关于工业物联网的深度思考

关于工业物联网的深度思考,第1张

工业物联网是指在工业中应用物联网技术,实现工业特有的价值增值的技术模式。

所有物联网都是为了实现万物互联,特别是物与物的互联,但是工业物联网又有其专有属性,原因是与工业物联网相对的消费物联网本身的联网密度、联网的实时性、联网物的异质化要求都不高,而工业物联网的要求主要表现在联网密度、联网实时性及联网异质化三个方面。

思考所有问题都需要从宏观到微观的细化过程,工业物联网也不能例外,我认为对工业物联网进行深度思考,需要从以下五个维度进行分析,否则将会要么带来一叶障目,要么带来好高骛远。

首先需要我们思考的问题是,工业物联网的价值、意义和目的是什么;第二个是工业物联网需要连什么的问题,这是一个范围的概念;第三个需要我们思考的是连入物联网的物的层级问题,也就是深度的问题;第四个需要我们思考的是实现物联的价值成本分析;第五个需要我们思考的是如何建设工业物联网。
互联网实现了计算机与计算机的连接,或者说实现了人与人的连接,这个连接带来了人的交互的便利,在这个基础上涌现出很多全新的、颠覆性的商业模式,例如,电子商务、即时通讯,社交媒体等等;而物联网将实现人与物、物与物的连接,同样我们也期望带来全新的、颠覆性的商业模式,甚至更进一步,期望带来人类生活、生产方式的全新的颠覆性的模式。

作为物联网主战场的工业物联网,人们对其的期许是在工业设计、制造、流通环节带来革命性的变革,为传统工业注入新的活力,提供新的势能,驱动工业在更高维度上发展、创新、乃至变革。随着计算、存储能力的提升,特别是大数据、人工智能的发展,任何行业对数据获取手段都提出了前所未有的要求。对数据获取手段的要求主要表现在四个特征,第一是高效性;第二是准确性;第三是实时性;第四是经济型;在当前技术能力下,能够同时满足这四个特征的就是工业物联网,首先,芯片技术已经发展到一个具有较强计算能力的MCU在美元以下,RFID芯片价格甚至已经到美分这个量级,使得工业物联网有了物质基础,同时满足了经济性要求;近三十年的通讯技术的发展,从模拟到数字,从简单调制到复杂调制技术的商用化,使无线通讯可以很廉价地覆盖几百米甚至数公里的范围,满足了数据获取的密集部署要求,同时由于工业物联网的永久在线的特征,使工业物联网满足数据获取的高效性、实时性要求;微电子技术在近年也发生了突飞猛进的发展,不论在价格上还是在进度上都有了长足的突破,满足了数据获取的准确性。

总而言之,工业物联网的出现是在以下几个条件成熟时涌现出来的不可逆转的趋势:

1、快速变化的市场需要数据支撑,产生了市场对数据获取的急切要求;

2、MCU的发展使得计算能力快速提升;

3、以调制技术为核心的通讯技术发展为联网建立的管道基础;

4、传感技术,特别是以MEMS为标志的微电子技术的发展给予感知世界提供的保证;

工业物联网不是规划出来的,是各种技术与需求发展进化的产物,是生活、生产、经济发展到一定高度后自然而然出现的,是在需求的驱动下,众多行业创新带了的自然产物。

通过工业物联网,可以把传统经济中不可数字化之物数字化,可以把传统不可数字化之行为数字化,可以把传统不可能变为可能,甚至变为容易获得、解决的方案。
这个问题是第一个问题的延续,如果不考虑经济性,那么我们可以说工业物联网连接一切可连接之物,但是,当我们在做一个务实的、有价值的方案时就不能不考虑可行性及经济性,那么工业物联网连什么呢?我们认为这是一个从哪里来到哪里去的问题,我们通过上面对价值、意义和目的分析可知,我们应该从目的反推,一切从目的出发,时刻盯紧企业需要弥补的最关键环节,例如,如果对量化OEE有需求,那么我们就要连接设备状态;如果要减少在制品,那么我们就要对在制品进行追踪;如果能源消耗对企业是重中之重,那么我们就要把能效物联化,等等。世界上不存在同样的两片树叶,同样地,世界上也不存在同样的两个企业,我们只能对企业本身进行深入分析,紧紧聚焦于企业价值,在保证经济性的基础上,确定工业物联网的实施范围方案。联网范围一个核心点是连入物的属性,也就是说我们通过分析连入物的属性与企业建设工业物联网目标的耦合度,决定需要实施工业物联网的广度。
通过分析工业物联网连什么后,我们得到了连入物的内容,接下来需要我们决定是对每个/每类连入物我们该数字化哪些属性,这里遇到工业物联网特有的一个障碍,需要连入工业物联网的物的可连通性问题, 特别是在设备互联时,可连通性表现的特别突出,例如,有的设备具有开放的通讯协议和可用的通讯接口,有的设备不开放协议等等,那么可连通性就是对方案供应商的很大的考验,我们的经验是有四种方案可供选择:

1、使用设备开放的协议;

2、使用设备自带的传感器;

3、添加新的传感器;

4、改变观察侧面及维度,使用全新的采集模式;

其中第四条,改变观察的侧面和维度,使用全新的连接方式是使用第一性原理,避开设备不开放协议或接口的阻碍,避开被设备供应商牵着鼻子走的方向,从本质上获取数据。例如:通过能效检测获得设备的使用状态,通过震动传感分析设备部件的故障、甚至是转速等,只要通过第一性原理从你需要的信息入手,而不是被动地从设备可以提供的数据入手来提供物联解决方案的方式。直接把我们需要的信息做为目标,观察除了直接连接设备外,我们还能够如何获得需要的信息,因为只有我们获得的数据能够与设备提供的数据在信息上能够“同构”即可。例如,我们可以在我们的物联设备上安装一个震动传感器,从传感器获得的数据中,我们即得到了设备是否开机,又得到了是否启动工作,同时还得到设备的转速。如果不用第一性原理,而是硬要跟设备互联,那至少要采集三个数据,并且未必设备能够给你。这就是典型的边缘计算的案例,边缘计算的计算规则一定要具有定制能力,可以说边缘计算一定是一个知识容器,可以方便地把客户、厂家,甚至是第三方的知识融入的容器,我们开发的支持脚本的设备已经具有了初步的边缘计算的功能,我们需要在这个方面继续加大支持力度。

所以,通过分析企业价值和物的可连通性,我们就可以明确定义需要连入物层级,也就明确了连入物的连接深度;

在连入物联网的物的层级中一个重要的概念是管理粒度,对于制造业来说,连入物的管理粒度大概分为如下几个层级:

1、传感级;

2、设备级;

3、产线级;

4、车间级;

5、企业级;

也就是说我们要在经济性可行的前提下定义数据获取的粒度。理论上讲,细粒度一定比粗粒度更好,更有价值,但是当加入成本分析后,可能并不一定粒度越细越好,需要按照各种制约因素找到一个平衡点。
价值成本永远在企业行为中持有权值最高的赞同或者否决的一票,通过前三项分析,我们仅剩下最后一个问题没有解决,这也是关乎价值成本的关键:管理粒度问题,我们到底需要在多细的粒度下进行管理?这带来了一个哲学问题:世界是不是需要黑盒子。什么意思呢?当我们确定一个管理粒度后,比管理粒度更细的信息将被隐藏在黑盒子中,这个黑盒子将成为我们分析深度或者认知深度的制约因素和约束条件。我们可以通过价值成本分析来找到这个平衡点,从而明确黑盒子的大小,并最终确定连入工业物联网的物的特性。
我们的期许是工业物联网建设的价值观,其他一起都是方法论。首先,我们在规划物联网时要本着既要有高瞻远瞩,又要有务实可行的精神。在思考黑盒子的大小时我们要高瞻远瞩,设计方案尽可能地以黑盒子尽量小为目标,而实施方案则按照价值成本分析选择合适的黑盒子的大小,也就是选择合适的管理粒度,从而保证投入收益的平衡,甚至我们可以把黑盒子尽量定义的大些,用以验证工业物联网的可行性,最大可能地降低工业物联网实施的风险。

总之,我们应该从以几个方案来确定工业物联网的建设原则:

1、期望获得什么结果?

2、期望用什么方式获得想要的结果?

3、需要信息基础提供什么?

4、工业物联网是否能够获得这些信息?

5、工业物联网如何获得这些信息?

6、获得这些信息的性价比如何?

7、回归分析,评估预期结果是否符合经济利益?

8、落地实施。

经过30年时间,通信连接技术从模拟发展到数字,逐步进入尾声。2000年开始的3G建设和2010年开始的4G升级,逐步使人们从语音为主的通信,演进到以数据流量通信为主的新模式,语音和消息等业务模式渐渐被互联网OTT的IP化创新应用替代。
物联网产业 2017年“拐点”–物的连接超越人的连接
当人的连接超过70%渗透率,超越人的、物的连接就开始萌芽和发展。2017年,M2M单纯物的连接数将首次超过人的连接,成为新的连接形态,并将重塑通信网络、运营、业务和服务的形态。
软银孙正义在2017年全球移动大会上预测,未来30年每个人连接物的节点将超过100个,未来5年物的连接将超越500亿,未来10年将超越1000亿,2035年全球将有1万亿的物联网芯片,IoT将带来终端设备(产生数据)、云(数据分析)、人工智能的海量机会。大连接时代的序幕已经开启。
2016年6月,NB-IoT规范在全球正式发布。同时,在美国,1美元级别的物联网芯片开始面世;以LTE为代表的4G网络大规模普及,渗透率超过20%;IoT规模部署和应用爆发的条件逐步积累到临界点。2017年将是物联网的突破年。
业务&网络重构:横向多样化+纵向专业化
物联网应用场景的多样化驱动了业务、网络、运营、商业模式的重构。多样化体现在横向覆盖各个行业、纵向满足不同专业化的需求。物联网的业务场景是d性、即时变化、无限延展的,要求网络与平台具备的能力包括支持广度、深度、速度、延时、经济高效、安全等多个方面。
除了人的连接场景外,物的连接还涵盖了更多场景。以无人驾驶为例,其延时要求毫秒级、传输速度达到10Gbps级,才能确保自动驾驶的汽车不出事故。因此,5G是目前主要的网络选择,同时网络需要根据业务的优先级进行资源随选,SDN/NFV是必然的趋势。为确保在容量不断增长的情况下的传输和延时压力,网络“自上而下”构建CDN,实现从云计算到雾计算的架构改造,实现管云一体化也是重要的趋势。
多样化的接入终端和接入近场技术,对网络归一化处理和智能服务提出了新挑战。新型融合网关汇聚了各种接入技术和终端,成为边缘重构的重点。此外,从2017年世界移动大会来看,对安全问题的热烈讨论,再次对物联网安全策略管控提出了新的要求。
运营&商业重构:超越连接,平台和应用变现
物联网网络、业务的复杂性是呈指数级增长的,需要以数据洞察为中心、智能算法为驱动的新型运营平台和运营模式来支撑。这类似互联网公司的云/大数据平台,即“智能中台”。在商业上,物联网的核心是应用创新产生新价值,而运营商的长板在连接,初期需要通过连接和数据捆绑应用的方式,来实现连接和数据平台的变现。从长期看,平台将控制用户流、数据流,数据平台和应用创新的生态汇聚平台将带来资金流,是未来商业模式演进的目标。

物联网战略路径和竞争力:业务、使能、连接
物联网的发展重点在三个领域,有垂直行业,其领导者包括GE、BMW、海尔等;有互联网OTT,其领导者包括Google、Amazon、阿里等;电信领域,其领导者包括AT&T、中国移动、Vodafone等。各个领域的战略定位和战略演进路径各不相同,但遵循相同的规则,即“长板协同、远交近攻”。
垂直行业:专业业务领先
行业领导者在构建和巩固专业领导地位的基础上,按场景需求,深度、专业、模块化地吸收物联网、云、大数据、互联网技术,实现了连接、业务和运营的自动化和智能化,成为产业的引领者。如BMW、Bosche的实践开创了欧洲Industry40行业标准,并占领领先地位;GE通过每天监控和分析来自万亿设备的1000万个传感器发出的5000万条数据,通过Predix平台,实现物联网新型应用。这些案例表明,未来物联网最核心的竞争力恰恰是专业化的业务。
互联网OTT:数据/智能化领先
互联网公司在大数据、云和互联网使能技术上的领先地位和能力积累,使他们在进入通用业务领域时,展现了强大的破解和替代能力,如物流、零售、门禁等业务场景的物联网服务创新。Google、Amazon等OTT也正在将使能能力,从简单的数据分析,提升到专业化智能的高度,结合专业能力创新智能化的应用,来改造传统行业。阿里巴巴突出的“5新”正是这一战略的集中体现。专业化既是互联网公司物联网业务和服务创新的方向,也是其软肋。
电信运营商:连接领先
全球领先运营商在物联网中的长板是其连接网络,中国移动、ATT、Verizon都把NB-IoT和5G作为其大连接战略的核心战略。AT&T 2013年发布了以智能安防业务为核心的Digital Life智慧家庭业务,从家庭物联向车联网演进过渡,基于M2X能力开放平台进行平台运营,目标是实现全美三分之一的车联网基于AT&T的网络平台。中国移动发布大连接为核心的2020战略,依托强大的连接优势和OneNet物联平台(目前已接入超过560万设备,开发者数量超过27万,应用数量超过一万),率先布局万物互联的生态。Vodafone从卖SIM卡向卖服务转型,实现地域扩张和价值延展。
这些实践都展示了一个普世道理,即运营商单靠连接难以形成盈利模式,在连接的基础上构建数据化的平台,支撑和加速运营创新。平台变现和应用变现,是运营商探索物联网成功商业模式的发展方向。
战略对标 – 三类战略路径

物联网战略演进路标:从连接到数据和应用
物联网是非常复杂的生态系统,横向涵盖所有行业领域,纵向贯穿端、管、数据、云应用等所有环节。物联网的战略首先是横向选择和确定主攻的场景,其次是纵深上的能力、竞争力和市场格局、盈利模式的实现。总体来看,电信运营商物联网战略演进至少分三个阶段,表述如下。
运营商具有优势长板和综合竞争力的横向行业场景,主要有数字家庭、智慧城市(安防)、车联网等,可以将运营商的连接优势和电信级的安全、可靠、本地化、端到端等服务优势结合起来。纵向上,运营商需要遵循构建长板、依托优势,进行生长的原则,优先聚焦连接网络的构建,在此基础上逐步建设数据能力、发展应用创新的平台,促发生态化的应用创新。
物联网IoT三步走战略–“菱形”突击
阶段一:连接为王
在初期,运营商的战略重心无疑是构建强大的物联网连接网络,重点打造一张基于NB-IoT的全网覆盖的网络,扩展LTE的连接到物的连接,试点5G在物联网上的应用,同时尝试蓝牙、WiFi、Zigbee等连接技术支持的近场物联网网络融合。战略合作的重点是实现和领先物联网应用创新SP合作,通过API将网络能力开放出去,支撑运营的创新,快速实现破局。
阶段二:数据为王
在网络领先地位逐步构建后,运营商基于物联网场景复杂、业务多样的特点,实现基于数据的精准创新、智慧运营、精益管理成为新瓶颈和业务创新的新机会。这个阶段,运营商应构建基于智能中台的管云一体化网络,实现连接网络的“由哑到智”,基于网络发展打造智能运营的数据平台,支撑业务创新和精准高效的客户服务。
阶段三:应用为王
数据平台的强大和扩展性将使运营商拥有构建应用汇聚平台的能力。类似移动互联网领域的APP Store,运营商将基于IoT Store,支撑、触发各个行业的业务和服务创新。生态创新成为运营商新的战略控制点。
运营商最终的战略愿景是实现在物联网“倒梯形”价值视图上的“菱形”站位,即确保数据平台和业务创新的控制点,实现网络连接的长久溢价变现。

小结
物联网IoT将在2017年迎来拐点。运营商需要依托优势,识别战略控制点,逐步构建新生态领域里的长板和战略控制点,实现在物联网领域的创新和成功转型,迎接继消费互联网之后的家庭互联网和产业互联网又一波新蓝海的到来。
以上由物联传媒转载提供,如有侵权联系删除

党的十九大报告提出建设“ 交通强国 ”的目标,为我国未来交通运输发展描绘了宏伟蓝图。

要建设交通强国,就要在新时代中国特色社会主义思想的指导下,贯彻新发展理念,以供给侧结构性改革为主线,以创新为引领,全面推动交通运输发展质量变革、效率变革、动力变革。而物联网,就是这个时代带给交通运输发展的强心剂。

一,物联网该如何让交通改头换面呢?

1基于物联网的智能交通系统架构

基于物联网的智能交通系统一定要全面考虑到各个类型的基础设施、交通对象等。

通过构建基础交通的感知网络,才能开发出各种类型的智能管理的服务系统。这种全新的理念一定能从根本上,改变交通系统,只注重业务开发的模式,转而向信息资源共享需求的方向发展。把物联网真正的运用到智能化的交通领域中,首先就是构建在物联网环境下的,智能交通系统架构。

这项在物联网基础上的,智能交通的架构,主要由感知层、网络层和应用层这三个方面组成。

11感知层

物联网的智能交通系统的感知层,主要负责准确的采集各种交通信息。尤其是各类交通信息的感知要通过网络和传感器来得以实现。传感器的采集过程,一定要完全经过无线传感器网络的完全传输,才能实现好数据的汇聚。

12 应用层

应用层的主要功能,是对交通感知网络进行数据采集,并且要进一步对数据信息进行分析和应用,支持各种智能化的交通服务。应用层系统主要分为,政府应用系统、社会应用系统、各个企业之间的示范系统等等。

其中,最为典型的应用系统,主要包括交通控制系统与动态控制系统。要想实现好智能无线传感器与电信网络传感器之间的融合,一定要把无线传感器网络连接到电信网络上。利用电信网络来进一步实现对无线传感器的网络中各项业务的监控与管理。

13 业务平台

业务平台是促进电信网络的运行与管理,并且还要与无线网络传感器进行结合的业务实体,同时还要协调好电信网络中的其他实体,来完成好整个业务系统。

管理平台作为实现电信网络对无线传感器网络的管理实体平台,主要目的是为了实现对业务平台的设备与网络进行管理。同时,为了保证电信网络更加可靠的运行,一定要在电信网络和无线交通传感器之间引入有效的控制机制。

这项接入控制机制,指的是电信网络利用网关系统,对控制点进行有效的控制,为无线传感器网络提供全程的服务。

2 物联网技术对智能交通系统的影响

由于物联网在电子通信与计算机技术方面具有成熟的技术优势,因此,物联网技术与智能交通系统的有效结合,才能为我国的交通运输行业提供出全新的发展思路。

物联网是在计算机与互联网技术之后的,信息产业的第三次浪潮,从而孕育出了改变产品生产与销售的网络系统。与此同时,物联网提出的全新的理念,对人类的生活方式产生了比较深远的影响。到目前为止,在交通运输与物流行业,逐步推广了物联网技术。

21 感知信息

物联网的核心内容是传输过程中的信息数据,首先就是要对物体的属性进行标识,属性主要包括静态与动态两种,还要通过一定的设备读取物体的属性,并且要把信息转化成一种网络传输的重要的数据。

22 采集信息

在物联网环境下构建智能化交通系统,一方面要采集大量的交通信息,并且对实时性信息进行采集和处理。另一方面,更要侧重于对信息资源的有效整合与传输功能。

由于智能化交通系统,是以高速公路作为一个技术性的交流平台,一定要以交通信息为基础,促进人们的交通出行与交通工具之间的联系,提高了交通系统的安全性与效率。

因此,只要交通系统把先进的交通信息当成基础,从而为其他的交通出行者,提供各个方面的交通信息服务体系,用来促进交通运输的合理分布。

23 信息的应用

物体要想实现有效信息的传递,主要有两个应用的方向:一是经过物体的集中有效处理传递给“人”,经过“人”的高级处理,才能进一步控制住物体。

另外一个方面,是直接对“物”进行合理的智能控制,并不需要经过“人”,就能授予权力。通过深入分析互联网的整体的运行情况,一定要在物质和人之间实现好信息的合理交互。

因此,这种“物”很有可能涉及到在物质世界中的具体的实体的存在,还包括人的具体的实体属性。

尤其是物联网中的各项活动都是以人的意愿为基础,进行的活动。同时,网络的规范标准,是实现物联网的运行环境的一个最终的因素,为智能交通信息提供了有效合理的环境支持。

二,应用实例

1,物联网技术实现对司机不良驾驶行为的智能分析与判断

G7公司已经采用了成熟的技术手段,实现物联网技术对位置、声音、图像等的数据采集和人工智能识别。 

“目前我公司已经可以做到对驾驶员危险行为的实时监控和管理。当驾驶员出现打瞌睡、玩手机等危险行为时,车机端就会给司机报警,云端监控的管理员也可以得到通知,车队管理员还可以下发语音信息提醒驾驶员。”公司总裁介绍,“同时,实时采集的图像还可以作为事后证据,对司机进行安全教育管理,有效降低事故率。有一个客户使用了3个月,每百万公里的事故率就降到了之前的三分之一。”

2,中兴通讯智慧交通系统

采用感知层、网络层、综合管控平台和各种交通行业应用的四层架构,以统一的智能交通管控平台为依托,以现有交通信息网络、城市道路交通信息系统和各地市交通监控中心的信息资源为基础,加强对全市主干路网交通信息和营运车辆的动态信息采集、汇总、融合。并通过对应用的互联、数据中心建设和应用整合三步走平台建设方式,实现交通业务的延续、优化和创新。满足智慧交通系统建设需求,实现与现有交通系统便捷融合,并全面降低交通运营者的运维成本。

“云计算”+“视频监控”+“车联网”,实现精确感知、畅通信息、智慧调度;

TD-LTE无线承载和GoTa专用调度系统,安全承载、高效服务;

智能、开放、高效、安全的智能交通管控平台,实现全方位交通信息应用共享挖掘;

通过云平台海量信息收集存储能力,建立数据仓库,根据数据挖掘模型对海量信息进行分析处理和业务仿真,提供决策参考

随着互联网、移动通信网络和传感器网络等技术的应用,物联网应用于智能交通已经初见雏形,在未来几年将具有极强的发展潜力。

下面是一些最新的物联网技术:

5G网络:5G网络是一种高速、低延迟的无线通信技术,将大大提高物联网设备之间的数据传输速度和稳定性。

区块链技术:区块链技术可以用于构建安全的物联网网络,确保数据的安全性和完整性,防止数据被篡改或泄露。

人工智能(AI):人工智能技术可以用于对物联网设备的数据进行分析和处理,从而提高智能设备的智能化水平和效率。

边缘计算(Edge Computing):边缘计算技术可以将数据处理和分析的任务从云端转移到物联网设备的本地,从而提高物联网设备的响应速度和效率。

智能传感器:智能传感器可以实时监测环境和设备的状态,从而为物联网系统提供更加准确和实时的数据。

虚拟现实(VR)和增强现实(AR)技术:虚拟现实和增强现实技术可以将物联网设备的数据可视化,为用户提供更加直观的体验和 *** 作界面。

自主控制系统:自主控制系统可以使物联网设备在不需要人类干预的情况下自主执行任务,提高智能设备的自主性和效率。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13134537.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-10
下一篇 2023-06-10

发表评论

登录后才能评论

评论列表(0条)

保存