物联网、大数据、云计算、人工智能之间的关系如何?

物联网、大数据、云计算、人工智能之间的关系如何?,第1张

1物联网本质上是互联网云脑的中枢神经系统和其控制的感觉神经系统和运动神经系统
2云计算本质上是互联网云脑的中枢神经系统,它通过服务器,网络 *** 作系统,神经元网络(大社交网络),大数据和基于大数据的人工智能算法对互联网云脑的其他组成部分进行控制。
3大数据本质上是互联网云脑各神经系统在运转过程中传输和积累的有价值信息。因为在过去50年随着互联网的快速进化而急速膨胀,体量极其巨大。是互联网云脑产生智慧智能的基础。
4人工智能本质是互联网云脑产生产生智慧智能的动力源泉,人工智能不仅仅通过算法如深度学习,机器学习与大数据结合,也运用到互联网云脑的神经末梢,神经网络和智能终端中。使得互联网云脑各个神经系统同时提升能力。
5工业40和工业互联网本质是互联网云脑的运动神经系统,这将是互联网云脑未来非常庞大的组成部分,它也将包含6中介绍的各种前沿技术
6智能驾驶,云机器人,无人机,3D打印本质上是互联网云脑运动神经系统中最活跃的部分,他们通过延展运动和机械 *** 作,帮助人类完成对世界更强有力的探索和改造。
7边缘计算本质是互联网云脑神经末梢的发育和成长,人工智能技术不但应用在中枢神经系统中的大数据,神经元网络中,也分布到神经系统的末梢。让互联网云脑的感觉神经系统,运动神经系统的末梢控制变得更为智能和健壮。
8移动互联网本质是互联网云脑神经纤维种类的丰富,让互联网用户更便捷,更不受地域限制的链接到互联网云脑中。
9。大社交网络(Big Sns)是互联网云脑神经元网络,也是互联网云脑最重要的部分。它由互联网传统社交网络Facebook,微信,微博发育而成,从链接人与人,发展到链接人与物,物与物,甚至包括链接人工智能软件系统
10云反射弧(Cloud reflex arcs)是互联网云脑最重要的神经活动现象,与人类神经系统相仿,也包含感受器、传入神经纤维、神经中枢、传出神经纤维和效应器。是互联网云脑智能智慧与现实世界互动的重要运行动作。它的种类有7种。将在以后的文章中专门介绍。
11智慧城市本质是互联网云脑与具体的地域结合的结果,是互联网云脑的缩小版应用,智慧城市的建设,从互联网云脑的架构看,需要关注城市居民,单位,机构,企业建设统一的神经元网络(大社交)的情况,也要关注城市的云反射弧的反应速度和健壮情况,譬如防火云反射弧,金融云反射弧,交通云反射弧,新零售云反射弧,能源云反射弧等。

1、人工智能:人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
2、石墨烯电池:利用锂离子在石墨烯表面和电极之间快速大量穿梭运动的特性,开发出的一种新能源电池。美国俄亥俄州的Nanotek仪器公司利用锂离子在石墨烯表面和电极之间快速大量穿梭运动的特性,开发出一种新的电池。
3、人脸识别:是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。

题主是教育工作者吧?提供以下内容供参考:

大数据技术需要用到的自然科学与工程技术类基础课程包括:

统计学

数学

线性代数

概率论

数据结构

算法

计算机网络

数据库

计算机科学基础

物联网技术需要用到的自然科学与工程技术类基础课程包括:

电子学

通信原理

电路

传感器技术

网络技术

电子控制

控制系统

智能传感器网络

计算机网络

人工智能技术需要用到的自然科学与工程技术类基础课程包括:

统计学

数学

线性代数

概率论

算法

计算机科学基础

模式识别

机器学习

深度学习

自然语言处理

计算机视觉

这些基础课程可能会因具体的学校和专业的不同而有所不同。

一、物联网概念 

随着互联网技术、传感器技术和人工智能技术的快速发展,物联网技术也应运而生,物联网技术在各类领域能发挥重要性变革,对解放生产力、提高工作效率和推动规模化生产等方面贡献颇大,特别是在农业领域大有可为。实现智慧农业,必须依靠物联网技术为依托,以智慧平台为核心,立足市场需求,构建生产组织智能化、产品质量溯源化、市场经营网络化为一体的产业体系。

物联网是通过智能传感器、射频识别、激光扫描仪、全球定位系统、遥感等信息传感器设备及系统和其他基于物-物通信模式的短距离自组织网络,按照约定的协议,在物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种巨大智能网络。它是通信网和互联网的扩展应用和网络延伸,主要是实现人与物、物与物的信息交互。
二、物联网四层模型

在信息层面,数据信息经历生成、传输、处理和应用四个阶段,分别对应着物联网的感知识别层、网络构建层、数据处理层和综合应用层。感知识别层是利用感知技术和智能装备对物理世界进行感知识别。网络构建层是按照特定的通信协议搭建各类网络对信息进行传输,以实现物-网互联。数据处理层通过大数据和人工智能技术对网络层采样的数据进行预处理、计算存储和数据挖掘等一系列 *** 作,最大地发挥出信息的生产效能。综合应用层是集成各类技术以实现实时控制、精准管理和科学决策等功能的应用系统,从而改进人的生产方式。各类技术应对不同环境、不同需求独立展开工作,各层面间又是联系紧密,如同链条式协同配合。
感知层作为物联网的“神经末梢”,主要是通过信息感知技术将生活生产各方面映射成数据信息,并能可靠传送到网络层,实现物理世界和信息世界连接起来。信息感知技术是指利用传感器、RFID、GPS和RS等实时实地对农业领域物体进行信息采集和获取。在农业生产现场可以利用无线传感器采集温湿度、光照、溶解氧浓度和农作物长势等参数,利用视频监控设备获取农作物成长现状,利用遥感技术大规模感知农作物表面和环境因素。信息感知层作为物联网的基础,获取大量的数据信息,为信息进一步加工、处理、分析而科学决策和指导生产经营打通“二元”壁垒。

网络层要在感知层和处理层发挥承上启下作用,是以现场总线技术、无线传感器网络技术(WSN)和移动通信技术互为补充的通信网络将传感设备连接“上网”。信息传输技术可分为有线和无线、短距离和长距离,它们有各自特点、应对不同环境、利用不同信道共同组建集成网络体系,以实现高度可靠的信息交流和共享。无线传感器网络成为农业信息传输的“主力军”,通过包括传感器节点、汇聚节点、任务管理节点。大量具有独立处理能力的微型传感器节点布置在监测区域逐跳传输,并路由到汇聚节点,然后通过互联网或卫星抵达任务管理节点,最后用户通过任务管理节点配置和管理传感器网络以实现监测任务发布和数据收集。常见的无线局域网技术有蓝牙、WIFI、ZigBee,无线广域网技术有LPWAN、NB-IOT、4G和5G。特别是以“万物互联”为目标的5G将农业物联网数据传输效率带来“质的跃升”。

处理层是农业物联网的“灵魂”,通过信息处理技术对感知层采集的信息存储和挖掘分析形成预测预警、智能决策、优化控制和疾病诊断等智能模型,从而对农业生产和经营给出科学的指导。农业生产和经营过程中,数据信息是呈指数型爆炸产生,不仅是体量大,而且结构复杂、实时性强、关联度高,必须通过大数据技术处理、存储和管理,才能从海量数据中获取更多的价值。农业大数据技术平台是以Hadoop架构、MapReduce软件模型、其他组件补充的生态软件体系形成的分布式海量数据存储管理、运算处理和分析平台。数据挖掘是指从海量数据中通过算法搜索隐藏的信息关系,主要手段是机器学习、深度学习、计算机视觉等人工智能技术。只要获取隐藏知识,才能帮助决策者做出合理、正确的决定和决策。

应用层是农业物联网的“指挥室”。主要通过感知技术、传输技术、处理技术和设备进行软硬件综合集成,形成智能控制、监控决策、专家系统、物流溯源等等应用。根据生产、经营的和管理不同需求,开发出特定功能的应用,用户通过web端或移动客户端应用实时掌握信息、发出精准控制指令。可以说,先进技术发挥设备的最大生产力,综合应用改变人的工作方式,有利于做出更科学合理决策。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13138017.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-10
下一篇 2023-06-10

发表评论

登录后才能评论

评论列表(0条)

保存