物联网、大数据、人工智能之间如何深度融合?

物联网、大数据、人工智能之间如何深度融合?,第1张

物联网、大数据及人工智能都是近年来互联网行业比较火热的话题,三者之间具有非常紧密的联系。想探讨物联网、大数据及人工智能之间如何融合,首先需要了解其基本概念。

概念

1、物联网

根据百度百科的解释,物联网(InternetofThings,IoT)是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络(万物互联)。物联网网络架构设计由感知层、网络层及应用层组成,分别实现数据采集、数据传输及数据应用的功能。目前,物联网已经广泛应用于智慧医疗、智慧环保、智慧城市、智能家居及物流等领域。

2、大数据

大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据具有体量大(Volume)、及时性(Velocity)、多样性(Variety)、低价值密度(Value)及真实性(Veracity)的“5V”特性。

3、人工智能

人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。目前,人工智能正在改变各行各业的传统模式,作为人工智能分支的机器学习/深度学习已经广泛用于自然语言处理(NLP)、计算机视觉(CV)、机器翻译及推荐系统等领域。

深度融合

物联网、大数据、人工智能三者之间相辅相成,可以形成一个闭环通路。物联网作为智能感知层,主要负责采集现场的数据并将数据上传至分布式数据库中;大数据作为数据存储层,将经过ETL处理后的数据保存到分布式文件系统(HDFS)或数据仓库(HIVE)中;人工智能作为应用层,可利用sparkml或tensorflow实现相关的机器学习或深度学习算法,对存储在HDFS或HIVE中的数据进行数据挖掘。

应用案例

目前,物联网、大数据、人工智能已经广泛用于智慧城市、智慧环保、智慧交通等领域。以智慧环保中的空气预警为例,首先,物联网可以作为智慧感知层,安装在客户现场的空气监测设备采集的空气质量信息通过网络传输数据中心;而后,利用大数据ETL工具(spark、hive)进行数据清洗并存储至分布式数据库/文件系统/数据仓库中;最后,利用人工智能相关技术进行大数据分析(sparkml、tensorflow),预测未来若干天的空气质量,并以此辅助进行科学决策及改善环境。

加快发展物联网,建设高效顺畅的流通体系,降低物流成本。

加快发展数字经济,促进数字经济和实体经济深度融合,打造具有国际竞争力的数字产业集群。移动物联网,即基于蜂窝移动通信网络的物联网技术和应用,是我国新型基础设施的重要组成部分。近年来,我国移动物联网发展的政策环境持续优化,移动物联网综合生态体系加快构建。

连接数占全球比例超70%我国建成全球最大移动物联网络

2017年,工业和信息化部印发《关于全面推进移动物联网(NB-IoT)建设发展的通知》,首次提出移动物联网网络建设和用户发展的量化指标。2020年,工信部印发《关于深入推进移动物联网全面发展的通知》,明确要求加快移动物联网网络建设、加强移动物联网标准和技术研究等。

今年9月,工信部印发《关于组织开展2022年移动物联网应用典型案例征集活动的通知》,围绕智能家居、网联汽车、智能穿戴等领域的生活智慧化应用,智慧农业、智能工厂、智慧医疗等领域的产业数字化应用,智慧消防、环保监测、智能表计等领域的治理智能化应用,征集优秀案例,推进移动物联网应用发展。

专家表示,在政策支持指引、各方共同努力下,我国移动物联网在网络能力、应用发展和产业能力等方面取得明显进展。移动物联网深度融入经济社会发展各领域多环节,国内企业技术及产品研发能力持续增强,生态体系持续完善。

所谓数据融合是指将多种数据或信息进行处理组合出高效且符合用户需求的数据的过程,分布式数据融合需要人工智能理论的支撑,包括智能信息获取的形象化方法,海量信息处理的理论和方法,网络环境下信息的开发与利用方法以及计算机基础理论同时还需掌握智能信号处理技术如信息特征识别和数据融合,物理信号处理与识别等。

工业40蓄势待发,工业制造领域的大变局意味着中国有机会将过去几十年来积累的制造经验转化成创造的基础,复杂的制造业场景给了企业更多创新的机会。

在此之中,软件工程师扮演着什么样的角色?什么是工业物联网的基础设施?

“物联市场 线上对谈”是由边无际发起的立足物联网行业的访谈栏目,第一期邀请到零碳数科CEO闫保磊,与边无际CEO陈永立、边无际COO郑凯文一起畅聊工业物联网的行业现状与软件平台的解决方案。

郭琦:请闫总介绍一下零碳数科。

闫保磊:零碳数科是一家工业互联网平台企业。从名称上讲,数科和零碳揭示了我们的特色,数科寓意数智化,零碳寓意碳中和,我们认为二者相得益彰。因此,我们研发的产品和技术致力于实现产业链供应链的数智化和低碳化转型,目前主要切入四个领域,分别是能源管理、碳管理、供应链管理以及智能制造。我们的愿景是打造“立足中国·服务世界”的跨行业跨领域的工业互联网平台,打造“SaaS+PaaS”协同研发、“产品+服务”双轮驱动的特色模式,深耕能源、化工、钢铁、机械、农产、橡胶、玻璃、建筑、园区等行业和场景。我们已在北京、天津、厦门和烟台设立子公司,客户分布于中国、美国、德国、韩国、新加坡等20多个国家和地区,包括多家世界“500强”企业。总之,我们还是家比较年轻的公司,取得了一些成绩,对工业互联网对发展有一些感受。

郭琦:工业物联网领域有什么独有的特点?

闫保磊:第一,工业互联网被国家定义为“新基建”之一,可见它的定位意义深远,对中国制造的转型升级是基础性的和关键性的,是未来的国之利器。既然工业互联网主要是服务工业的,那么可以说“工业为本,数科为器”,这里的“数科”是指以物联网、大数据为代表的数字科技,它作为一种新型工具为工业赋能,这才是工业互联网的底层逻辑。

第二,工业互联网是新兴技术,主要面向的是工业应用场景。当然,它还不完善。一是中国工业的特征是参差不齐,既有比肩工业40的先进制造业,也有停留在工业20甚至10的原始状态。这种工业发展的不平衡性决定了我国的工业互联网建设必然是艰难而漫长的。

第三,我们的愿景是打造工业数智化转型的底层 *** 作系统,也就是工业互联网平台。首先以提升我们自己开发解决方案效率为目的,未来也可以开放给软件开发企业甚至是客户,支持他们更便捷高效地开发工业场景的解决方案。但是,就目前而言,我们认为工业企业更迫切的需求是产品或者说解决方案,而不是平台。因此,我认为中国的工业互联网的建设应该是“先产品,后平台”,丰富的产品的共性部分逐渐沉淀下来,像沙漏一样堆积成跨行业跨领域的通用平台。

郭琦:边无际也是致力于要做物联网的底层系统,请边无际CEO陈永立来聊一聊,我们可以提供什么样的技术解决方案?

陈永立:边无际主要的产品是一套类似于IoT界的安卓的一套系统,我们认为安卓在移动时代它的核心是一个开发框架。因为有了安卓或者iOS这样的系统,可以让整个移动端的生态的开发门槛变得非常低,生态也可以爆发。在这个万物互联时代,我们认为以后包括工业互联网、工业物联网等,这一切的背后核心的解决方案的开发者都是程序员。我们需要给这些程序员一套好用的工具,也就是我们边无际所致力于打造的底层的基础设施。

郭琦:基础设施这两年是特别热门的一个词,由于我国发展到了一定的阶段,想要把基础设施的建设的会亮提上来,超过以前的纯粹代工的一个产业状态。想请闫总谈一下,在基础设施建设上我们遇到的难点主要是什么?

闫保磊:提到工业互联网平台,国内很多企业都在做这个领域的工作。既然是基础设施,其实它是一个从零到一的建构过程,大家的侧重点是不一样的。工业互联网分很多层次,不同企业定位的主要发力点是不一样的,我们更重要的关注点是在PaaS或SaaS层的开发工作。底层的一些基础设施是需要合作伙伴共同去构建的一个体系,由不同公司的基因和团队的核心竞争力决定。对于我们自己公司来讲,大量的客户都是直接面向工厂或工业园区的终端客户。做面向客户的整体方案过程中,我们是没有问题的,但是更底层的一些技术框架,怎样提升开发解决方案的效率,是需要边无际这样的团队或者企业来提供。在底层的构建上,尤其涉及到 *** 作系统的一些模块,是我们类似的企业共同需要的能力补充。还有一点,我多次强调的“工业为本”,工业机理是一个非常基础性的东西,缺乏对工业机理的深刻理解很难构建出满足工业需要的平台,这是很多人常常忽略的一点,甚至可以说是一个主要难点。只有将工业机理和数字科技深度融合起来,才可能打造出好的基础设施。

郭琦: PaaS业务和SaaS业务比较难做,原因是需要整合的领域、技术是比较多的。想请闫总谈谈我们在推进过程中需要哪些合作伙伴?

闫保磊:中国的工业门类齐全,行业众多,跨行业复制能力是一个稀缺能力。你在这个行业干得好,未必在其他行业也能干好。谁能解决跨行业复制问题,谁就是未来真正的王者。这与我们所使用的消费互联网显然是不同的。因此,有的企业就会专注做一个行业。作为平台型企业,就需要和不同行业的解决方案提供商合作。

工业的数智化转型是一个系统工程,绝非提供一个app就能解决的。比如会有大量的工业现场的工程问题,像安装传感器、调试通信等。这些专业型的工作同样需要合作伙伴一起参与。除此之外,还有云服务、数据分析以及基于数据分析的咨询等等。这些工作既可以一家公司都做了,也可以和其他企业合作。

还有一点我认为全世界还没有一个特别好的平台出现,类似于安卓、iOS或者Windows系统,工业界还没有公认的特别好的,这是一个重要的现状。构建底层都 *** 作系统是一个漫长的过程,当然也很困难,需要有一批这个领域的企业加强合作共建。

郭琦:工业物联网是两种体系的匹配,工业指向了客户需求到底在哪,工具是技术的解决方案,只有联合起来才能共同推动生态的建立。想请问一下陈永立,我们是一个技术导向开始发起创业的公司,你是怎么判断工业物联网的时代从此开始有了我们的机会呢?

陈永立:这个话题可能更偏技术一点。我们观察到由于容器以及云原生的技术日渐成熟,有机会做一个能够把非常碎片化、非常零散的物联网底层,用软件的方式统一化一套底层的技术。

我们这个团队有微软、亚马逊等的做云计算的基因,在这方面有一些比较深刻的理解,做出了一套底层的开发框架。如果我们只有一套开发框架,比如iOS、安卓、包括Windows,其实没有给客户带来直接的价值。Windows一开始之所以有价值,是因为它上面有Office,iOS和安卓之所以有价值,可能因为有微信、今日头条等真正的应用,所以是平台中还有平台的机会,我感觉是一个非常大的浪潮,而且是可能持续几十年的事。

郭琦:任何技术只有真正到了能用、能有人的感受、能够 *** 控,才可能产生价值和意义。想请问闫总,您是怎么判断工业物联网真的到来了,我们现在要走出去第一步的话,那个最痛的痛点在哪?

闫保磊:判断浪潮的到来,一是行业研究报告或者知名企业的战略转型计划。二是靠团队的集体智慧和判断。我和我的团队成员很多在工业领域工作十年以上,近距离观察和亲身参与了工业数字化项目的策划和落地。总之,我们主要是基于工业发展规律和多年经验作出判断,并制定公司发展战略。

从全球的趋势来讲,大家都处于差不多的阶段,就是从自动化向数字化和智能化方向转型,我们经常到工厂现场,有切身体会。2019年我们做了产品开发和验证,并在全球20多个国家做了落地案例,基本上判断工业40的浪潮确实不仅是某一个国家的事情,应该是全球同步要做的事,尤其是以中国、美国、日本、欧盟等工业基础比较好的国家和地区。

我们现在要走出第一步最痛的点应该是利用好技术为工业解决实际问题,而不是一些空泛的概念。工业企业是理性的,不能带来实际价值的东西是不可持续的。

郭琦:凯文很长一段时间在麦肯锡工作,对工业物联网领域有很深的观察,凯文是怎么判断现在这个行业是什么阶段,发展的怎么样?

郑凯文:从全球范围来看,我们可以坚信40一定会发生,而且是下一波能够引领不只是制造业,我觉得是全球多个行业、多个产业变革的一个核心。根据过往有限的咨询项目经验来看,国内总体的数字化或自动化的程度还是有些参差不齐的,而且越往前走越接近40这个目标的企业就更少,我觉得是时间的问题。

因为本质上过往的10年或15年,我们还是一个劳动密集型的生产型的国家。随着人工成本的增加,对于精密制造、科技型产业制造的需求不断扩大,所以自动化、数字化可能是唯一的途径。可能头部的一些企业在这方面已经做了一些投资,包括一些尝试,腰部或者尾部的企业,现在更多的可能还是跟随的状态。如果让我来说一个形状的话,我觉得还是一个三角形,很不幸是个正三角形。如果有一天我们能变成一个倒三角,大部分头部企业都已经做到数字化的时候,这可能是我们真正把这个产业做到比较先进、比较辉煌的时候。

郭琦:工业物联网刚刚起步,甚至在全球范围内都是刚刚起步,包括我们国家这次真正地和全球化并行同步起来,然后能达到从小部分人的尝试,变成更大部分人的头部企业都实现的自动化的程度。永立是从美国微软回来,之前面对的技术、产品、生态都是全球化程度最高的。你观察到的在全球范围内工业物联网领域,技术是如何协同起来的,它的先进技术到底是什么?

陈永立:我在微软的时候经历过一次特别大的战略转型,从“mobile first, cloud first”(移动为先,云为先),转变为“intelligent cloud and intelligent edge”(智能云和智能边缘),去掉了“移动”增加了“边缘”。“边缘”代表的是“边缘计算”(edge computing),我认为它的底层核心就是物联网,物联网价值最高的场景就是工业物联网,微软这种巨头公司也已经把整个战略重心向这边倾斜,与之而来的是有一套跟边缘计算有关的技术。

实际上,在云上面的技术很多时候并不适合在现场使用。举个简单的例子,我们需要有低延迟支持工业现场做实时决策。如果我们用云,数据要先传到云上,经过计算再回到本地,可能是几百毫秒的延迟。但如果我们在工业现场立刻用边缘计算进行处理,可能会降低到几毫秒,对于网络延迟方面的一个指标上就有百倍的提升。有很多的底层的基础设施以后,上层的应用就有了可能性。比如我们在一个工厂里有一个本地的小型数据中心,可以支持工业40的所有实施决策,无人工厂运行的所有计算是在本地进行,本地处理保护了数据的安全性,解决了客户的顾虑,尤其是工业客户要求在本地部署的情况很多。

郭琦:边缘计算是现在越来越热门的部署技术方案,请永立深入讲解一下,面对开发者用他们理解的语言解释,边无际怎样实现边缘计算的功能?

陈永立:边无际的核心产品是Shifu,是把物联网的设备封装成微服务,并把它的核心能力以API的形式开放出来。在做开发的时候不需要对接零散的生态,已经做好了一套数据底座,需要什么设备的能力可以直接调用。

郭琦:基于边无际的解决方案,联合零碳数科的能力,我们想做的PaaS平台、SaaS平台是想让软件工程师们改变制造业,提高制造业的智能工厂的效率。零碳数科探索得更加深入,闫总可以举例讲一下在发展用户的过程中,用户真实遇到的情况是什么,可能遇到哪些场景,哪些场景有特别的困难需要我们攻克?

闫保磊:工业互联网的应用参差不齐,确实是中国工业的现状。个人觉得目前我们的几个产品或者说解决方案,对应着工业互联网可以率先应用的场景。能源和碳的管理是我们特别重要的一个产品模块,目的是怎样更好地用数字技术帮助企业节能减排。工厂的节能技改、节能减排其实已经做了很多年,但现在大家会觉得再推进下去难度非常大。我们认为主要原因是,比较容易做的事情凭借老师傅、老工人的经验,基本上已经解决,如果缺乏数据支撑再去做深度挖掘,是很难做到的。

在工业场景中的数据,可能没有,或者数据的维度、颗粒度和质量都非常差,不足以支撑做深度分析,那么工业互联网技术就可以发挥作用。就像病人去医院首先要做全面体检,拿到各种参数,在工厂场景当中,我们要获取数据需要与设备去对接。工业场景的设备种类成千上万,只靠一个个接入可以获取数据,但是从底层来讲,我们希望市场上有一种能力把连接设备的效率提高,成为一个标准化模块,我觉得这是一个难点。

能源和碳管理可以扩展来看,像设备运维、生产制造、仓储物流等,我们对接的传感器或边缘侧的设备种类繁多,并且工业领域的协议也是比较复杂的,降低了解决方案的开发速度,这个事情值得我们认真研究。希望边无际能够做得更完善,对于我们这样的企业来讲,也会有很大的助力。

郭琦:如果工业互联网继续向前进,技术上得到了一些解决和积累之后,工业物联网会呈现出什么样的场景,我们想追求的是实现什么样的功能,实现什么样的工业物联网?

郑凯文:我们现在谈的工业物联网向前发展的本质是绩效,就是提高效率。提升效率的障碍主要是数据跟数据之间的壁垒没有被打通。举个简单例子,一家公司从产品定义到后期的采购、供应链、生产、销售、维保等整个周期内,最基本的一点数据能够让各个部门打通。现在很多公司没有这个基础,并不是企业老板不想做,而是市场的确有很多阻碍。

设备在设计的时候,它的自动化水平或者是数字化能力是不一致的,没有很规范的行业标准,可能从不同的供应商拿到解决方案拼凑出一套数据,中间会有漏包、无法及时沟通等情况。现在第一是数据的利用率不高,第二是拿到数据之后,怎么样分析数据提升现有效率,很多企业能在一部分的环节当中做到,但我觉得整个产业链全盘优化的话,计算量很大,而且对企业内部数据分析的能力要求很高。我们传统制造业以前是不太注重这部分的,更多是靠经验,靠商业模式去完善所谓的效率。我觉得向前发展的话,数字化的基础可能会是提高效率的一个最核心的起点。

郭琦:从数据收集工作到处理工作没做好的话,通过数据去指导生产,指导项目的效率肯定是会出现问题的。事实上,互联网是在近两年才重新注重大数据和人工智能的结合,用数据去指导生产生活,可能下一步真正进入到生产制造的领域当中。我们是有客户的,客户的需求往往也比较明确,在一些方面我们可以提供支撑。在闫总的设想中,零碳数科的商业模式是什么,未来会发展成什么样子?

闫保磊:一个公司的未来取决于团队的基因,基因决定了核心竞争力。我们团队的核心成员在工业场景的解决方案和经验方面是丰富的,对工业机理的理解是深刻的。同时,数字科技领域有来自微软等知名企业的专家。这种团队配置也呼应了“工业为本,数科为器”的判断。目前我们做的工作主要围绕工业客户,未来希望开发出更多数智化解决方案。

现在我们有几十个细分的解决方案,相比于未来市场上可能有百万级别的解决方案显得还很少。我们希望能够开发出擅长领域的解决方案,打造出一个应用商店,让我们的客户能够在里面挑选适合的产品和解决方案,可以满足工业企业不同行业、不同场景、不同阶段的需求。现在的工作是从客户比较急迫的、能够带来现实价值的场景切入,主要围绕能源和碳,以及供应链、智能制造、设备运维。我们不会进入营销、销售等领域,这些基本上用不到物联网。

怎样支撑未来百万级的场景解决方案的开发,怎样连接五花八门的设备获取高质量的数据,是全球通用的一个难题,对中国参差不齐的工业来说更是巨大挑战。如果没有这样技术的支撑,开发解决方案的效率会非常低。我们决心不断丰富产品矩阵,能够让客户找到适配需求的解决方案,这是我们商业模式的远景,也是我们正在做的工作。

郭琦:目前在做基础设施,未来可以模块化处理,让客户能通过拖拉拽的形式实现生产场景的解决方案的获得。请永立讲一下我们的商业模式是什么,现在对商业模式的思考是什么?

陈永立:我们未来想作为一个比较通用的物联网底层的开发工具或框架,给物联网的开发进行赋能。传统的Web开发或 移动开发 已经有很多可行的商业模式,比如美国的GitLab是给传统的开发者做一站式的解决方案,以SaaS加PaaS的形式进行收费。开发者工具的公司都很流行用一种增长模式PLG(Product Led Growth),先让大家免费使用社区版或基础版高效地获取产品的价值,同时可以提升日常工作的效率。如果有安全或稳定性等额外需求,会有企业版的增值服务。最终想做成什么样子,如果是以C端大家可以感知到的可能是类似于Windows、iOS或安卓,更确切一些可能更像AWS或阿里云,大家可以用已有的云服务、基础设施直接进行开发。

郭琦:如果给中国的工业物联网一个期待的话,你们希望它会是什么样子的?

闫保磊:我对这个行业和技术充满期待。首先,工业互联网作为新基建之一是中国制造业能够做大做强的核心竞争力的来源。其次,中国的工业互联网必须符合国情。中国的工业基础跟全球其他国家,尤其是西方国家的制造业有比较大的差异。怎样更好地服务国内的工业客户是首个应当回答的问题。希望中国的工业互联网企业在吸收全球的经验、理念的前提下,联系中国工业实际,打造有中国特色的工业互联网平台。

再次,希望中国的技术能够走向其他国家。2019年,我们做了大量的海外项目。我认为中国的技术走向全球的可能性是存在的,中国的技术在国外的市场空间是非常大的。我希望工业互联网技术在中国发展壮大之后,能够走向其他国家。

最后,工业互联网不是一个技术,而是一个复杂的系统,它涉及的技术非常多。我们在应用这个技术的过程中,融合了工业技术、人工智能、数字孪生等其他数字技术,包括机器人、无人机技术也已被融合在解决方案当中。仅靠几家企业是不行的。我希望相关企业更好地协同,加强互动和交流,共同构建工业互联网生态。

郭琦:大家都希望新基建成为强基建,让生态真正做起来,让中国的人才聚拢起来为工业物联网的这一次迈进做贡献。做企业要呼应国家战略让国内市场和国际市场双市场双循环,既服务于国内,发展大客户,也服务于国际,不卑不亢地走向全球市场。请陈永立来讲一下期待是什么?

陈永立:我的期待就是中国制造变成中国创造。

就像零碳数科已经在做的一样,已经在把中国创造出来的技术输出服务给国外企业,甚至一些发达国家的企业。我们做为中国人,尤其是技术驱动的公司,一定要树立好自己的自信心,我们绝对不会做的比别人差。我回国创业的一个很大的原因是制造业的基本盘是在中国,场景也是最多的,我们用最多最杂、甚至最复杂的场景,理论上可以打磨出最好的产品,然后出口给全世界。

我觉得中国的以制造业为基本盘的所有技术方案都有这个机会,可能在下一次的工业浪潮中,在中国会出现自己的类似于西门子,或者工业版的微软、亚马逊、谷歌等这样的公司。

中央领导同志多次提出,要着力突破传感网、物联网的关键技术。什么是物联网?物联网具有哪些基本特征?物联网产业发展对转变经济发展方式具有什么样的意义?当前物联网产业发展在世界范围内展现出哪些新趋势?
进入21世纪以来,一些发达国家为了推动信息社会发展,提出建设“无所不在的网络社会”,并将其作为国家或地区信息化发展的重要组成部分,纷纷出台相关的战略和政策。2010年,我国发布的《国务院关于加快培育和发展战略性新兴产业的决定》,也把新一代信息技术作为战略性新兴产业的重点领域,提出加快建设宽带、泛在、融合、安全的信息网络基础设施,推动新一代移动通信、下一代互联网核心设备和智能终端的研发与产业化,加快推进“三网融合”、促进物联网和云计算的研究和应用示范。
一、物联网是传感网、互联网、自动化技术和计算技术的集成及其广泛与深度应用。
物联网是互联网的延伸与拓展,是新理念引导下新一代信息技术的应用集成创新。物联网以互联网为基础设施,是传感网、互联网、自动化技术和计算技术的集成,及其广泛和深度应用。其功能是,各类实物信息被不同的传感器感知、采集、形成数字信号,通过各类网络快速传输到信息处理层,加工处理的信息形成信号或知识,一方面为管理服务提供信息依据,另一方面可以通过传输层反馈至传感设备,实现对实物的 *** 作。物联网既是网络技术的发展,又是自动控制技术在巨型复杂系统中的应用。物联网的应用是工业化与信息化的深度融合。过去,信息技术与制造业“两层皮”,信息基础设施与实物基础设施“两层皮”,信息基础设施建设、通信、互联网、数字内容等领域独立发展。物联网集合了许多现代信息技术,实现信息基础设施与实物基础设施相结合,把信息化融入产业发展、人民生活和社会管理的各个方面,推动信息技术、互联网技术、自动化技术在更多领域深度应用,促进更多行业、更大范围的信息化与工业化的融合。如智能交通是在车辆大幅度增加后,传统的交通管理模式不能满足交通安全需要的情况下发展起来的;城市智能化管理是在城市功能不断丰富和互联网普及的情况下,为了提高管理效率而发展起来的。物联网产业是传统产业与新兴产业的有机结合。物联网技术的应用与推广,将改造提升一批传统产业,带动一批新兴产业发展,扩大一批传统产业的市场规模。目前,物联网大都在传统产业应用,如交通、物流、电网、石油天然气、食品等行业,极大提升了这些传统产业的效率,改进了发展方式。同时,物联网的应用带动了相关制造业和服务业的发展,包括芯片、传感器、集成模块及设备、中间件制造业,以及应用系统设计与集成、软件开发、试验检测、工程实施、云计算等高技术服务业的发展,扩大了其市场规模。
二、物联网功能多、应用面宽,产业链中服务业比例高,产业发展潜力巨大。
从物联网本身的特点和规律看,物联网产业发展潜力巨大,大有作为。一方面,物联网功能多、应用面宽,以市场需求为发展动力。物联网技术的应用是运营、管理和商业模式创新引导的集成创新。发展物联网的动力是满足市场需求,节约能源、降低成本、改善管理、提高效率和便捷生活。物联网不仅应用于诸多影响国计民生的重要行业,而且在日常生活等领域拥有巨大潜在市场。一是以政府公共服务为主的公共管理和服务市场。如电子政务、城市管理、医疗、教育等领域。二是企业为主的行业应用市场。如电信、电力、物流、石油天然气等行业。三是以个人和家庭为主的消费市场。如购物、家用电器、休闲娱乐等消费领域。随着技术的不断发展,物联网服务的领域正在扩展。另一方面,物联网产业链长,是制造业与服务业的有机融合,对加快发展现代服务业具有重要意义。纵向看,物联网的产业链可以分为上、中、下游。上游是网络设施、终端设备、传感器、芯片、集成模块、中间件制造等相关制造业;中游是互联网及其运营服务;下游是物联网的用户和服务商,包括应用系统设计和集成、软件开发、试验检测、工程实施、云计算和系统运维等高技术服务业。物联网涉及众多应用领域,是一个跨多学科多部门的细分市场。每个物联网应用领域又构成各自的产业链。物联网产业链中服务业比例较高。物联网产业的中、下游大都是信息技术服务业。发展物联网不仅将带动相关制造业发展,而且将极大促进高技术服务业的发展,形成服务业新业态。同时,由于物联网是根据应用系统特点设计的网络,解决的问题不同,应用方案也就不同。因此,发展物联网不能简单地引进技术,不能照搬照抄国外经验,必须有本国的技术支撑。物联网应用具有本地化优势和主动权,主要体现在应用设计自主权和采购主导权方面。
三、物联网应用一般在社会效益较大的领域优先布局,逐步向生活消费领域拓展。
目前,全球物联网产业部分领域处于重大技术突破的孕育期和产业发展初期,物联网技术的研发和应用主要集中在美、欧、日、韩和我国。从世界范围看,物联网技术发展和应用主要呈现以下趋势:
第一,需求导向,整体规划,目标明确。近些年来,欧美日韩等纷纷出台发展物联网的战略计划。一是在社会效益较大的领域优先布局,逐步向生活消费领域拓展。目前,各国政府主要在医疗、电子政务、电网、教育、交通、城市管理等领域推行物联网计划。如,近年来,美国政府以刺激经济为目标,重点支持宽带网、智能电网、卫生医疗信息技术应用等。欧盟从发展绿色经济的角度出发,优先发展智能汽车和智能建筑,2009年发布的《欧盟物联网战略研究路线图》又提出了航空航天、汽车、医药、能源等18个物联网主要应用领域。日本从营造“使国民安心和有活力的社会环境”出发,以交通、医疗、教育、环境监测、政府治理等公共领域的信息服务为重点。韩国则从寻求增长动力和发展优势产业出发,在食品和药品管理、交通和物流管理、环境监测、安全监测、工业自动化等方面进行应用示范;国际金融危机发生后,又提出发展智能通信、家庭应用和娱乐等,推动物联网在消费领域应用。二是根据实际需要确定物联网应用重点,有针对性地解决行业问题。三是市场需求驱动,企业自发创新发展。大部分物联网技术的应用是水到渠成,当信息技术发展到一定程度,就出现了应用物联网技术的市场需要。如物流行业最初应用物联网技术是出于对食品安全监控的需要;发展云计算是一些掌控信息资源的企业,为了利用剩余的计算资源,通过商业模式创新与技术创新发展起来的。
第二,坚持成本效益原则,提高社会整体效益。有些大规模应用的物联网投资巨大,只有当其整体效益超过提供者和用户负担的成本时,投资才有意义。与此同时,还要发挥各种合作机制的作用,多层次、多渠道、多方式推进国际科技合作与交流。鼓励境外企业和科研机构在我国设立研发机构;鼓励我国企业和研发机构积极开展全球物联网产业研究,在境外开展联合研发和设立研发机构,大力支持我国物联网企业参与全球市场竞争,持续拓展技术与市场合作领域。
第三,应用导向,技术和标准先行。目前,全球物联网产业的核心技术尚不成熟,标准体系正在构建中。研制与物联网有关的标准不仅有利于规范市场、指导产业发展,而且对各国掌握物联网产业发展的主导权具有重要意义。因此,发达国家在发展物联网的过程中,一方面根据应用需求进行技术研发,掌握关键核心技术;另一方面要在制订标准上狠下功夫。
(作者系国务院发展研究中心技术经济部部长)


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13138218.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-10
下一篇 2023-06-10

发表评论

登录后才能评论

评论列表(0条)

保存