本专题我共整理了10篇文章,来自中国农业科学院农业质量标准与检测技术研究所、南京农业大学、英国林肯大学、华南农业大学、江南大学、国家农业智能装备工程技术研究中心、浙江大学、中国科学院、吉林农业大学、西北农林 科技 大学、国家信息农业工程技术中心等单位。
文章包含农产品质量安全纳米传感器、太阳能杀虫灯、分簇路由算法、农田物联网混合多跳路由算法、水产养殖溶解氧传感器研制、土壤养分近场遥测方法、农机远程智能管理平台、水肥浓度智能感知与精准配比、果园多机器人通信等内容,供大家阅读、参考。
专题--农业传感器与物联网
Topic--Agricultural Sensor and Internet of Things
[1]王培龙, 唐智勇 农产品质量安全纳米传感应用研究分析与展望[J] 智慧农业(中英文), 2020, 2(2): 1-10
WANG Peilong , TANG Zhiyong Application analysis and prospect of nanosensor in the quality and safety of agricultural products[J] Smart Agriculture, 2020, 2(2): 1-10
知网阅读
[2]杨星, 舒磊, 黄凯, 李凯亮, 霍志强, 王彦飞, 王心怡, 卢巧玲, 张亚成 太阳能杀虫灯物联网故障诊断特征分析及潜在挑战[J] 智慧农业(中英文), 2020, 2(2): 11-27
YANG Xing, SHU Lei, HUANG Kai, LI Kailiang, HUO Zhiqiang, WANG Yanfei, WANG Xinyi, LU Qiaoling, ZHANG Yacheng Characteristics analysis and challenges for fault diagnosis in solar insecticidal lamps Internet of Things[J] Smart Agriculture, 2020, 2(2): 11-27
摘要: 太阳能杀虫灯物联网(SIL-IoTs)是一种基于农业场景与物联网技术的新型物理农业虫害防治工具,通过无线传输太阳能杀虫灯组件状态数据,用户可后台实时查看太阳能杀虫灯运行状态,具有杀虫计数、虫害区域定位、辅助农情监测等功能。但随着SIL-IoTs快速发展与广泛应用,故障诊断难和维护难等矛盾日益突出。基于此,本研究首先阐述了SIL-IoTs的结构和研究现状,分析了故障诊断的重要性,指出了故障诊断是保障其可靠性的主要手段。接着介绍了目前太阳能杀虫灯节点自身存在的故障及其在无线传感网络(WSNs)中的体现,并进一步对WSNs中的故障进行分类,包括基于行为、基于时间、基于组件以及基于影响区域的故障四类。随后讨论了统计方法、概率方法、层次路由方法、机器学习方法、拓扑控制方法和移动基站方法等目前主要使用的WSNs故障诊断方法。此外,还探讨了SIL-IoTs故障诊断策略,将故障诊断从行为上分为主动型诊断与被动型诊断策略,从监测类型上分为连续诊断、定期诊断、直接诊断与间接诊断策略,从设备上分为集中式、分布式与混合式策略。在以上故障诊断方法与策略的基础上,介绍了后台数据异常、部分节点通信异常、整个网络通信异常和未诊断出异常但实际存在异常四种故障现象下适用的WSNs故障诊断调试工具,如Sympathy、Clairvoyant、SNIF和Dustminer。最后,强调了SIL-IoTs的特性对故障诊断带来的潜在挑战,包括部署环境复杂、节点任务冲突、连续性区域节点无法传输数据和多种故障诊断失效等情形,并针对这些潜在挑战指出了合理的研究方向。由于SIL-IoTs为农业物联网中典型应用,因此本研究可扩展至其它农业物联网中,并为这些农业物联网的故障诊断提供参考。
知网阅读
[3]汪进鸿, 韩宇星 用于作物表型信息边缘计算采集的认知无线传感器网络分簇路由算法[J] 智慧农业(中英文), 2020, 2(2): 28-47
WANG Jinhong, HAN Yuxing Cognitive radio sensor networks clustering routing algorithm for crop phenotypic information edge computing collection[J] Smart Agriculture, 2020, 2(2): 28-47
摘要: 随着无线终端数量的快速增长和多媒体图像等高带宽传输业务需求的增加,农业物联网相关领域可预见地会出现无线频谱资源紧缺问题。针对基于传统物联网的作物表型信息采集系统中存在由于节点密集部署导致数据传输过程容易出现频谱竞争、数据拥堵的现象以及固定电池的网络由于能耗不均衡引起监测周期缩减等诸多问题,本研究建立了一个认知无线传感器网络(CRSN)作物表型信息采集模型,并针对模型提出一种引入边缘计算机制的动态频谱和能耗均衡(DSEB)的事件驱动分簇路由算法。算法包括:(1)动态频谱感知分簇,采用层次聚类算法结合频谱感知获取的可用信道、节点间的距离、剩余能量和邻居节点度为相似度对被监控区域内的节点进行聚类分簇并选取簇头,构建分簇拓扑的过程对各分簇大小的均衡性引入奖励和惩罚因子,提升网络各分簇平均频谱利用率;(2)融入边缘计算的事件触发数据路由,根据构建的分簇拓扑结构,将待检测各区域变化异常表型信息触发事件以簇内汇聚和簇间中继交替迭代方式转发至汇聚节点,簇内汇聚包括直传和簇内中继,簇间中继包括主网关节点和次网关节点-主网关节点两种情况;(3)基于频谱变化和通信服务质量(QoS)的自适应重新分簇:基于主用户行为变化引起的可用信道改变,或分簇效果不佳对通信服务质量产生的干扰,触发CRSN进行自适应重新分簇。此外,本研究还提出了一种新的能耗均衡策略去能量消耗中心化(假设sink为中心),即在网关或簇头节点选取计算式中引入与节点到sink的距离成正比的权重系数。算法仿真结果表明,与采用K-medoid分簇和能量感知的事件驱动分簇(ERP)路由方案相比,在CRSN节点数为定值的前提下,基于DSEB的分簇路由算法在网络生存期与能效等方面均具有一定的改进;在主用户节点数为定值时,所提算法比其它两种算法具有更高频谱利用率。
知网阅读
[4]顾浩, 王志强, 吴昊, 蒋永年, 郭亚 基于荧光法的溶解氧传感器研制及试验[J] 智慧农业(中英文), 2020, 2(2): 48-58
GU Hao, WANG Zhiqiang, WU Hao, JIANG Yongnian, GUO Ya A fluorescence based dissolved oxygen sensor[J] Smart Agriculture, 2020, 2(2): 48-58
摘要:溶解氧含量的测量对水产养殖具有极其重要的意义,但目前中国市面上的溶解氧传感器存在价格昂贵、不能持续在线测量及更新部件维护困难等问题,难以在水产养殖物联网中大规模推广和发挥作用。本研究基于荧光淬灭原理,利用水中溶解氧浓度与荧光信号相位差的关系进行低成本、易维护溶解氧传感器的研发。首先利用自制备溶氧敏感膜,经激发光照射后产生红色荧光,该荧光寿命可由溶解氧浓度调节;然后利用光信号敏感器件设计光电转化电路实现光信号感知;再以STM32F103微处理器作为主控芯片,编写下位机程序实现激发光脉冲产生,利用相敏检波原理以及快速傅里叶变换(FFT)计算激发光与参照光的相位差,进而转化为溶解氧浓度,实现溶解氧的测量。荧光探测部分与系统主控部分采用分离式设计思想,利用屏蔽排线直接插拔连接,便于传感器探测头的拆卸、更换、维护以及实现远距离在线测量。经测试,本溶解氧传感器的测量范围是0~20 mg/L,响应延迟小于2 s,溶氧敏感膜使用寿命约1年,可以实时不间断地对溶解氧浓度进行测量。同时,本传感器具有测量方便、制作成本低、体积小等特点,为中国水产养殖低成本溶解氧传感器的研发与市场化奠定了良好的基础。
知网阅读
[5]矫雷子, 董大明, 赵贤德, 田宏武 基于调制近红外反射光谱的土壤养分近场遥测方法研究[J] 智慧农业(中英文), 2020, 2(2): 59-66
JIAO Leizi, DONG Daming, ZHAO Xiande, TIAN Hongwu Near-field telemetry detection of soil nutrient based on modulated near-infrared reflectance spectrum[J] Smart Agriculture, 2020, 2(2): 59-66
摘要: 土壤养分作为农业生产的重要指标,含量过少会降低农作物产量,过多则会造成环境污染。因此,快速、准确检测土壤养分对于精准施肥和提高作物产量具有重要意义。基于取样和化学分析的传统方法能够全面准确地检测土壤养分,但检测过程中土壤的取样及预处理过程繁琐、 *** 作复杂、费时费力,不能实现土壤养分的原位快速检测。本研究基于调制近红外光谱,提出了一种土壤养分主动式近场遥测方法,可有效避免土壤反射自然光的干扰。该方法使用波长范围1260~1610 nm的8通道窄带激光二极管作为近红外光源,通过测量8通道激光光束的土壤反射率,建立土壤养分中氮(N)关于土壤反射率的计量模型,实现了N的快速检测。在74组已知N含量的土壤样品中,选取54组作为训练集,20组作为预测集。基于一般线性模型,对训练集中土壤N含量与土壤反射率的定量化参数进行训练,筛选显著波段后的计量模型R2达到097。基于建立的计量模型,预测集中土壤N含量预测值与参考值的决定系数R2达到09,结果表明该方法具有土壤养分现场快速检测的能力。
知网阅读
[6]朱登胜, 方慧, 胡韶明, 王文权, 周延锁, 王红艳, 刘飞, 何勇 农机远程智能管理平台研发及其应用[J] 智慧农业(中英文), 2020, 2(2): 67-81
ZHU Dengsheng, FANG Hui, HU Shaoming, WANG Wenquan, ZHOU Yansuo, WANG Hongyan, LIU Fei, HE Yong Development and application of an intelligent remote management platform for agricultural machinery[J] Smart Agriculture, 2020, 2(2): 67-81
摘要: 本研究针对农机管理实时数据少、农机实时作业监管困难、服务信息不对称等问题,首先提出专业化远程管理平台设计时应具有五大原则:专业化、标准化、云平台、模块化以及开放性。基于这些原则,本研究设计了基于大田作业智能传感技术、物联网技术、定位技术、遥感技术和地理信息系统的可定制化的通用农机远程智能管理平台。平台分别为各级政府管理部门、农机合作社、农机手、农户设计并实现了基于WebGIS 的农机信息库及农机位置服务、农机作业实时监测与管理、农田基础信息管理、田间作物基本信息管理、农机调度管理、农机补贴管理、农机作业订单管理等多个实用模块。研究着重分析了在当前的技术背景下,平台部分关键技术的实现方法,包括采用低精度GNSS定位系统前提下的作业面积的计算方法、GNSS定位数据处理过程中的数据问题分析、农机调度算法、作业传感器信息的集成等,并提出了以地块为核心的管理平台建设思路;同时提出农机作业管理平台将逐步从简单作业管理转向大田农机综合管理。本平台对同类型管理平台的研发具有一定的参考与借鉴作用。
知网阅读
[7]金洲, 张俊卿, 郭红燕, 胡宜敏, 陈翔宇, 黄河, 王红艳 水肥浓度智能感知与精准配比系统研制与试验[J] 智慧农业(中英文), 2020, 2(2): 82-93
JIN Zhou, ZHANG Junqing, GUO Hongyan, HU Yimin, CHEN Xiangyu, HUANG He, WANG Hongyan Development and testing of intelligent sensing and precision proportioning system of water and fertilizer concentration[J] Smart Agriculture, 2020, 2(2): 82-93
摘要: 为解决农场当地当时的复合肥料精准化配料问题,本研究将水肥一体化智能灌溉施肥系统作为研究对象,构建了水肥浓度智能感知与精准配比系统。首先提出现场在线水肥溶液智能感知模型的快速建立方法,利用数据分析算法从传感器实时监测的一系列浓度梯度的肥料溶液中挖掘出模型。其次基于上述模型设计水肥浓度智能感知与精准配比系统的框架结构,阐述系统工作原理;并通过三种水体模拟在线配肥验证了该系统原位指导水肥浓度配比的有效性,同时评价了水体电导率对水肥配比浓度的干扰。试验结果表明,正则化条件下二阶的多项式拟合曲线是表达溶液电导率与水肥浓度的变化关系最优的模型,相关系数R2均大于0999,由此模型可得出用户关心的复合肥各指标浓度。三种水体模拟在线配肥结果表明,水体会干扰电导率导致无法准确反演水肥配比的浓度,相对偏差值超过了01。因此,本研究提出的在线水肥智能感知与精准配比系统实现了消除当地水体电导率对水肥配比准确性的干扰,通过模型计算实现复合肥精准化配比,并得出各指标浓度。该系统结构简单,配比精准,易与现有水肥一体机或者人工配肥系统结合使用,可广泛应用于设施农业栽培、果园栽培和大田经济作物栽培等环境下的精准智能施肥。
知网阅读
[8]孙浩然, 孙琳, 毕春光, 于合龙 基于粒子群与模拟退火协同优化的农田物联网混合多跳路由算法[J] 智慧农业(中英文), 2020, 2(3): 98-107
SUN Haoran, SUN Lin, BI Chunguang, YU Helong Hybrid multi-hop routing algorithm for farmland IoT based on particle swarm and simulated annealing collaborative optimization method[J] Smart Agriculture, 2020, 2(3): 98-107
摘要: 农业无线传感器网络对农田土壤、环境和作物生长的多源异构信息的获取起关键作用。针对传感器在农田中非均匀分布且受到能量制约等问题,本研究提出了一种基于粒子群和模拟退火协同优化的农田物联网混合多跳路由算法(PSMR)。首先,通过节点剩余能量和节点度加权选择簇首,采用成簇结构实现异构网络高效动态组网。然后通过簇首间多跳数据结构解决簇首远距离传输能耗过高问题,利用粒子群与模拟退火协同优化方法提高算法收敛速度,实现sink节点加速采集簇首中的聚合数据。对算法的仿真试验结果表明,PSMR算法与基于能量有效负载均衡的多路径路由策略方法(EMR)相比,无线传感器网络生命周期提升了57%;与贪婪外围无状态路由算法(GPSR-A)相比,在相同的网络生命周期内,第1个死亡传感器节点推迟了两轮,剩余能量标准差减少了004 J,具有良好的网络能耗均衡性。本研究提出的PSMR算法通过簇首间多跳降低远端簇首额外能耗,提高了不同距离簇首的能耗均衡性能,为实现大规模农田复杂环境的长时间、高效、稳定地数据采集监测提供了技术基础,可提高农业物联网的资源利用效率。
知网阅读
[9]毛文菊, 刘恒, 王东飞, 杨福增, 刘志杰 面向果园多机器人通信的AODV路由协议改进设计与测试[J] 智慧农业(中英文), 2021, 3(1): 96-108
MAO Wenju, LIU Heng, WANG Dongfei, YANG Fuzeng, LIU Zhijie Improved AODV routing protocol for multi-robot communication in orchard[J] Smart Agriculture, 2021, 3(1): 96-108
摘要: 针对多机器人在果园中作业时的通信需求,本研究基于Wi-Fi信号在桃园内接收强度预测模型,提出了一种引入优先节点和路径信号强度阈值的改进无线自组网按需平面距离向量路由协议(AODV-SP)。对AODV-SP报文进行设计,并利用NS2仿真软件对比了无线自组网按需平面距离向量路由协议(AODV)和AODV-SP在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能。仿真试验结果表明,本研究提出的AODV-SP路由协议在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能均优于AODV协议,其中节点的移动速度为5 m/s时,AODV-SP的路由发起频率和路由开销较AODV分别降低了365%和709%,节点的移动速度为8 m/s时,AODV-SP的分组投递率提高了059%,平均端到端时延降低了1309%。为进一步验证AODV-SP协议的性能,在实验室环境中搭建了基于领航-跟随法的小型多机器人无线通信物理平台并将AODV-SP在此平台应用,并进行了静态丢包率和动态测试。测试结果表明,节点相距25 m时静态丢包率为0,距离100 m时丢包率为2101%;动态行驶时能使机器人维持链状拓扑结构。本研究可为果园多机器人在实际环境中通信系统的搭建提供参考。
知网阅读
[10]黄凯, 舒磊, 李凯亮, 杨星, 朱艳, 汪小旵, 苏勤 太阳能杀虫灯物联网节点的防盗防破坏设计及展望[J] 智慧农业(中英文), 2021, 3(1): 129-143
HUANG Kai, SHU Lei, LI Kailiang, YANG Xing, ZHU Yan, WANG Xiaochan, SU Qin Design and prospect for anti-theft and anti-destruction of nodes in Solar Insecticidal Lamps Internet of Things[J] Smart Agriculture, 2021, 3(1): 129-143
摘要: 太阳能杀虫灯在有效控制虫害的同时,可减少农药施药量。随着其部署数量的增加,被盗被破坏的报道也越来越多,严重影响了虫害防治效果并造成了较大的经济损失。为有效地解决太阳能杀虫灯物联网节点被盗被破坏问题,本研究以太阳能杀虫灯物联网为应用场景,对太阳能杀虫灯硬件进行改造设计以获取更多的传感信息;提出了太阳能杀虫灯辅助设备——无人机杀虫灯,用以被盗被破坏出现后的部署、追踪和巡检等应急应用。通过上述硬件层面的改造设计和增加辅助设备,可以获取更为全面的信息以判断太阳能杀虫灯物联网节点被盗被破坏情况。但考虑到被盗被破坏发生时间短,仅改造硬件层面还不足以实现快速准确判断。因此,本研究进一步从内部硬件、软件算法和外形结构设计三个层面,探讨了设备防盗防破坏的优化设计、设备防盗防破坏判断规则的建立、设备被盗被破坏的快速准确判断、设备被盗被破坏的应急措施、设备被盗被破坏的预测与防控,以及优化计算以降低网络数据传输负荷六个关键研究问题,并对设备防盗防破坏技术在太阳能杀虫灯物联网场景中的应用进行了展望。
知网阅读
微信交流服务群
为方便农业科学领域读者、作者和审稿专家学术交流,促进智慧农业发展,为更好地服务广大读者、作者和审稿人,编辑部建立了微信交流服务群,有关专业领域内的问题讨论、投稿相关的问题均可在群里咨询。
入群方法: 加我微信 331760296 , 备注: 姓名、单位、研究方向 ,我拉您进群,机构营销广告人员勿扰。
信息发布
科研团队介绍及招聘信息、学术会议及相关活动 的宣传推广
相较于传统农业,智慧农业通过信息技术与传统农业的深度融合,能够帮助农业生产者提高土地亩产,稳定产品品质、降低生产成本、节约自然资源、并减少环境污染。特别近3年,伴随着传感器精度的提高,大数据、机器视觉、机器学习等领域的高速发展,智慧农业商业化的时间点已经来临,行业龙头和VC都在积极投资。根据中金公司智慧农业行业研究报告分析,预计到2020年,智慧农业的可及市场空间将超过800亿美元。
从领域来看,智慧农业主要涵盖:精准农业、机器人、无人机、新型农场、生物农业等多个方面。其中,“精准农业”是慧云信息一直以来的聚焦方向。“精准农业”主要是指:将传感器等硬件收集到的实时农作物、土壤、牲畜数据与天气、温度,湿度等环境数据相结合,利用分析软件对数据进行处理后,向农业用户提供更好的决策建议,达到节省资源、提高产量、降低风险等一系列目的。具体应用包括精准种植、精准灌溉、精准施肥、精准农药喷洒等。该部分在智慧农业中市场规模最大、商业化最成熟,根据MarketsAndMarkets预计,到2022年精准农业可及市场空间将超过200亿美元。
而农业物联网在其中起着重要的作用。
大数据如何监测管理现代农业随着海量信息的爆发,农业跨步迈入大数据时代。如同其他行业的大数据应用,通过技术手段获取、收集、分析数据,能够有效地解决农业生产和市场流通等问题。
在大数据的推动下,农业监测预警工作的思维方式和工作范式发生了根本性的变化,我国农产品监测预警信息处理和分析将向着系统化、集成化、智能化方向发展。本期嘉宾将带您了解大数据时代下,农产品监测预警如何运行以及未来面临的机遇。
大数据走进农业领域
数据库专家、图灵奖得主吉姆·格雷提出,数据密集型计算成为继试验科学、理论科学、计算科学之外的科学研究第四范式。大数据被学术界正式提出始于2008年9月《自然》杂志发表的“Big Data”系列专题文章,介绍了大数据应用所带来的挑战和机遇。
人们围绕研究数据的海量增加展开讨论。2011年,《科学》杂志刊登“Dealing with Data”专题,指出分析数据的能力远落后于获取数据的能力。
2012年3月,美国政府公布了“大数据研发计划”,基于大数据推动科研和创新。在我国,2012年5月香山科学会议第424次会议以“大数据”为主题,认为大数据时代已经来临,大数据已成为各行业共同面临的大问题。同年11月,香山科学会议第445次会议以“数据密集时代的科研信息化”为主题,讨论“大数据”时代的科研信息化问题。
这些事件都标志着“大数据”走入我们的生活。那么,大数据在农业中的应用如何?许世卫表示,“农业大数据是大数据在农业领域的应用和延展,是开展农产品监测预警工作的重要技术支撑。”
在他看来,农业大数据不仅保留了大数据自身具有的规模巨大、类型多样、价值密度低、处理速度快、精确度高和复杂度高等基本特征,还使得农业内部的信息流得到了延展和深化。
数据作为一种战略资源,可以有效地解决农业生产面临的复杂问题,从数据的获取、收集到分析,能够事半功倍地解决农业生产问题。
许世卫举例道,如通过传感器、作物本体检测手段,获取了土壤中的氮磷钾肥力等大量数据,对数据进行分析整理后可以有效指导农业生产中的施肥量、施肥时间等问题,进行合理规划,得出最合适的投入量,从而提高生产效率。
再如,大数据能够提前预测到未来市场的供给需求,可以有效降低生产投入并采取适当的措施进行智能化生产,对平抑物价起到调节作用。
大数据是监测预警的基础支撑
许世卫指出,农业大数据的数据获取、采集渠道和应用技术手段,无法通过人工调查得到数据,而需要依靠土壤传感器、环境传感器、作物长势生命本体传感器等手段支撑。由于技术更新、成本下降,使得农业有关生产市场流通等数据获取能力大幅提升。
“大数据使得农业进入全面感知时代,用总体替代样本成为可能;农业生产获得更多依靠数据的支撑,从此进入智慧农业时代;大量的数据可以优化生产布局,优化安排生产投入;大数据时代下,市场更有利于产销对接,在消费环节减少浪费以及减少产后损失。”许世卫说。
此外,大数据给农业的管理也带来变化。过去的农业管理主要依靠行政手段指导和安排生产,大数据有利于分析提取特征、总结趋势,通过市场信号的释放引导市场进而引导生产。
许世卫表示,农业大数据是现代化农业的高端管理工具。所谓监测预警就是监测数据,贯穿于农产品从生产到流通到消费到餐桌整个过程的产品流、物资流、资金流、信息流,使产销匹配、生产和运输匹配、生产和消费匹配。
农产品监测预警也是对农产品生产、市场运行、消费需求、进出口贸易及供需平衡等情况进行全产业链的数据采集、信息分析、预测预警与信息发布的全过程。
农产品监测预警还是现代农业稳定发展最重要的基础,大数据是做好监测预警工作的基础支撑。农业发展仍然面临着多重不安全因素,急需用大数据技术去突破困境。
这主要体现在:农业生产风险增加,急需提前获取灾害数据,早发现、早预警;农产品市场波动加剧,“过山车”式的暴涨暴跌时有发生,急需及时、全面、有效的信息,把握市场异常,稳定市场形势;食物安全事件频发,急需全程监管透明化,惩戒违规行为。
可以说,农产品监测预警对大数据的需求是迫切的。
农产品监测效果显著
农产品监测效果显著,大数据功不可没,主要体现在监测对象和内容更加细化、数据获取更加快捷、信息处理分析更加智能、数据服务更加精准等。
随着农业大数据的发展,数据粒度更加细化,农产品信息空间的表达更加充分,信息分析的内容和对象更加细化。
农业系统是一个包含自然、社会、经济和人类活动的复杂巨系统,在其中的生命体实时的“生长”出数据,呈现出生命体数字化的特征。农业物联网、无线网络传输等技术的蓬勃发展,极大地推动了监测数据的海量爆发,数据实现了由“传统静态”到“智能动态”的转变。
在大数据背景下,数据存储与分析能力将成为未来最重要的核心能力。未来人工智能、数据挖掘、机器学习、数学建模、深度学习等技术将被广泛应用,我国农产品监测预警信息处理和分析将向着系统化、集成化、智能化方向发展。
如中国农产品监测预警系统(China Agricultural Monitoring and Early Warning System,CAMES)已经在机理分析过程中实现了仿真化与智能化,做到了覆盖中国农产品市场上的953个主要品种,可以实现全天候即时性农产品信息监测与信息分析,用于不同区域不同产品的多类型分析预警。
在大数据的支撑下,智能预警系统通过自动获取农业对象特征信号,将特征信号自动传递给研判系统。研判系统通过对海量数据自动进行信息处理与分析判别,自动生成和显示结论结果,发现农产品信息流的流量和流向,在纷繁的信息中抽取农产品市场发展运行的规律。最终形成的农产品市场监测数据与深度分析报告,将为政府部门掌握生产、流通、消费、库存和贸易等产业链变化、调控稳定市场提供重要的决策支持。农业物联网监控如何应用?主要体现在:通过摄像头与传感器,1实时监测空气温湿度、光照、降雨量、风速、风向、大气压力、气体浓度等数据,并通过设定相关报警阈值,实现即时报警,2精准控制种植环境指标。实时监测土壤水张力、土壤温湿度、水位、溶氧量、pH值等通过设定报警阈值,当土壤数据异常时,如湿度过高,系统自动发出预警消息提醒工作人员。3通过高清摄像机采集虫情图像,可远程查看田间虫情,并制定防治措施。4高清摄像头可720度旋转、拉近、拉远,查看园区实时生产情况。5在手机上即可远程手动控制多个大棚的设施设备,包括风机、外遮阳、内遮阳、喷滴灌、侧窗、水帘、阀门、加温灯等。6系统可制定科学灌溉方案,并进行远程自动控制,实现无人值守自动灌溉节水节肥30%~50%;节约人力时间成本50%以上。7在手机上即可远程控制禽畜养殖场、水产养殖场的设施设备,包括投饲机、增氧机、降温设备、供暖设备等,万头禽畜,万尾鱼虾,轻松管理。托普云农研发的标准化、个性化物联网解决方案在吉林梨树县、杭州萧山农科所、金华寿仙谷、南充高坪农牧局、湖北金秋农业、宁夏利通区、四川岳池、赣县国家现代农业示范区、广州徐闻县等地得到广泛推广应用,为当地实现节水农业、智慧农业提供着重要的技术支撑!
例如耕地质量保护大数据平台,通过搭建“1个中心,1个平台、N个应用”的平台建设模式。建一个耕地质量保护大数据中心,汇聚土、水、肥三大耕地质量数据,为耕地质量保护监测、管理、服务、应用提供数据支撑。利用大数据分析,达到精准管理,科学决策,形成指挥耕地新业态,通过大数据平台服务公共,服务管理,转变耕地保护方式。
托普水肥一体化智能灌溉系统,托普水肥一体化自动控制系统由系统云平台、墒情数据采集终端、视频监控、施肥机、过滤系统、阀门控制器、电磁阀、田间管路等组成。系统可根据监测的土壤水分、作物种类的需肥规律,设置周期性水肥计划实施轮灌。施肥机会按照用户设定的配方、灌溉过程参数自动控制灌溉量、吸肥量、肥液浓度、酸碱度等水肥过程的重要参数,实现对灌溉、施肥的定时、定量控制,充分提高水肥利用率,实现节水、节肥,改善土壤环境,提高作物品质的目的。该系统广泛应用于大田、旱田、温室、果园等种植灌溉作业。
智能农业联网系统便是将物联网应用到传统农业中去,运用感应器和手机软件根据移动应用平台或是计算机网站对农业开展 *** 纵。从理论上而言,智能农业还包含农业电子商务、食品安全追溯防伪标识、农牧业度假旅游、农牧业数据服务等领域具体内容。
智能农业是农业种植的普及化,是集新起的互联网技术、移动互联、云计算技术和物联网为一体,借助布署在农业当场的各种各样传感器连接点(自然环境温湿度记录、土壤含水量、二氧化碳、图象等)和无线通信网络完成农业自然环境的智能化认知、智能化预警信息、智能化管理决策、数据分析系统、权威专家线上具体指导,为农业给予精确化栽种、可视化管理、智能化系统管理决策。
信息内容和知识是智能农业的关键因素。现阶段,互联网技术、物联网技术、互联网大数据、云计算技术、人工智能技术等现代科技,已经与农牧业紧密结合,具有农业信息认知、定量分析管理决策、智能控制系统、精确资金投入、人性化服务的全新升级农牧业生产过程已经应用到了实践活动中
该系统在农牧业中的功效管理方法智能化系统、可以根据计算机、手机上完成对温室大棚内栽种管理方法智能化系统花纹、精细化管理上肥,可做到提高效益,改进质量,节约人力资源、减少人力偏差、提高细致经济效益的目地,完成温室大棚栽种的精益化管理。
目前大家都会讲互联网大数据,大数据最先是要有确切的数据来源做支持的,智慧农业监控系统是根据对每一个田里、每一个温室大棚、每一个农作物生长发育全过程开展无间断的数据采集,才能在云管理平台上确立起对应的农作物栽种大数据库,拥有如此的互联网大数据,就可以对农作物的质量生产量与栽种过程中的信息开展监管剖析,科学合理的汇总出植物的最好生长发育标准,与此同时也为农牧业科研带来了高效的信息基本。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)