2022年桂林文化旅游博览会参展参加的有哪些

2022年桂林文化旅游博览会参展参加的有哪些,第1张

2022年桂林文化旅游智慧旅游博览会参展参加的有:票务管理系统、旅游大数据集成分析、下一代通信技术、新信息技术的应用、物联网、云计算、自助导航、游客预警、景区服务系统等。智慧旅游展区展示内容:人工智能技术、大数据、云平台、移动电子商务、客源分析系统、电子导览系统、远程监控系统、虚拟游互动体验应用服务、智慧旅游公共。游览自行车。自行车旅游。观光。自行车旅行/运动装和设备、游乐设备;国际民族民俗文化、手工艺术品、工艺美术、文化创意、珠宝玉石、雕刻雕塑、刺绣布艺、服饰染织、陶瓷紫砂紫陶、木工艺品、文化用品、收品、伴手礼、茶文化、旅游纪念品、新型工艺品等。文化旅游:文化工艺品、地方特产、文化IP、文化旅游商品、旅游文化创意产品、非物质文化遗产商品及衍生品、特色景区、主题性旅游、视觉和艺术旅游:登山旅游、高山旅游景点及滑雪项目投资、高山旅游景点基础设施、酒店服务、运动及旅游出版物、运动旅游保险;旅游地产项目:旅游度假区招商、国内外旅游风景区及旅游风景区旅游开发公司、地方政府、招商局。房地产开发投资商及旅游地产景观设计院、规划园林设计院;健康旅游展区:国内外旅游机构、旅行。桂林旅游博览会参展企业来自全球多个国家和地区。届时众多知名品牌亮相。展示前沿产品与技术及创新解决方案。广西旅游博览会是企业开拓旅游市场的重要平台。以旅游产业为主题的交流、采购大会。旅游博览会将引领桂林旅游行业不断突破升级。2022展会期间计划举办旅游产业的现场精彩活动。

巴展会是指每年在德国汉诺威举办的全球领先的信息和通信技术展览会——汉诺威工业博览会(Hannover Messe)。而华为作为一家全球知名的通信设备供应商,在该展览中也有自己的展台,向来吸引了众多参观者。
关于华为传输设置是否好卖,需要具体分析。首先,华为作为一家专业从事通信设备研发和生产的企业,在传输领域拥有着雄厚的技术实力和市场经验。其产品质量稳定、性能优越,并得到了广大客户和用户的认可。
其次,随着5G时代的到来以及云计算、物联网等新兴技术应用不断扩大,对高速、高效、安全等方面要求也越来越高。因此,在这个背景下,华为传输设置或许具有较好销售前景。
但是需要注意的是,在竞争激烈、市场变化快速的行业中,任何一个企业都不能保证100%成功。除了产品本身外,还需要考虑市场需求、价格策略、营销推广等多方面因素。

2019年全球ICT产业关键字,聚焦「智慧、速度与创新」。创新技术如人工智慧、延展实境(XR)、区块链、数位分身(DigitalTwin)持续出笼,尤其人工智慧加速晶片及量子电脑的发展,伴随5G商转,势必带动产业跳跃式前进。既然聚焦「虚实整合、运算科技、人机互动」三大主轴,2019年COMPUTEX,全球IP矽智财授权领导厂Arm受邀出席《COMPUTEX论坛》、《InnoVEX论坛》主题演讲。Arm在COMPUTEX揭示全面运算(TotalCompute)主张,为5G时代提供更符合更多使用情境(usecase)的整体运算方案,并展现强大生态系能量。

Arm在COMPUTEX2019有哪些亮点展示?瘾科技带你浏览四大解决方案 亮点一:物联网平台

回应Arm的目标在2035年打造达一兆台连网装置,为了让连网装置深度沟通,Arm针对IoT平台的生态系,近年接续推出「DesignStart」、「Pelion」及「Neoverse」等相关计画。今年COMPUTEX,Arm展示Pelion这项混合环境的端到端联网连接、装置和资料管理平台方案。Pelion特色在于建构3A情境,「任何装置、任何资料、任何云端」(Anvice,Anydata,Anycloud),管理任何种类的连网装置与连接,应付任何内外部不同类型的资料,连接任何公有、私有及混合云端。

换言之,Pelion平台让企业在安全环境下,管理各项物联网装置,无限制连结任何规模的资料。COMPUTEX也展示,Arm收购TreasureData后,借助巨量资料技术能力,Pelion平台对资料流程进行融合,让企业用户以高效、更安全的技术部署、连接和更新连网装置,顺利走入物联网的资料世界。

亮点二:AI机器学习

联网装置与数据资料爆发成长,人工智慧的机器学习应用,逐渐从云端转移至终端。为了把机器学习技术放在边缘装置发挥所长,Arm针对机器学习的晶片应用进而打造全新处理器。延续Arm在CPU具备的可编程优势,以及GPU数据处理压缩能力和高吞吐量的设计特点,将其整合至机器学习晶片设计之中。针对机器学习热潮,Arm推出「ProjectTrillium」机器学习运算平台支持各种AI应用程序,在功能性与可扩展性方面,能实现更快机器学习效率。根据统计,目前ProjectTrillium平台的学习数据吞吐量,比起过去CPU、GPU协同作业的机器学习效率,已经达2~4倍以上,效能也优于传统DSP的可编程逻辑。

换言之,ProjectTrillium是一个异质的ML运算平台,平台架构包括ArmML处理器、开放原始码ArmNN软体框架,目前搭载于超过25亿台Android装置。Arm针对ML处理器进行强化,包括超过两倍能源效率,达到每瓦5兆次运算(TOPs/W)、记忆体压缩技术提升达三倍,以及提升至高达八核心的次世代峰值效能,与每秒最高32兆次运算(TOP/s)。

随着机器学习需求愈来愈高,开发人员更渴望利用系统上专属神经处理器(NPU)的优势。Arm机器学习ML处理器提供同级最优化的能耗效率,并有强大的软体生态系统支援,让整个生态系统的AI效能极大化。

▲Arm示范如何在装置上快速的执行机器学习功能,挑战人的记忆,和装置相比,看谁能先辨出不同的图像。

亮点三:AR/VR装置

前几年开始流行的AR、VR装置,过去最大挑战来自虚拟视觉的稳定度。对此,Arm因应5G科技演进推出多款全新高阶IP套件,其中Mali-D77DPU显示器即是聚焦扩增实境、虚拟实境所需的内容所打造,让虚拟实境更加真实。Mali-D77是Mali-D71显示处理器更新版,最高可对应3K解析度与120fps更新率,虚拟视觉影像得以更稳定呈现。全新的硬体功能,加速头戴式显示器的虚拟实境运算,实现更小、更轻、更舒适的VR装置部署。

▲在COMPUTEX展示OculusQuest的VR头盔,提供高效能、无线,摆脱传统VR装置需要连接线的牵绊,创造VR装置新体验。

当然,使用者对AR、VR装置的期待除了影像稳定,在沉浸式体验方面,还包含更轻量、不受线材影响以及更顺畅的效能。Mali-D77其他功能表现在镜头失真校正(LensDistortionCorrection)、色差校正(ChromaticAberrationCorrection)、非同步时间扭曲(AsynchronousTimewarp),对应更清晰、更真实影像,还能降低配戴者头晕情况。除此之外,Mali-D77显示处理器IP,3K120虚拟实境效能,硬体节省VR作业负载4成以上系统频宽,以及12%功耗表现。Arm表示,为了让VR更为普及,在全球达到数十亿台装置的长期目标,Mali-D77解决现阶段显示技术的挑战,为VR产业迎向下一个新世代。

亮点四:车用

Arm在今年COMPUTEX展示的第四个亮点,聚焦在汽车应用。Arm在车用方面扮演重要角色,因其牵涉稳定与安全,尤其ADAS与自动驾驶需要顾虑的层级更是重要。对此,Arm针对车载安全推出ArmSafetyReady计画,同时也包括针对自驾车的7nm制程最佳化处理器架构Cortex-A76AE,借由整合Split-Lock提供车载所需的安全性。

换言之,ArmSafetyready车用安全计画涵盖Arm既有、新型与未来的全方位车载计画,从系统性流程到研发,且通过ISO26262与IEC61508标准,一站式提供软体、元件、工具、认证及标准等资源,确保加入此计画的合作伙伴其SoC与系统,皆达到最高安全层级。

今年COMPUTEX也展示基于Arm的DMS(DriverMonitoringSystem)驾驶监控系统产品。DMS是采用ArmCortex-A7所支援的深度学习NN模型,由TEEAILab所开发。这套DMS系统展示在CortexA7上运行AI/ML以实现驱动程序状态监视功能。例如针对驾驶员闭眼、打哈欠侧视、俯视、打电话和吸烟等行为进行迅速检测,并发出音频以提醒驾驶。Arm在智慧驾驶领域,也展开AutomotiveEnhancedforFunctionalSafety计画,将推出首款多情绪执行处理器,以强化新世代安全驾驶体验。

▲COMPUTEX展会上也展示Arm在智慧驾驶领域的成果(图右),情绪执行处理器问世将有助驾驶安全。

聚焦未来世界,打造创新体验

Arm在COMPUTEX2019展会中,展现新世代运算领域的创新技术与相关应用。除了上述相关亮点,也聚焦面向未来2030年的使用情境。Arm拥有全面软体开发框架,包含ArmIP、ArmNN、ArmComputeLibrary及ArmDevelopmentStudios,透过生态系统合作帮助开发人员更快采用、更快上市,透过机器学习软体优化,有效扩展硬体效能。

想像未来的世界,5G传输、机器学习、终端运算可能已经成为我们生活的日常,而产业之间将呈现万物联网的庞大生态系。对此,Arm将持续展现其领先技术优势,携手物联网超级战队掌握下一波科技浪潮。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13127482.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-05
下一篇 2023-06-05

发表评论

登录后才能评论

评论列表(0条)

保存