分类实施。

云计算扮演着物联网和大数据共同工作场所的角色,其中物联网是数据的来源,大数据作为一种技术是数据的分析平台。
根据IDC的数据,在未来五年内,将有超过90%的物联网数据托管在云平台上。其背后的原因是:
(1)大量的物联网数据生成将为大数据系统提供数据。
(2)降低物联网中数据混合的复杂性是使其收益最大化的标准之一。其背后的概念是一如果物联网应用程序和数据孤岛运行,我们将无法充分发挥其潜力。因此,为了获得更好的见解并做出决策,混合来自各种来源的信息(数据) 是最好的方法。
因此,对于上述两点,我们明确认为需要为物联网和大数据采用基于云的系统。这从产品导向转向基于信息的结果导向。
总而言之,物联网,大数据和云计算的融合利用了决策支持系统的新视野。此外,物联网,大数据和云计算的融合可以为所有行业提供新的机会和应用。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13121717.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-04
下一篇 2023-06-04

发表评论

登录后才能评论

评论列表(0条)

保存