5g的边缘计算是指

5g的边缘计算是指,第1张

5G的边缘计算(Edge Computing)是指在离数据源(如用户设备、传感器等)相对较近的网络边缘位置进行数据处理、分析和存储的一种计算方式。边缘计算结合了5G网络的高速率、低延迟和大连接数的特点,可以有效地处理大量的实时数据,并及时响应用户需求。
在5G边缘计算中,计算任务被分配到边缘服务器上,而不是远程的数据中心或云服务器。这样可以降低网络延迟、提高数据处理速度,同时减轻核心网络的负担。5G边缘计算广泛应用于物联网、自动驾驶、智能城市、 智慧工地、智慧工厂、明厨亮灶、远程医疗等领域,为实现实时、高效的数据处理提供了关键支持。

UNO-238充分考虑紧凑空间安装需求,优化了IO接口的排布,所有的IO接口都安排在正面和一侧,使其可以很方便的安装在设备角落。此外,为满足物联网高带宽无线通讯的需求,UNO-238提供了一个M2 2230 (E-key) 和一个M2 3042/3052 (B-key)接口用来扩展WiFi模块和4G/5G通讯模块。另外,UNO-238还自带了GPIO和CAN总线,满足工业现场数据采集和控制的需求,可以支持多种工厂应用,例如工厂自动化,设备自动化和制造执行系统(MES) *** 作。

边缘计算是由于物联网设备的大量增长而创建的。这些设备将连接到Internet以从云发送或接收数据。有时他们在 *** 作时需要传输大量数据。因此,物联网边缘是使用物联网网关使用户能够使用其物联网设备执行边缘计算的概念。边缘计算设备可以用作网关或数据处理单元。

工业40和工业物联网边缘。边缘计算设备将工业物联网设备整合在一起。例如,在生产车间的传送带上的工业物联网传感器可能将数据馈送到现场的边缘计算硬件。然后,边缘设备运行AI分析,任何ML算法或任何类型的数据处理来获取见解,而无需将数据发送到云。

一些边缘计算机用例的示例

智能工厂

如前所述,工业物联网边缘是工业物联网设备,其数据以及应用于该数据的边缘智能的结合。工业物联网边缘可以应用于智能工厂,包括最受欢迎的用例之一:制造工厂。智能工厂可以将其所有工业物联网传感器连接到边缘计算设备。工业物联网数据传输到其他分支机构或总部。

智慧城市

“ 智能城市 ”的一些品质是物联网传感器,网络,视频监控等的智能系统。这些系统可以使用边缘计算为城市的应用程序提供更快的响应和更高的安全性。边缘计算设备如何在智能城市中使用的真实案例范围可能包括:检测交通异常,不良驾驶员,不寻常的人群,通过面部识别罪犯,智能交通系统,水处理,垃圾管理等。

零售店

边缘计算设备还可以使零售商店受益。可以从边缘计算服务器虚拟化和集中管理(远程或本地)来自POS终端,库存服务器,支付控制器等的商店端点。运行计算密集型工作负载整合设备可确保许多VM同时运行。它还提供了一个连接可能存储设备外围设备的机会。

智能农场

边缘计算有助于处理从农场或农业环境收集的数据,而无需快速连接到云。农场通常是乡村环境,因此部署该技术可能会很困难。边缘计算设备可以在极端温度条件下运行,并在边缘处提供计算密集型工作负载处理。农村地区边缘智能的实际使用案例可能包括精准农业,无人机监控或农村视频监控,水流量监控等。

微数据中心和移动边缘计算机

微数据中心(MDC)有时与边缘计算可互换使用。但是实际上,MDC只是小型的模块化数据中心架构盒,几乎可以在任何环境中工作。边缘计算设备可以作为MDC中的核心计算元素运行。移动边缘计算机(MEC),是一样的MDC,但旨在为移动网络。MEC在移动网络的边缘(通常在RAN(无线访问网络)而不是核心)中处理,存储,流式传输并提供安全性。

大数据通过与人工智能云计算物联网边缘计算等新兴技术渗透融合在智能制造、绿色低碳、共享经济等领域。根据查询相关公开信息显示,融合在以上领域培育形成了新的增长点,成为创新发展的重要驱动力。

边缘计算,是指在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台,就近提供最近端服务。其应用程序在边缘侧发起,产生更快的网络服务响应,满足行业在实时业务、应用智能、安全与隐私保护等方面的基本需求。边缘计算处于物理实体和工业连接之间,或处于物理实体的顶端。而云端计算,仍然可以访问边缘计算的历史数据。
自动化事实上是一个以“控制”为核心。控制是基于“信号”的,而“计算”则是基于数据进行的,更多意义是指“策略”、“规划”,因此,它更多聚焦于在“调度、优化、路径”。就像对全国的高铁进行调度的系统一样,每增加一个车次减少都会引发调度系统的调整,它是基于时间和节点的运筹与规划问题。边缘计算在工业领域的应用更多是这类“计算”。
简单地说,传统自动控制基于信号的控制,而边缘计算则可以理解为“基于信息的控制”。
值得注意的是,边缘计算、雾计算虽然说的是低延时,但是其50mS、100mS这种周期对于高精度机床、机器人、高速图文印刷系统的100μS这样的“控制任务”而言,仍然是非常大的延迟的,边缘计算所谓的“实时”,从自动化行业的视角来看——很不幸,依然被归在“非实时”的应用里的。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13168098.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-15
下一篇 2023-06-15

发表评论

登录后才能评论

评论列表(0条)

保存