云计算与物联网的关系?

云计算与物联网的关系?,第1张

物联网和云计算应协同发展,物联网使云计算落地,而云计算又促进物联网产业发展。物联网发2113展要部署大量的云感知、云传输、云存储、云处理、云安全、云应用。
物联网和云计算发展都面临一个共同的问题,5261就是商业模式探索问题,物联网从感知到传输到应用,自始至终面临的商业模式的问题。第4102二个问题就是行业壁垒问题,数据资源不能充分共享。第三个问题是就是信息安全。
随着越来越多的物联网项目的部署,大量的节点和传感器,如果都不能自1653主可控,从信息采集端就开始泄密,危及的不止是信息安全,专可能会上升到国家安全。此外,物联网和云计算在未来还可能会出现环境污染问题。因为在这个过程中大量部署RFID,都是放射性的,大量的传属感器如果不考虑回收,也会造成明显环境污染。

云计算目前在国内作为一个技术发展方向的概念被提出来。在云计算的应用下,以后个人和企业就只需一台普通电脑,一个浏览器即可以完成所需工作。
所谓三网融合,即互联网、电信网、广电网三网的融合。融合后呈现出来的是这样的场景:三网中的任何一个网都可以提供电话、电视、网络的服务,三者相辅相成。
三网融合目前处于地方试点阶段,由政府主导,庞大的网络体系也决定了融合的过程不可能一蹴而就。

1、云计算
一般来讲云计算,云端即是网络资源,从云端来按需获取所需要的服务内容就是云计算。云计算是指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的资源(硬件、平台、软件)。提供资源的网络被称为“云”。“云”中的资源在使用者看来是可以无限扩展的,并且可以随时获取,按需使用,随时扩展,按使用付费。这种特性经常被称为像水电一样使用IT基础设施。广义的云计算是指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的服务。这种服务可以是IT和软件、互联网相关的,也可以是任意其他的服务。
2、物联网
简单理解:物物相连的互联网,即物联网。物联网在国际上又称为传感网,这是继计算机、互联网与移动通信网之后的又一次信息产业浪潮。世界上的万事万物,小到手表、钥匙,大到汽车、楼房,只要嵌入一个微型感应芯片,把它变得智能化,这个物体就可以“自动开口说话”。再借助无线网络技术,人们就可以和物体“对话”,物体和物体之间也能“交流”,这就是物联网。随着信息技术的发展,物联网行业应用版图不断增长。如:智能交通、环境保护、政府工作、公共安全、平安家居、智能消防、工业监测、老人护理、个人健康、花卉栽培、水系监测、食品溯源等。大的理想就是智慧地球,目前实际生活中存在并在建设的智慧城市都是物联网炒的概念。
3、大数据
大数据(big data),就是指种类多、流量大、容量大、价值高、处理和分析速度快的真实数据汇聚的产物。大数据或称巨量资料或海量数据资源,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
大数据的4V特点:Volume、Velocity、Variety、Veracity。
即:数量Volume、多样性Variety、速度Velocity、和真实性Veracity。
4、大数据,云计算,物联网和移动互联网的关系
物联网对应了互联网的感觉和运动神经系统。云计算是互联网的核心硬件层和核心软件层的集合,也是互联网中枢神经系统萌芽。大数据代表了互联网的信息层(数据海洋),是互联网智慧和意识产生的基础。包括物联网,传统互联网,移动互联网在源源不断的向互联网大数据层汇聚数据和接受数据。云计算与物联网推动大数据发展。

云计算是实现物联网的核心。

运用云计算模式,使物联网中数以兆计的各类物品的实时动态管理,智能分析变得可能。物联网通过将射频识别技术、传感器技术、纳米技术等新技术充分运用在各行各业之中。

从物联网的结构看,云计算将成为物联网的重要环节。物联网与云计算的结合必将通过对各种能力资源共享、信息价值深度挖掘等多方面的促进带动整个产业链和价值链的升级与跃进。

各种物体充分连接,并通过无线等网络将采集到的各种实时动态信息送达计算处理中心,进行汇总、分析和处理。

扩展资料:


云计算的价值体现在以下几个方面:

1、对大量消费者提供产品或服务的企业可以利用大数据进行精准营销

2、做小而美模式的中小微企业可以利用大数据做服务转型

3、面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值

例如:

1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。

2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。

3、统计学家内特西尔弗(Nate Silver)利用大数据预测2012美国选举结果。

4、麻省理工学院利用手机定位数据和交通数据建立城市规划。

参考资料:

百度百科-云计算

百度百科-物联网

大数据云计算物联网之间的关系如下:

1、云计算为大数据提供了技术基础,大数据为云计算提供用武之地。

2、物联网是大数据的重要来源,大数据技术为物联网数据分析提供支撑。

3、云计算为物联网提供海量数据存储能力,物联网为云计算技术提供了广阔的应用空间。

总结一下三者的联系与区别:

1、大数据、云计算、物联网的区别。大数据侧重于海量数据的存储、处理与分析,从海量数据中发现价值,服务于生产和生活。云计算本质上旨在整合和优化各种IT资源,并通过网络以服务的方式廉价提供给用户。物联网的发展目标是实现物物相连,应用创新是物联网发展的核心。

2、大数据、云计算、物联网的联系。从整体上看,大数据、云计算、物联网这三者是相辅相成的。大数据根植于云计算,大数据分析的很多技术都来自于云计算,云计算的分布式和数据存储和管理系统(包括分布式文件系统和分布式数据库系统)提供了海量数据的存储和管理能力,分布式并行处理框架提供了海量数据分析能力,没有这些云计算技术作为支撑,大数据分析就无从谈起。反之,大数据为云计算提供了“用武之地”,没有大数据这个“练兵场”,云计算技术再先进,也不能发挥它的应用价值。

云计算、大数据和物联网三者已经彼此渗透、相互融合,在很多应用场合都可以同时看到三者的身影,在未来,三者会继续相互促进、相互影响,更好地服务于社会生产和生活的各个领域。

物联网和云结合,按照结合方式,可以分为三大类:
1、单中心,多终端。此类模式中,分布范围的较小各物联网终端(传感器、摄像头或3G手机等),把云中心或部分云中心做为数据/处理中心,终端所获得信息、数据统一由云中心处理及存储,云中心提供统一界面给使用者 *** 作或者查看。
2、多中心,大量终端。对于很多区域跨度加大的企业、单位而言,多中心、大量终端的模式较适合。譬如,一个跨多地区或者多国家的企业,因其分公司或分厂较多,要对其各公司或工厂的生产流程进行监控、对相关的产品进行质量跟踪等等。
3、信息、应用分层处理,海量终端。针对用户的范围广、信息及数据种类多、安全性要求高等特征来打造。当前,客户对各种海量数据的处理需求越来越多,针对此情况,我们可以根据客户需求及云中心的分布进行合理的分配。是具体根据应用模式和场景,对各种信息、数据进行分类处理,然后选择相关的途径给相应的终端。

云计算与大数据概述
云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。狭义云计算指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需资源;广义云计算指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需服务。这种服务可以是IT和软件、互联网相关,也可是其他服务。它意味着计算能力也可作为一种商品通过互联网进行流通。
大数据(big data),或称海量数据,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。
大数据管理,分布式进行文件系统,如Hadoop、Mapreduce数据分割与访问执行;同时SQL支持,以Hive+HADOOP为代表的SQL界面支持,在大数据技术上用云计算构建下一代数据仓库成为热门话题。从系统需求来看,大数据的架构对系统提出了新的挑战:
1、集成度更高。一个标准机箱最大限度完成特定任务。
2、配置更合理、速度更快。存储、控制器、I/O通道、内存、CPU、网络均衡设计,针对数据仓库访问最优设计,比传统类似平台高出一个数量级以上。
3、整体能耗更低。同等计算任务,能耗最低。
4、系统更加稳定可靠。能够消除各种单点故障环节,统一一个部件、器件的品质和标准。
5、管理维护费用低。数据藏的常规管理全部集成。
6、可规划和预见的系统扩容、升级路线图。
云计算与大数据的关系
简单来说:云计算是硬件资源的虚拟化,而大数据是海量数据的高效处理。虽然从这个解释来看也不是完全贴切,但是却可以帮助对这两个名字不太明白的人很快理解其区别。当然,如果解释更形象一点的话,云计算相当于我们的计算机和 *** 作系统,将大量的硬件资源虚拟化后在进行分配使用。
可以说,大数据相当于海量数据的“数据库”,通观大数据领域的发展我们也可以看出,当前的大数据发展一直在向着近似于传统数据库体验的方向发展,一句话就是,传统数据库给大数据的发展提供了足够大的空间。
大数据的总体架构包括三层:数据存储,数据处理和数据分析。数据先要通过存储层存储下来,然后根据数据需求和目标来建立相应的数据模型和数据分析指标体系对数据进行分析产生价值。
而中间的时效性又通过中间数据处理层提供的强大的并行计算和分布式计算能力来完成。三者相互配合,这让大数据产生最终价值。
不看现在云计算发展情况,未来的趋势是:云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力,借用Google一篇技术论文中的话:“动一下鼠标就可以在妙极 *** 作PB级别的数据”,确实让人兴奋不能止。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13128693.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-06
下一篇 2023-06-06

发表评论

登录后才能评论

评论列表(0条)

保存