物联网融合各行各业推动智能化转型
物联网作为全新的连接方式,近年来呈现突飞猛进的发展态势。全国人大代表、小米集团董事长兼CEO雷军表示,在中国,物联网的大规模应用与新一轮科技与产业变革融合发展,预计2022年,中国物联网行业市场规模将超过724万亿元。他表示,各行各业的智能化转型如火如荼,物联网作为连接人、机器和设备的关键支撑技术,应加快推动布局,抓智能化转型机遇。
工业物联:助制造业实现“智能+”
政府工作报告指出,要打造工业互联网平台,拓展“智能+”,为制造业转型升级赋能。在雷军看来,推动工业物联网的应用,是实现制造业“智能+”的必要途径。
他表示,随着数字经济新引擎5G技术的布局,将能满足机器类通信、大规模通信、关键性任务通信对网络速率、稳定性和时延的高要求,因此物联网应用场景十分广泛,尤其与车联网、无人驾驶、超高清视频、智能家居等产业深度融合,进一步应用到制造业、农业、医疗、安全等领域,为各行各业带来新的增长机遇。
据前瞻产业研究院发布的《中国物联网行业应用领域市场需求与投资预测分析报告》统计数据显示,2015年全球物联网设备数量仅仅38亿台。截止至2018年底全球联网设备数量已经超过170亿,扣除智能手机、平板电脑、笔记本电脑或固定电话等连接之外,物联网设备数量达到70亿台。预测2019年全球物联网设备数量将达83亿台。并预测在2025年全球物联网设备数量将突破200亿台。
全球物联网市场的支出预计将在2017年增长37%,至1510亿美元。由于物联网的市场加速,这些估计数已向上修正。2017年全球物联网市场规模达到1100亿美元,截止至2018年末全球物联网市场规模增长至1510亿美元,并预测在2025年全球物联网市场规模将达15670亿美元。
2015-2025年全球物联网设备数量统计情况及预测
数据来源:前瞻产业研究院整理
2017-2025年全球物联网市场规模统计情况及预测(单位:十亿美元)
数据来源:公开资料、前瞻产业研究院整理
雷军表示,目前全球制造业竞争推动工厂向智能化转型,物联网作为连接人、机器和设备的关键支撑技术受到企业的高度关注。即将布局的5G技术优势,将能够较好满足工业控制需求,同时为制造企业提供远程控制和数据流量管理工具,以便更高效智能地管理大量的设备,并通过无线网络对这些设备进行软件更新。
雷军建议,我国应加大对高端装备、智能制造、工业物联网等重点领域的财税金融支持力度,引导中央、地方产业投资基金和社会资本,围绕大型制造企业上下游进行垂直改造,加强自动化产线、无人工厂等重大技术研发和成果转化,打造虚拟的产业闭环,提高产业的生产效率和整体国际竞争力。
农业物联万物生长数字化:物联网+农业会迎来怎样的“春天”
雷军表示,乡村振兴战略是以发展和创新的眼光推进现代农业建设。实施乡村振兴战略,就是推进农业农村的现代化,以创新驱动乡村振兴发展。
他认为,随着物联网在农业领域的应用越来越广泛,5G技术的应用将为建设智慧农业、数字乡村奠定坚实科技基础,带动农业实现发展变革。
什么是智慧农业呢
按照业界的说法,智慧农业以智慧生产为核心,智慧产业链为其提供信息化服务支撑。目前我国智慧农业有四大应用场景:数据平台服务、无人机植保、农机自动驾驶以及精细化养殖。
雷军建议,国家有关部门应制定出台5G农业应用补贴和优惠政策,并鼓励社会资本、运营商、互联网企业等共同参与,因地制宜规划打造智慧农业示范区、试验区,并在经验成熟后进行全国推广,全面提升农业领域的高新科技应用程度。
例如在养殖业,通过无线传感器网络技术,进行基本信息管理、疾病档案管理、防疫管理、营养繁殖管理,发展智慧养殖,实现数字化养殖。
在植保方面,借助物联网技术自动探测和记录区域内的微气候、墒情等环境信息,并结合植物保护专家系统来精确地预测病虫害的发生,从而通过无人机喷洒农药,精准高效解决农业生产的植保问题。
交通物联:无人驾驶或将最早“引爆”
“在5G众多的应用场景中,无人驾驶和车联网被认为是最有可能出现的引爆点。”雷军表示,智慧交通对通信网络有着极高的要求,而大带宽、低时延、海量的连接数量、严密的覆盖,这些都是5G技术的核心优势。
在雷军看来,智慧交通最可能爆发,一方面因无人驾驶具有巨大的节能潜力,在减少交通事故、改善拥堵、提高道路及车辆利用率等方面意义深远,并可直接带动智能汽车后市场等产业的快速发展。
另一方面,全球车联网产业进入快速发展阶段,信息化、智能化引领,全球车联网服务需求逐渐加大。基于5G技术的应用,智能交通领域将快速进入发展上行区间。
了解到,在重庆,长安、小康、力帆等汽车企业,均与百度的智能驾驶Apollo开放平台展开合作,包括自动驾驶全技术链流程、功能安全及信息安全、车联网、云服务等领域。
雷军建议,国家应研究、制定和出台关于智能交通的中长期发展目标,制定相应的法律法规和行业标准支持产业发展。尤其针对无人驾驶汽车的安全责任问题、技术试验问题、车联网的国家标准规范、智能芯片应用等产业发展关键点进行前置研判,通过鼓励性政策支持交通运输领域智能、安全、可控发展。
医疗物联:智能化就诊为“健康中国”加速
“物联网技术在医疗行业也有很广泛的应用空间。”雷军说,服务患者方面,可以采用LBS技术实现智能导诊,优化就诊流程,还可以借助可穿戴传感器和服务解决方案进行远程护理。
在保障设备质量方面,可以采用各类专用传感器,跟踪设备使用情况,借助预测性维护来修复关键医疗设备存在的潜在问题,完善设备运维体系。
环境监测方面,可以通过传感器对ICU室、手术室等特殊地点进行环境监测和预警。同时,基于医疗护理全流程的健康大数据,在安全保护前提下的数据标准细化、完善,以及数据网络的综合利用也显得尤为迫切。
在业界看来,在推进智慧医疗体系建设的大背景下,有多个方面的需要关注。比如,互联网医疗相关服务体系,包括发展互联网医疗、互联网+公共卫生服务、互联网+家庭医生签约等;另外还有医疗行业数据安全和服务质量安全。
雷军表示,要推动医疗实现智慧化,国家有关部门应逐步推动新技术在医疗卫生领域的应用,加快完善医疗物联网和健康大数据相关标准,制定医疗智能可穿戴设备及配套信息平台行业标准。
同时,出台针对物联网企业在医疗领域投入科学研究、应用开发的鼓励政策,使云计算、人工智能、虚拟现实/增强现实、物联网、区块链等技术在医疗卫生行业更好地集成创新和融合应用,满足人民日益增长的健康医疗新需求。
提高创新能力大力发展商业航天产业
关注物联网发展的同时,雷军今年参会还重点关注了在2018年热火朝天的商业航天的发展。
在雷军看来,航天是当今世界最具挑战性和广泛带动性的高科技领域之一,为服务国家发展大局和增进人类福祉作出了重要贡献。
近年,在运载、卫星和空间应用等领域,涌现出太空探索公司(SpaceX)、蓝色起源(BlueOrigin)、一网(OneWeb)等大批商业航天公司,被认为是最为活跃的创业领域之一。
雷军说,商业航天行业规模未来预计可达数万亿美元,将迎来空前的发展机遇,可重复使用火箭、巨型商业星座、商业载人空间站等航天计划,正在逐渐成真,彰显出商业航天推进技术进步和产业发展的巨大力量。
雷军建议,首先,我国应加快推动航天立法,确保民营企业长期稳定、合理有效利用空间资源的权利。建立商业航天市场准入退出、公平竞争、保险和赔偿、安全监管等机制,构建较为完善的商业航天法律体系。
雷军表示,商业航天属于快速发展的新兴行业,门槛高、投资大、战略意义显著,比多数产业更容易受到政府监管和行业政策的影响。
雷军建议,可由政府统筹,国企、民企多方聚力,布局商业航天产品智能制造,鼓励民企参与航天装备制造相关的国家重点项目,加速颠覆性航天技术创新与应用。
同时,制定商业航天装备产品量产及上下游企业的培育政策及实施细则,加大航天智能制造技术共享和转化力度,开放国家航天制造基础设施,颁布航天试验设施共享目录、有偿使用收费标准等。
在此基础上,雷军建议,应完善落实政府采购商业航天产品与服务机制,开放商业航天公司的行业准入,拓展商业服务与应用领域。
例如,可以简化商业火箭发射、航天测控、无线电频率等审批程序,引导鼓励民营企业战略性空间资源布局,承担轨道环境有序可控的应尽责任;可以进一步开放已有发射场,新增发射工位,满足高频次商业发射服务需求等。
物联网就是通过信息传感设备,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。通俗地讲,物联网就是“物物相连的互联网”,它包含两层含义:
第一,物联网是互联网的延伸和扩展,其核心和基础仍然是互联网;
第二,物联网的用户端不仅包括人,还包括物品,物联网实现了人与物品及物品之间信息的交换和通信。
物联网作为新一代信息技术的高度集成和综合运用,具有渗透性强、带动作用大、综合效益好的特点,是继计算机、互联网、移动通信网之后信息产业发展的又一推动者。物联网的应用如下:
1、智能仓库。物联网一个很好的应用。它能准确的提供仓库管理各个环节数据的真实性,对于生产企业,可以根据这个数据合理的把控库存量,调整生产量。物联网中利用SNHGES系统的库位管理功能,可以准确提供货物库存位置,这就大大提高了仓库管理的效率。
2、智能物流。运用条形码、传感器、射频识别技术、全球定位等先进的物联网通信技术,实现物流业运输、仓储、配送、装卸等各个环节的智能化。不仅货物运输更加的自动化,而且作出的全面分析还能及时的处理问题对物流过程作出调整,优化了管理。大大提高了物流行业的服务水平,还节约了成本。
3、智能医疗。利用物联网技术,实现患者和医务人员、医疗机构、医疗设备的互动,实现医疗智能化。物联网医疗设备中的传感器与移动设备可以对患者的生理状态进行捕捉,把生命指数记录到电子健康文件中,不仅自己可以查看,也方便了医生的查阅,实现远程的医疗看病。很好的解决当前的医疗资源分布不均,看病难的问题。
4、智能家庭。物联网的出现让我们的日常生活更加的便捷。不远的将来一台手机,就可以 *** 作家里大多数的电器,查看它们的运行状态。寒冷的冬天,我们可以提前打开家里的空调,回到家就暖暖的。物联网还能准确的定位家庭成员的位置,你再也不用担心孩子跑的找不见人,省心省力。
5、智能农业。物联网在农业中的应用就更加的广泛。监测温湿度,监视土壤酸碱度,查看家禽的状态。在这些数据的支持下,农户就可以合理进行科学评估,安排施肥,灌溉。监测到的天气情况比如降水,风力等又为我们抗灾、减灾提供了依据。提高了产量,降低了减产风险。
6、智能交通。物联网将整个交通设备连在一起。主要是用图像识别为核心技术。可以准确的收集到交通车流量信息,通过信号灯等设备进行流量的控制,这个技术的运用,会让堵车成为历史。管理人员利用这个技术能将道路、车辆的情况掌握的一清二楚,驾驶违章无处可逃,交通事故也能及时的得到处理。人们的出行得到了很大的方便。
7、智能电力。电力工程是一项重大的民生工程,对电网的安全检测是一项必修科目。以南方电网与中国移动通过M2M技术进行的合作为例,因为物联网的运用,使得自动化计量系统开始启动,使得故障评价处理时间得到一倍的缩减。物联网给我们医疗健康带来的改变主要体现在以下几个方面:
1优化看病就诊流程。利用物联网技术,智慧医疗让患者就诊便利化,患者只需要动动手指,挂号、缴费、查看报告等就能便捷完成,省去了排队等候、重复缴费的辛苦。同时,借助视频远程会诊、信息化转诊平台等手段,可以让农村地区也能享受到优质的医疗资源。
2实现智能化管理。物联网技术能够帮助医院实现对医疗设备的智能化管理工作,通过对医院医疗器械、车辆、基础设施等资源进行智能化改造,让医疗设备无线化,物资管理可视化,帮助医院实现智能化管理。
3快速收集有效数据。各种医疗设备通过物联网卡接入到智慧医疗系统中,可以有效的识别患者数据,并且将信息反馈到处理中心,及时对信息进行智能分析及处理,为医生快速提供患者精准数据,减少医生工作量。
4提升医疗服务水平。物联网技术在医疗领域有着巨大的潜力,既可以帮助医院提高工作效率,降低医疗成本和开支;还可以给患者提供更加便利的服务,让更多的患者可以快速就医,享受健康呵护。这些对于提高我国的医疗服务水平有着积极的促进作用。
我知道个人,可以TEL 133-9168-8980问问情况
代挂
-----------------------------------------------------------------
|
|
|
|
世界包含的多得难以想象的数字化信息变得更多更快……从商业到科学,从政府到艺术,这种影响无处不在。科学家和计算机工程师们给这种现象创造了一个
新名词:逗大数据地。大数据时代什么意思看大数据概念什么意思看大数据分析什么意思看所谓大数据,那到底什么是大数据,他的来源在哪里,定义究竟是什么
呢看
一:大数据的定义。
1、大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
2、大数据技术,是指从各种各样类型的大数据中,快速获得有价值信息的技术的能力,包括数据采集、存储、管理、分析挖掘、可视化等技术及其集成。适用于大数据
的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
互联网是个神奇的大网,大数据开发也是一种模式,你如果真想了解大数据,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
3、大数据应用,是 指对特定的大数据集合,集成应用大数据技术,获得有价值信息的行为。对于不同领域、不同企业的不同业务,甚至同一领域不同企业的相同业务来说,由于其业务需求、数据集合和分析挖掘目标存在差异,所运用的大数据技术和大数据信息系统也可能有着相当大的不同。惟有坚持逗对象、技术、应用地三位一体同步发展,才
能充分实现大数据的价值。
当你的技术达到极限时,也就是数据的极限地。大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。
二:大数据的类型和价值挖掘方法
1、大数据的类型大致可分为三类:
1)传统企业数据(Traditionalenterprisedata):包括 CRM systems的消费者数据,传统的ERP数据,库存数据以及账目数据等。
2)机器和传感器数据(Machine-generated/sensor data):包括呼叫记录(CallDetail Records),智能仪表,工业设备传感器,设备日志(通常是Digital exhaust),交易数据等。
3)社交数据(Socialdata):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。
2、大数据挖掘商业价值的方法主要分为四种:
1)客户群体细分,然后为每个群体量定制特别的服务。
2)模拟现实环境,发掘新的需求同时提高投资的回报率。
3)加强部门联系,提高整条管理链条和产业链条的效率。
4)降低服务成本,发现隐藏线索进行产品和服务的创新。
三:大数据的特点
业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。具体来说,大数据具有4个基本特征:
1、是数据体量巨大
数据体量(volumes)大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;百度资料表明,其新首页导航每天需要提供的数据超过15PB(1PB=1024TB),这些数据如果打印出来将超过5千亿张A4纸。有资料证实,到目前为止,人类生产的所有印刷材料的数据量仅为200PB。
2、是数据类别大和类型多样
数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化 数据范畴,囊括了半结构化和非结构化数据。现在的数据类型不仅是文本形式,更多的是、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。
3、是处理速度快
在数据量非常庞大的情况下,也能够做到数据的实时处理。数据处理遵循逗1秒定律地,可从各种类型的数据中快速获得高价值的信息。
4、是价值真实性高和密度低
数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。以视频为例,一小时的视频,在不间断的监控过程中,可能有用的数据仅仅只有一两秒。
四:大数据的作用
1、对大数据的处理分析正成为新一代信息技术融合应用的结点
移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。
大数据具有催生社会变革的能量。但释放这种能量,需要严谨的数据治理、富有洞见的数据分析和激发管理创新的环境(Ramayya Krishnan,卡内基·梅隆大学海因兹学院院长)。
2、大数据是信息产业持续高速增长的新引擎
面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。
3、大数据利用将成为提高核心竞争力的关键因素
各行各业的决策正在从逗业务驱动地
转变逗数据驱动地。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。
4、大数据时代科学研究的方法手段将发生重大改变
例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。
五:大数据的商业价值
1、对顾客群体细分
逗大数据地可以对顾客群体细分,然后对每个群体量体裁衣般的采取独特的行动。瞄准特定的顾客群体来进行营销和服务是商家一直以来的追求。云存储的海量数据和逗大数据地的分析技术使得对消费者的实时和极端的细分有了成本效率极高的可能。
2、模拟实境
运用逗大数据地模拟实境,发掘新的需求和提高投入的回报率。现在越来越多的产品中都装有传感器,汽车和智能手机的普及使得可收集数据呈现爆炸性增长。Blog、Twitter、Facebook和微博等社交网络也在产生着海量的数据。
云计算和逗大数据地分析技术使得商家可以在成本效率较高的情况下,实时地把这些数据连同交易行为的数据进行储存和分析。交易过程、产品使用和人类行为都可以数据化。逗大数据地技术可以把这些数据整合起来进行数据挖掘,从而在某些情况下通过模型模拟来判断不同变量(比如不同地区不同促销方案)的情况下何种方案
投入回报最高。
3、提高投入回报率
提高逗大数据地成果在各相关部门的分享程度,提高整个管理链条和产业链条的投入回报率。逗大数据地能力强的部门可以通过云计算、互联网和内部搜索引擎把地大数据地成果和逗大数据地能力比较薄弱的部门分享,帮助他们利用逗大数据地创造商业价值。
4、数据存储空间出租
企业和个人有着海量信息存储的需求,只有将数据妥善存储,才有可能进一步挖掘其潜在价值。具体而言,这块业务模式又可以细分为针对个人文件存储和针对企业用
户两大类。主要是通过易于使用的API,用户可以方便地将各种数据对象放在云端,然后再像使用水、电一样按用量收费。目前已有多个公司推出相应服务,如亚
马逊、网易、诺基亚等。运营商也推出了相应的服务,如中国移动的彩云业务。
5、管理客户关系
客户管理应用的目的是根据客户的属性(包括自然属性和行为属性),从不同角度深层次分析客户、了解客户,以此增加新的客户、提高客户的忠诚度、降低客户流失率、提高客户消费等。对中小客户来说,专门的CRM显然大而贵。不少中小商家将飞信作为初级CRM来使用。比如把老客户加到飞信群里,在群朋友圈里发布新
产品预告、特价销售通知,完成售前售后服务等。
6、个性化精准推荐
在运营商内部,根据用户喜好推荐各类业务或应用是常见的,比如应用商店软件推荐、IPTV视频节目推荐等,而通过关联算法、文本摘要抽取、情感分析等智能分
析算法后,可以将之延伸到商用化服务,利用数据挖掘技术帮助客户进行精准营销,今后盈利可以来自于客户增值部分的分成。
以日常的逗垃圾短信地为例,信息并不都是逗垃圾地,因为收到的人并不需要而被视为垃圾。通过用户行为数据进行分析后,可以给需要的人发送需要的信息,这样逗垃圾短信地就成了有价值的信息。在日本的麦当劳,用户在手机上下载优惠券,再去餐厅用运营商DoCoMo的手机钱包优惠支付。运营商和麦当劳搜集相关消费信息,例如经常买什么
汉堡,去哪个店消费,消费频次多少,然后精准推送优惠券给用户。
7、数据搜索
数据搜索是一个并不新鲜的应用,随着逗大数据地时代的到来,实时性、全范围搜索的需求也就变得越来越强烈。我们需要能搜索各种社交网络、用户行为等数据。其商业应用价值是将实时的数据处理与分析和广告联系起来,即实时广告业务和应用内移动广告的社交服务。
运营商掌握的用户网上行为信息,使得所获取的数据逗具备更全面维度地,更具商业价值。典型应用如中国移动的逗盘古搜索地。
六:大数据对经济社会的重要影响
1、能够推动实现巨大经济效益
比如对中国零售业净利润增长的贡献,降低制造业产品开发、组装成本等。预计2013年全球大数据直接和间接拉动信息技术支出将达1200亿美元。
2、能够推动增强社会管理水平
大数据在公共服务领域的应用,可有效推动相关工作开展,提高相关部门的决策水平、服务效率和社会管理水平,产生巨大社会价值。欧洲多个城市通过分析实时采集的交通流量数据,指导驾车出行者选择最佳路径,从而改善城市交通状况。
3、如果没有高性能的分析工具,大数据的价值就得不到释放
对大数据应用必须保持清醒认识,既不能迷信其分析结果,也不能因为其不完全准确而否定其重要作用。
1)由于各种原因,所分析处理的数据对象中不可避免地会包括各种错误数据、无用数据,加之作为大数据技术核心的数据分析、人工智能等技术尚未完全成熟,所以对计算机完成的大数据分析处理的结果,无法要求其完全准确。例如,谷歌通过分析亿万用户搜索内容能够比专业机构更快地预测流感暴发,但由于微博上无用信息的干扰,这种预测也曾多次出现不准确的情况。
2)必须清楚定位的是,大数据作用与价值的重点在于能够引导和启发大数据应用者的创新思维,辅助决策。简单而言,若是处理一个问题,通常人能够想到一种方法,而大数据能够提供十种参考方法,哪怕其中只有三种可行,也将解决问题的思路拓展了三倍。
所以,客观认识和发挥大数据的作用,不夸大、不缩小,是准确认知和应用大数据的前提。
七:最后北京开运联合给您总结一下
不管大数据的核心价值是不是预测,但是基于大数据形成决策的模式已经为不少的企业带来了盈利和声誉。
1、从大数据的价值链条来分析,存在三种模式:
1)手握大数据,但是没有利用好;比较典型的是金融机构,电信行业,政府机构等。
2)没有数据,但是知道如何帮助有数据的人利用它;比较典型的是IT咨询和服务企业,比如,埃森哲,IBM,Oracle等。
3)既有数据,又有大数据思维;比较典型的是Google,Amazon,Mastercard等。
2、未来在大数据领域最具有价值的是两种事物:
1)拥有大数据思维的人,这种人可以将大数据的潜在价值转化为实际利益;
2)还未有被大数据触及过的业务领域。这些是还未被挖掘的油井,金矿,是所谓的蓝海。
大数据是信息技术与专业技术、信息技术产业与各行业领域紧密融合的典型领域,有着旺盛的应用需求、广阔的应用前景。为把握这一新兴领域带来的新机遇,需要不断跟踪研究大数据,不断提升对大数据的认知和理解,坚持技术创新与应用创新的协同共进,加快经济社会各领域的大数据开发与利用,推动国家、行业、企业对于
数据的应用需求和应用水平进入新的阶段。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)