1基本概念
太阳光谱
红外线是太阳光线中众多不可见光线中的一种,由英国科学家赫歇尔于1800年发现,又称为红外热辐射,他将太阳光用三棱镜分解开,在各种不同颜色的色带位置上放置了温度计,试图测量各种颜色的光的加热效应。结果发现,位于红光外侧的那支温度计升温最快。因此得到结论:太阳光谱中,红光的外侧必定存在看不见的光线,这就是红外线。也可以当作传输之媒介。 太阳光谱上红外线的波长大于可见光线,波长为075~1000μm。红外线可分为三部分,即近红外线,波长为(075-1)~(25-3)μm之间;中红外线,波长为(25-3)~(25-40)μm之间;远红外线,波长为(25-40)~l000μm 之间。
红外线是波长介乎微波与可见光之间的电磁波,波长在760纳米至1毫米之间,是波长比红光长的非可见光。覆盖室温下物体所发出的热辐射的波段。透过云雾能力比可见光强。在通讯、探测、医疗、军事等方面有广泛的用途。 俗称红外光。
真正的红外线夜视仪是光电倍增管成像,与望远镜原理完全不同,白天不能使用,价格昂贵且需电源才能工作。
近红外线或称短波红外线,波长076~15微米,穿入人体组织较深,约5~10毫米;远红外线或称长波红外线,波长15~400微米,多被表层皮肤吸收,穿透组织深度小于2毫米。
红外大气窗口
近红外线| (Near Infra-red, NIR)| 700~ 2,000nm | 07~2 MICRON
中红外线 | (Middle Infra-red, MIR)| 3,000~ 5,000nm | 3~5 MICRON
远红外线| (Far Infra-red, FIR)| 8,000~14,000nm | 8~14 MICRON
2物理性质
1有热效应
2穿透云雾的能力强
3发现波长
公元1666年牛顿发现光谱并测量出3,900埃~7,600埃(400nm~700nm)是可见光的波长。1800年4月24日英国伦敦皇家学会(ROYAL SOCIETY)的威廉·赫歇尔发表太阳光在可见光谱的红光之外还有一种不可见的延伸光谱,具有热效应。他所使用的方法很简单,用一支温度计测量经过棱镜分光后的各色光线温度,由紫到红,发现温度逐渐增加,可是当温度计放到红光以外的部分,温度仍持续上升,因而断定有红外线的存在。在紫外线的部分也做同样的测试,但温度并没有增高的反应。紫外线是1801年由RITTER用氯化银(Silver chloride)感光剂所发现的。底片所能感应的近红外线波长是肉眼所能看见光线波长的两倍,用底片可以记录到的波长上限是13,500埃,如果再加上其它特殊的设备,则最高可以达到20,000埃,再往上就必须用物理仪器侦测了。
4特点测试
红外线波长较长, (无线电、微波、红外线、可见光。波长按由长到短顺序),给人的感觉是热的感觉,产生的效应是热效应,那么红外线在穿透的过程中穿透达到的范围是在一个什么样的层次?如果红外线能穿透到原子、分子内部,那么会引起原子、分子的膨大而导致原子、分子的解体。真的是这样吗?而事实上呢?红外线频率较低,能量不够,远远达不到原子、分子解体的效果。因此,红外线只能穿透了原子分子的间隙中,而不能穿透到原子、分子的内部,由于红外线只能穿透到原子、分子的间隙,会使原子、分子的振动加快、间距拉大,即增加热运动能量,从宏观上看,物质在融化、在沸腾、在汽化,但物质的本质(原子、分子本身)并没有发生改变,这就是红外线的热效应。
因此我们可以利用红外线的这种激发机制来烧烤食物,使有机高分子发生变性,但不能利用红外线产生光电效应,更不能使原子核内部发生改变。
同样的道理,我们不能用无线电波来烧烤食物,无线电波的波长实在太长无法穿透到有机高分子间隙更不用说使其变性达到食物烤熟的目的。
通过上述我们知道:波长越短,频率越高、能量越大的波穿透达到的范围越大;波长越长,频率越低、能量越小的波穿透达到的范围越小。
5远红外线
远红外线的发现 公元1800年德国科学家"赫歇尔"发现太阳光中的红外线外侧所围绕著一种用肉眼无法看见的
远红外线
光源,波长介于56-1000UM的「远红外线」,经过这种光源照射时,会对有机体产生放射、穿透、吸收、共振的效果。美国太空总署(NASA)研究报告指出,在红外线内,对人体有帮助4-14微米的远红外线,能渗透人体内部15cm,从内部发热,从体内作用促进微血管的扩张,使血液循环顺畅,达到新陈代谢的目的,进而增加身体的免疫力及治愈率。 但是根据黑体辐射理论,一般的材料要产生足够强度的远红外线,并不容易,通常必须藉助特殊物质作能量的转换,将它所吸收的热量经由内部分子的振动再发放较长波长的远红外线出来。
6辐射源区
白炽发光区
Actinic range,又称“光化反应区”,由白炽物体产生的射线,自可见光域到红外域。如灯泡(钨丝灯,TUNGSTEN FILAMENT LAMP),太阳。
热体辐射区
Hot-object range,由非白炽物体产生的热射线,如电熨斗及其它的电热器等,平均温度约在400℃左右。
发热传导区
Calorific range,由滚沸的热水或热蒸汽管产生的热射线。平均温度低于200℃,此区域又称为“非光化反应区”(Non-actinic)。
温体辐射区
Warm range,由人体、动物或地热等所产生的热射线,平均温度约为40℃左右。站在照相与摄影技术的观点来看感光特性:光波的能量与感光材料的敏感度是造成感光最主要的因素。波长愈长,能量愈弱,即红外线的能量要比可见光低,比紫外线更低。但是高能量波所必须面对的另一个难题就是:能量愈高穿透力愈强,无法形成反射波使感光材料撷取影像,例如X光,就必须在被照物体的背后取像。因此,摄影术就必须往长波长的方向——“近红外线”部分发展。以造影为目标的近红外线摄影术,随着化学与电子科技的进展,演化出下列三个方向:
1近红外线底片:以波长700nm~900nm的近红外线为主要感应范围,利用加入特殊染料的乳剂产生光化学反应,使此一波域的光变化转为化学变化形成影像。
2近红外线电子感光材料:以波长700nm~2,000nm的近红外线为主要感应范围,它是利用以硅为主的化合物晶体产生光电反应,形成电子影像。
3中、远红外线热像感应材料:以波长3,000nm~14,000nm的中红外线及远红外线为主要感应范围,利用特殊的感应器及冷却技术,形成电子影像。
7治疗作用
原理
红外线照射体表后,一部分被反射,另一部分被皮肤吸收。皮肤对红外线的反射程度与色素沉着的状况有关,用波长09微米的红外线照射时,无色素沉着的皮肤反射其能量约60%;而有色素沉着的皮肤反射其能量约40%。长波红外线(波长15微米以上)照射时,绝大部分被反射和为浅层皮肤组织吸收,穿透皮肤的深度仅达005~2毫米,因而只能作用到皮肤的表层组织;短波红外线(波长15微米以内)以及红色光的近红外线部分透入组织最深,穿透深度可达10毫米,能直接作用到皮肤的血管、淋巴管、神经末梢及其他皮下组织。
在红外线区域中,对人体最有益的波段就是4到14这个波段范围,这个在医术界里面统称为“生育光线”,因为这个红外线波段对生命的生长有这促进的作用,这个红外线对活化细胞组织,血液循环有很好的作用,能够提高人的免疫力,加强人体的新陈代谢。[1]
红外线红斑
足够强度的红外线照射皮肤时,可出现红外线红斑,停止照射不久红斑即消失。大剂量红外线多次照射皮肤时,可产生褐色大理石样的色素沉着,这与热作用加强了血管壁基底细胞层中黑色素细胞的色素形成有关。
治疗作用
红外线治疗作用的基础是温热效应。在红外线照射下,组织温度升高,毛细血管扩张,血流加快,物质代谢增强,组织细胞活力及再生能力提高。红外线治疗慢性炎症时,改善血液循环,增加细胞的吞噬功能,消除肿胀,促进炎症消散。红外线可降低神经系统的兴奋性,有镇痛、解除横纹肌和平滑肌痉挛以及促进神经功能恢复等作用。在治疗慢性感染性伤口和慢性溃疡时,改善组织营养,消除肉芽水肿,促进肉芽生长,加快伤口愈合。红外线照射有减少烧伤创面渗出的作用。红外线还经常用于治疗扭挫伤,促进组织肿张和血肿消散以及减轻术后粘连,促进瘢痕软化,减轻瘢痕挛缩等。
红外线对血液的作用
因为红外线能够深入人体的皮下组织,所以利用红外线反应,使皮下深层皮肤温度上升,扩张微血管,促进血液循环,复活酵素,强化血液及细胞组织代谢,对细胞恢复年轻有很大的帮助并能改善贫血。调节血压:高血压及动脉硬化一般是神经系统、内分泌系统,肾脏等细小动脉收缩及狭窄所造成。远红外线扩张微血管,促进血液循环能使高血压降低,又能改善低血压症状。
红外线对关节的作用
红外线深透力可达肌肉关节深处,使身体内部温暖,放松肌肉,带动微血管网的氧气及养分交换,并排除积存体内的疲劳物质和乳酸等老化废物对消除内肿,缓和酸痛之效果卓越。
红外线对自律神经的作用
自律神经主要是调节内脏功能,人长期处在焦虑状态,自律神经系统持续紧张,会导致免疫力降低,头痛,目眩,失眠乏力,四肢冰冷。红外线可调节自律神经保持在最佳状态,以上症状均可改善或祛除。
红外线对护肤美容的作用
红外线照射人体产生共鸣吸收,能将引起疲劳及老化的物质,如乳酸、游离脂肪酸、胆固醇、多余的皮下脂肪等,籍毛囊口和皮下脂肪的活化性,不经肾脏,直接从皮肤代谢。因此,能使肌肤光滑柔嫩。远红外线的理疗效果能使体内热能提高,细胞活化,因此促进脂肪组织代谢,燃烧分解,将多余脂肪消耗掉,进而有效减肥。
红外线对循环系统的作用
远红外线照射的全面性和深透性,对于遍布全身内外无以数计的微循环组织系统,是唯一能完全照顾的理疗方式。微循环顺畅之后,心脏收缩压力减轻,氧气和养分供应充足,自然身轻体健。强化肝脏功能:肝脏是体内最大的化学工厂,是血液的净化器。远红外线照射引起的体内热深层效应,能活化细胞,提高组织再生能力,促进细胞生长,强化肝脏功能,提高肝脏解毒、排毒作用,使内脏环境保持良好状态,可说是最佳的防病战略。[2]
红外线对眼的作用
由于眼球含有较多的液体,对红外线吸收较强,因而一定强度的红外线直接照射眼睛时可引起白内障。白内障的产生与短波红外线的作用有关;波长大于15微米的红外线不引起白内障。
光浴对机体的作用
光浴的作用因素是红外线、可见光线和热空气。光浴时,可使较大面积,甚至全身出汗,从而减轻肾脏的负担,并可改善肾脏的血液循环,有利于肾功能的恢复。光浴作用可使血红蛋白、红细胞、中性粒细胞、淋巴细胞、嗜酸粒细胞增加,轻度核左移;加强免疫力。局部浴可改善神经和肌肉的血液供应和营养,因而可促进其功能恢复正常。全身光浴可明显地影响体内的代谢过程,增加全身热调节的负担;对植物神经系统和心血管系统也有一定影响。
设备与治疗方法
红外线光源
1红外线辐射器
将电阻丝缠在瓷棒上,通电后电阻丝产热,使罩在电阻丝外的碳棒温度升高(一般不超过500℃),发射长波红外线为主。
红外线辐射治疗仪
红外线辐射器有立地式和手提式两种。立地式红外线辐射器的功率可达600~1000瓦或更大。
近年我国一些地区制成远红外辐射器供医用,例如有用高硅氧为元件,制成远红外辐射器。
2白炽灯
在医疗中广泛应用各种不同功率的白炽灯泡做为红外线光源。灯泡内的钨丝通电后温度可达2000~2500℃。
白炽灯用于光疗时有以下几种形式:
立地式白炽灯:用功率为250~1000W的白炽灯泡,在反射罩间装一金属网,以为防护。立地式白炽灯,通常称为太阳灯。
手提式白炽灯:用较小功率(多为200W以下)的白炽灯泡,安在一个小的反射罩内,反射罩固定在小的支架上。
3光浴装置
可分局部或全身照射用二种。根据光浴箱的大小不同,在箱内安装40~60W的灯泡6~30个不等。光浴箱呈半圆形,箱内固定灯泡的部位可加小的金属反射罩。全身光浴箱应附温度计,以便观察箱内温度,随时调节。
红外线治疗的 *** 作方法
1患者取适当体位,裸露照射部位。
2检查照射部位对温热感是否正常。
3将灯移至照射部位的上方或侧方,距离一般如下:
功率500W以上,灯距应在50~60cm以上;功率250~300W,灯距在30~40cm;功率200W以下,灯距在20cm左右。
4应用局部或全身光浴时,光浴箱的两端需用布单遮盖。通电后3~5分钟,应询问患者的温热感是否适宜;光浴箱内的温度应保持在40~50℃。
5每次照射15~30分钟,每日1~2次,15~20次为一疗程。
6治疗结束时,将照射部位的汗液擦干,患者应在室内休息10~15分钟后方可外出。
[附]注意事项
(1)治疗时患者不得移动体位,以防止烫伤。
(2)照射过程中如有感觉过热、心慌、头晕等反应时,需立即告知工作人员。
(3)照射部位接近眼或光线可射及眼时,应用纱布遮盖双眼。
(4)患部有温热感觉障碍或照射新鲜的瘢痕部位、植皮部位时,应用小剂量,并密切观察局部反应,以免发生灼伤。
(5)血循障碍部位,较明显的毛细血管或血管扩张部位一般不用红外线照射。
照射方式的选择和照射剂量
1不同照射方式的选择
红外线照射主要用于局部治疗,在个别情况下,如小儿全身紫外线照射时也可配合应用红外线做全身照射。局部照射如需热作用较深,则优先选用白炽灯(即太阳灯)。治疗慢性风湿性关节炎可用局部光浴;治疗多发性末梢神经炎可用全身光浴。
2照射剂量
决定红外线治疗剂量的大小,主要根据病变的特点、部位、患者年龄及机体的功能状态等。红外线照射时患者有舒适的温热感,皮肤可出现淡红色均匀的红斑,如出现大理石状的红斑则为过热表现。皮温以不超过45℃为准,否则可致烫伤。
主要适应症和禁忌症
(一)适应症
风湿性关节炎,慢性支气管炎,胸膜炎,慢性胃炎,慢性肠炎,神经根炎,神经炎,多发性末梢神经炎,痉挛性麻痹、弛缓性麻痹,周围神经外伤,软组织外伤,慢性伤口,冻伤,烧伤创面,褥疮,慢性淋巴结炎,慢性静脉炎,注射后硬结,术后粘连,瘢痕挛缩,产后缺乳,乳头裂,外阴炎,慢性盆腔炎,湿疹,神经性皮炎,皮肤溃疡等。
(二)禁忌症
有出血倾向,高热,活动性肺结核,重度动脉硬化,闭塞性脉管炎等。
[附]处方举例
(1)红外线照射双膝关节:灯距40cm,30分钟,每日一次,7次。适应症:慢性风湿性关节炎
(2)红外线照射右侧胸廓(下半部)灯距50cm,20分钟,每日一次,8次。适应症:右侧干性胸膜炎
(3) 太阳灯照射腰骶部:灯距40cm,20~30分钟,每日一次,6次。适应症:腰骶神经根炎
(4)全身光浴:箱内温度40~45℃,20~30分钟,每日一次,8次。适应症:多发性末梢神经炎
(5)左小腿局部光浴:20~30分钟,每日一次,8次。适应症:左侧腓总神经外伤
8污染问题
红外线近年来在军事、人造卫星以及工业、卫生、科研等方面的应用日益广泛,因此红外线污染问题也随之产生。红外线是一种热辐射,对人体可造成高温伤害。较强的红外线可造成皮肤伤害,其情况与烫伤相似,最初是灼痛,然后是造成烧伤。红外线对眼的伤害有几种不同情况,波长为7500~13000埃的红外线对眼角膜的透过率较高,可造成眼底视网膜的伤害。尤其是11000埃附近的红外线,可使眼的前部介质(角膜晶体等)不受损害而直接造成眼底视网膜烧伤。波长19000埃以上的红外线,几乎全部被角膜吸收,会造成角膜烧伤(混浊、白斑)。波长大于 14000埃的红外线的能量绝大部分被角膜和眼内液所吸收,透不到虹膜。只是13000埃以下的红外线才能透到虹膜,造成虹膜伤害。人眼如果长期暴露于红外线可能引起白内障。
红外线可以人为制造,自然界中也广泛存在,在焊接过程中也会产生,危害焊工眼部健康;一般的生物都会辐射出红外线,体现出来的宏观效应就是热度。
我们知道,热产生的原因,是组成物质的粒子做不规则运动这个运动同时也辐射出电磁波,这些电磁波大部分都是红外线。
1太阳光到了晚上的确是几乎没有了,但是地球上的物质都会辐射红外线,有的强烈有的平静。红外线照相是通过接收各种物质发出的红外线,再把他们展现出来,但是其本身不是通过发出红外线来照相的。
2红外线透视和夜视是分别利用了红外线的不同性质。前面的夜视是因为人的肉眼不能看见红外线,而特殊设计的照相机和夜视仪却专门接受红外线,所以会出现我们觉得一片漆黑,而相机却能拍到东西,因为实际上到处都是红外线,对于红外照相机和夜视仪来讲是一片光明。
透视则是利用红外线的波长比可见光要长,可以穿过一些可见光不能通过的面料(比如混棉和尼龙),所以通过一定的选择滤波,可以得到这些面料后面的图像。
9应用实例
生活中高温杀菌,红外线夜视仪,监控设备,手机的红外口,宾馆的房门卡,汽车、电视机的遥控器、洗手池的红外感应,饭店门前的感应门
主动式红外夜视仪
具有成像清晰、制作简单等特点,但它的致命弱点是红外探照灯发出的红外光会被敌人的红外探测装置发现。60年代,美国首先研制出波动式的热像仪,它不发射红外光,不易被敌发现,并具有透过雾、雨等进行观察的能力。
1982年4月─6月,英国和阿根廷之间爆发马尔维纳斯群岛战争。4月13日半夜,英军攻击阿根廷守军据守的最大据点斯坦利港。3000名英军布设的雷区,突然出现在阿军防线前。英国的所有q支、火炮都配备了红外夜视仪,能够在黑夜中清楚地发现阿军目标。而阿军却缺少夜视仪,不能发现英军,只有被动挨打的份。在英军火力准确的打击下,阿军支持不住,英军趁机发起冲锋。到黎明时,英军已占领了阿军防线上的几个主要制高点,阿军完全处于英军的火力控制下。6月14日晚9时,14 000名阿军不得不向英军投降。英军领先红外夜视器材赢得了一场兵力悬殊的战斗。
1991年海湾战争中,在风沙和硝烟弥漫的战场上,由于美军装备了先进的红外夜视器材,能够先于伊拉克军的坦克而发现对方,并开炮射击。而伊军只是从美军坦克开炮时的炮口火光上才得知大敌在前。由此可以看出红外夜视器材在现代战争中的重要作用。
透视望远镜
就像F717 晚上把夜视开启来,再加个滤光镜,就可以透视了,不过对全棉的衣服透视效果最差。这本来是一项有用的功能,然而很快用户就发现这种红外线夜视镜片的功能不仅可应用于夜间望远而且还可以透过人的衣服偷看到身体。而制造这种夜视附件的厂商为YAMADA DENSHI,这家公司原本是为军队及防卫及应用生产光传摄像头的。
红外热成像仪
起源:六十年代早期,瑞典AGA公司研制成功第二代红外成像装置,它是在红外寻视系统的基础上以增加了测温的功能,称之为红外热像仪。
开始由于保密的原因,在发达的国家中也仅限于军用,投入应用的热成像装置可的黑夜或浓厚幕云雾中探测对方的目标,探测伪装的目标和高速运动的目标。由于有国家经费的支撑,投入的研制开发费用很大,仪器的成本也很高。以后考虑到在工业生产发展中的实用性,结合工业红外探测的特点,采取压缩仪器造价。降低生产成本并根据民用的要求,通过减小扫描速度来提高图像分辨率等措施逐渐发展到民用领域。
六十年代中期,AGA公司研制出第一套工业用的实时成像系统(THV),该系统由液氮致冷,110V电源电压供电,重约35公斤,因此使用中便携性很差,经过对仪器的几代改进,1986年研制的红外热像仪已无需液氮或高压气,而以热电方式致冷,可用电池供电;1988年推出的全功能热像仪,将温度的测量、修改、分析、图像采集、存储合于一体,重量小于7公斤,仪器的功能、精度和可靠性都得到了显著的提高。
九十年代中期,美国FSI公司首先研制成功由军用技术(FPA)转民用并商品化的新一红外热像仪(CCD)属焦平面阵列式结构的一种凝成像装置,技术功能更加先进,现场测温时只需对准目标摄取图像,并将上述信息存储到机内的PC卡上,即完成全部 *** 作,各种参数的设定可回到室内用软件进行修改和分析数据,最后直接得出检测报告,由于技术的改进和结构的改变,取代了复杂的机械扫描,仪器重量已小于二公斤,使用中如同手持摄像机一样,单手即可方便地 *** 作。 原理:红外热成像仪是根据凡是高于一切绝对零度(-27315℃)以上的物体都有辐射红外线的基本原理、利用目标和背景自身辐射红外线的差异来发现和识别目标的仪器。
特点:由于各种物体红外线辐射强度不同、从而使人、动物、车辆、飞机等清晰地被观察到,而且不受烟、雾及树木等障碍物的影响,白天和夜晚都能工作。是目前人类掌握的最先进的夜视观测器材。但由于价格特别昂贵,目前只能被应用于军事上,但由于热成像的应用范围非常广泛、电力、地下管道、消防医疗、救灾、工业检测等方面都有巨大的市场,随着社会经济的发展、科学技术的进步、红外热成像这项高技术在二、三十年内必将大规模地应用于民间市场、为人类做出贡献。
10国家标准
与红外线相关的现行国家标准
GB/T 433310-1990 硅铁化学分析方法红外线吸收法测定碳量
GB/T 11261-2006 钢铁氧含量的测定脉冲加热惰气熔融-红外线吸收法
GB/T 470214-1988 金属铬化学分析方法红外线吸收法测定碳量
GB/T 50597-1988 钼铁化学分析方法红外线吸收法测定碳量
GB 470685-2008 家用和类似用途电器的安全紫外线和红外线辐射皮肤器具的特殊要求
GB/T 46996-2008 铬铁和硅铬合金硫含量的测定红外线吸收法和燃烧中和滴定法
GB/T 470110-2008 钛铁硫含量的测定红外线吸收法和燃烧中和滴定法
GB/T 46994-2008 铬铁和硅铬合金碳含量的测定红外线吸收法和重量法
GB/T 56867-2008 锰铁、锰硅合金、氮化锰铁和金属锰硫含量的测定红外线吸收法和燃烧中和滴定法
GB/T 773112-2008 钨铁硫含量的测定红外线吸收法和燃烧中和滴定法
GB/T 36546-2008 铌铁硫含量的测定燃烧碘量法、次甲基蓝光度法和红外线吸收法
GB/T 56865-2008 锰铁、锰硅合金、氮化锰铁和金属锰碳含量的测定红外线吸收法、气体容量法、重量法和库仑法
GB/T 470216-2008 金属铬硫含量的测定红外线吸收法和燃烧中和滴定法
GB/T 50599-2008 钼铁硫含量的测定红外线吸收法和燃烧碘量法
GB/T 87043-2009 钒铁硫含量的测定红外线吸收法及燃烧中和滴定法
GB/T 87041-2009 钒铁碳含量的测定红外线吸收法及气体容量法
GB/T 47018-2009 钛铁碳含量的测定红外线吸收法
GB/T 24224-2009 铬矿石硫含量的测定燃烧-中和滴定法、燃烧-碘酸钾滴定法和燃烧-红外线吸收法
GB/T 23140-2009 红外线灯泡
GB/T 245836-2009 钒氮合金硫含量的测定红外线吸收法
GB/T 245834-2009 钒氮合金碳含量的测定红外线吸收法
GB/T 245837-2009 钒氮合金氧含量的测定红外线吸收法
GB/T 773110-1988 钨铁化学分析方法红外线吸收法测定碳量
GB/T 25930-2010 红外线气体分析器试验方法
GB/T 25929-2010 红外线气体分析器技术条件
GB/T 13193-1991 水质总有机碳(TOC) 的测定非色散红外线吸收法狭义细胞骨架(cytoskeleton)概念是指真核细胞中的蛋白纤维网络结构它所组成的结构体系称为“细胞骨架系统”,与细胞内的 遗传系统 生物膜系统 并称“细胞内的三大系统”发现较晚,主要是因为一般电镜制样采用低温(0-4℃)固定,而细胞骨架会在低温下解聚直到20世纪60年代后,采用戊二醛常温固定,才逐渐认识到细胞骨架的客观存在真核细胞借以维持其基本形态的重要结构,被形象地称为细胞骨架,它通常也被认为是广义上细胞器的一种 广义细胞骨架概念:在细胞核中存在的核骨架-核纤层体系核骨架、核纤层与中间纤维在结构上相互连接,贯穿于细胞核和细胞质的网架体系 细胞骨架不仅在维持细胞形态,承受外力、保持细胞内部结构的有序性方面起重要作用,而且还参与许多重要的生命活动,如:在细胞分裂中细胞骨架牵引染色体分离,在细胞物质运输中,各类小泡和细胞器可沿着细胞骨架定向转运;在肌肉细胞中,细胞骨架和它的结合蛋白组成动力系统;在白细胞(白血球)的迁移、 的游动、神经细胞轴突和树突的伸展等方面都与细胞骨架有关另外,在植物细胞中细胞骨架指导细胞壁的合成
微管
微管可在所有哺乳类动物细胞中存在,直径大于12nm,除了红细胞(红血球)外,所有微管均由约55kD的α及β微管蛋白(tubulin)组成它们细胞骨架正常时以β二聚体形式存在,并以头尾相连的方式聚合,形成微管蛋白原纤维(protofilament),一般由13根这样的原纤维构成一个中空的微管,直径22~25nm少数变异的微管如线虫等所有的则有其他数目的原纤维微管确定膜性细胞器(membrane-enclosed organelle)的位置和作为膜泡运输的导轨微管是细胞骨架的架构主干,并也是某些胞器的主体,例如中心粒(centriole)就是由9组3联微管组成的构造,而真核生物的纤毛(cilium)与鞭毛(flagellum)也是由以微管为9+2结构,即由9个二联微管和一对中央微管构成,其中二联微管由AB两个管组成,A管由13条原纤维组成,B管由10条原纤维组成,两者共享5条A管对着相邻的B管伸出两条动力蛋白臂,并向鞭毛中央发出一条辐基体的微管组成为9+0,并且二联微管为三联微管所取代,结构类似于中心粒组成的轴丝(axoneme)为主体 从各种组织中提纯微管蛋白可以发现还存在一些其他蛋白成分(5%-20%),称之谓微管相关蛋白(microtube associated proteins MAPs)这些蛋白具有组织特异性,表现出从相同αβ二聚体聚合形成的微管具有独特的性质,已从人类不同组织中发现了多种α及β微管蛋白,并追踪微管基因表现出部分基因家族,某些基因被认为是编码独特的微管蛋白 微管形成的有些结构是比较稳定的,是由于微管结合蛋白的作用和酶修饰的原因如神经细胞轴突、纤毛和鞭毛中的微管纤维大多数微管纤维处于动态的聚合和灾变(一种突然的,迅速的,一般不可逆转的分解)状态,这是实现其功能所必需的性质(如纺锤体)与秋水仙素(colchicine)结合的微管蛋白可加合到微管上,并阻止其他微管蛋白单体继续添加,进而破坏纺锤体的结构,长春花碱具有类似的功能紫杉酚(taxol),能促进微管的聚合,并使已形成的微管稳定,然而这种稳定性会破坏微管的正常功能这些药物可以利用破坏微管功能以阻止细胞分裂,成为癌症治疗的新希望 在人类至少发现两种明显区别的α-微管蛋白及三种明显区别的β-微管基因,它们产生具有特定功能的微管蛋白mRNA,由于这些编码在结构组分上十分近似蛋白质分子,在不同组织存在多少特异性的具有差异表达的微管蛋白亚型,尚待深入研究 除了α-与β-微管蛋白有编码相似的不同变异型,近几年来又发现了多种编码差异更大的新的微管蛋白,形成不同的基因家族其中gamma微管蛋白位于细胞内的微管组织中心(microtubule organizing center, MTOC),是用以提供α及β微管蛋白进行聚合反应形成微管的起始核心而delta与epsilon则被认为与中心体(centrosome)的结构与形成有关其他尚有eta, zeta, theta等等多种变异,不过通常仅存在少数几种真核单细胞生物如原虫或纤毛虫里,可能跟这些生物独特的结构与生理习性有关,进一步详情仍待研究 微丝(microfilament)也普遍存在于所有真核细胞中,是一个实心状的纤维,直径为4nm-7nm一般细胞中含量约占细胞内总蛋白质的1%-2%,但在活动较强的细胞中可占20%-30%在一般细胞主要分布于细胞的表面,直接影响细胞的形状微丝具有多种功能,在不同细胞的表现不同,在肌细胞组成粗肌丝、细肌丝,可以收缩(收缩蛋白),在非肌细胞中主要起支撑作用、非肌性运动和信息传导作用 微丝主要由肌动蛋白(actin)构成,和肌球蛋白(myosin,一种分子马达蛋白)一起作用,使细胞运动它们参与细胞的变形虫运动、植物细胞的细胞质流动与肌肉细胞的收缩: 植物细胞的细胞质流动: 微丝中的actin(肌动蛋白)与myosin(肌球蛋白)在细胞质形成三维的网络体系actin位于外质,myosin位于内质 myosin连结着细胞质颗粒,由ATP供给能量,myosin与细胞质颗粒的结合体沿着actin filament滑动,从而带动整个细胞质的环流 变形虫运动(amoeboid movememt,阿米巴运动): 肌肉细胞的收缩: 如同微管蛋白,肌动蛋白的基因组成一个超家族,并组成多种极为相似的结构例如,各种肌肉细胞有不同的机动蛋白:①骨骼肌的条纹纤维;②心肌的条纹纤维;③血管壁的平滑肌;④胃肠道壁的平滑肌它们在氨基酸组分上有微小的差异(大约在400个氨基酸残基序列中有4-6个变异),在肌肉与非肌细胞中都还存在β及γ肌动蛋白,它们与具有横纹的α肌动蛋白可有25个氨基酸的差异
G-肌动蛋白单体(含ATP)可聚合为呈纤维状的F-肌动蛋白(含ADP),它们可由Mg2+及高浓度的K+或Na+诱导而聚合,聚合后ATP水解为ADP及C-肌动蛋白ADP单体,组成F-肌动蛋白在骨骼肌的细肌丝(thin filament,由肌动蛋白构成)与粗肌丝(thick filament,由肌球蛋白构成)相互作用而使肌肉收缩(肌球蛋白可以起作肌动蛋白激活的ATPase的作用)肌球蛋白也存在于哺乳动物的非肌细胞中(但以非聚合状态存在)
中间纤维
细胞骨架的第三种纤维结构称中间纤维(intermediate filament,IF),又称中间丝、中等纤维,为中空的骨状结构,直径介于微管和微丝之间(8nm-10nm),其化学组成比较复杂构成它的蛋白质多达5种,常见的有波形蛋白(vimentin)、角蛋白(keratin)在不同细胞中,成分变化较大中间纤维使细胞具有张力和抗剪切力中间纤维有共同的基本结构,即构建成一个中央α螺旋杆状区,两侧则是大小和化学组成不同的端区端区的多样性决定了中间纤维外形和性质的差异和特异性
以上这些结构单元并非是一成不变的,而是随细胞的生命活动而呈现高度的动态性,它们均由单体蛋白以较弱的非共价键结合在一起,构成纤维型多聚体,很容易进行组装和去组装,这正是实现其功能所必需的特点
原核生物的细胞骨架长期以来,人们认为细胞骨架仅为真核生物所特有的结构,但近年来的研究发现它也存在于细菌等原核生物中
目前为止,人们已经在细菌中发现的FtsZ、MreB 和CreS 依次与真核细胞骨架蛋白中的微管蛋白、肌动蛋白丝及中间丝类似FtsZ 能在细胞分裂位点装配形成Z 环结构,并通过该结构参与细胞分裂的调控;MreB能形成螺旋丝状结构,其主要功能有维持细胞形态、调控染色体分离等;CreS存在于新月柄杆菌中,它在细胞凹面的细胞膜下面形成弯曲丝状或螺旋丝状结构,该结构对维持新月柄杆菌细胞的形态具有重要作用狭义细胞骨架(cytoskeleton)概念是指真核细胞中的蛋白纤维网络结构。它所组成的结构体系称为“细胞骨架系统”,与细胞内的 遗传系统 生物膜系统 并称“细胞内的三大系统”。发现较晚,主要是因为一般电镜制样采用低温(0-4℃)固定,而细胞骨架会在低温下解聚。直到20世纪60年代后,采用戊二醛常温固定,才逐渐认识到细胞骨架的客观存在。真核细胞借以维持其基本形态的重要结构,被形象地称为细胞骨架,它通常也被认为是广义上细胞器的一种。 广义细胞骨架概念:在细胞核中存在核骨架-核纤层体系。核骨架、核纤层与中间纤维在结构上相互连接,贯穿于细胞核和细胞质的网架体系。
细胞骨架不仅在维持细胞形态,承受外力、保持细胞内部结构的有序性方面起重要作用,而且还参与许多重要的生命活动,如:在细胞分裂中细胞骨架牵引染色体分离,在细胞物质运输中,各类小泡和细胞器可沿着细胞骨架定向转运;在肌肉细胞中,细胞骨架和它的结合蛋白组成动力系统;在白细胞(白血球)的迁移、精子的游动、神经细胞轴突和树突的伸展等方面都与细胞骨架有关。另外,在植物细胞中细胞骨架指导细胞壁的合成。 [编辑本段]微管 微管可在所有哺乳类动物细胞中存在,直径大于12nm,除了红细胞(红血球)外,所有微管均由约55kD的α及β微管蛋白(tubulin)组成。它们 细胞骨架正常时以β二聚体形式存在,并以头尾相连的方式聚合,形成微管蛋白原纤维(protofilament),一般由13根这样的原纤维构成一个中空的微管,直径22~25nm。少数变异的微管如线虫等所有的则有其他数目的原纤维。微管确定膜性细胞器(membrane-enclosed organelle)的位置和作为膜泡运输的导轨。微管是细胞骨架的架构主干,并也是某些胞器的主体,例如中心粒(centriole)就是由9组3联微管组成的构造,而真核生物的纤毛(cilium)与鞭毛(flagellum)也是由以微管为9+2结构,即由9个二联微管和一对中央微管构成,其中二联微管由AB两个管组成,A管由13条原纤维组成,B管由10条原纤维组成,两者共享5条。A管对着相邻的B管伸出两条动力蛋白臂,并向鞭毛中央发出一条辐。基体的微管组成为9+0,并且二联微管为三联微管所取代,结构类似于中心粒。组成的轴丝(axoneme)为主体。
从各种组织中提纯微管蛋白可以发现还存在一些其他蛋白成分(5%-20%),称之谓微管相关蛋白(microtube associated proteins MAPs)。这些蛋白具有组织特异性,表现出从相同αβ二聚体聚合形成的微管具有独特的性质,已从人类不同组织中发现了多种α及β微管蛋白,并追踪微管基因表现出部分基因家族,某些基因被认为是编码独特的微管蛋白。
微管形成的有些结构是比较稳定的,是由于微管结合蛋白的作用和酶修饰的原因。如神经细胞轴突、纤毛和鞭毛中的微管纤维。大多数微管纤维处于动态的聚合和灾变(一种突然的,迅速的,一般不可逆转的分解)状态,这是实现其功能所必需的性质(如纺锤体)。与秋水仙素(colchicine)结合的微管蛋白可加合到微管上,并阻止其他微管蛋白单体继续添加,进而破坏纺锤体的结构,长春花碱具有类似的功能。紫杉酚(taxol),能促进微管的聚合,并使已形成的微管稳定,然而这种稳定性会破坏微管的正常功能。这些药物可以利用破坏微管功能以阻止细胞分裂,成为癌症治疗的新希望。
在人类至少发现两种明显区别的α-微管蛋白及三种明显区别的β-微管基因,它们产生具有特定功能的微管蛋白mRNA,由于这些编码在结构组分上十分近似蛋白质分子,在不同组织存在多少特异性的具有差异表达的微管蛋白亚型,尚待深入研究。
除了α-与β-微管蛋白有编码相似的不同变异型,近几年来又发现了多种编码差异更大的新的微管蛋白,形成不同的基因家族。其中gamma微管蛋白位于细胞内的微管组织中心(microtubule organizing center, MTOC),是用以提供α及β微管蛋白进行聚合反应形成微管的起始核心。而delta与epsilon则被认为与中心体(centrosome)的结构与形成有关。其他尚有eta, zeta, theta等等多种变异,不过通常仅存在少数几种真核单细胞生物如原虫或纤毛虫里,可能跟这些生物独特的结构与生理习性有关,进一步详情仍待研究 。
微丝(microfilament)也普遍存在于所有真核细胞中,是一个实心状的纤维,直径为4nm-7nm一般细胞中含量约占细胞内总蛋白质的1%-2%,但在活动较强的细胞中可占20%-30%。在一般细胞主要分布于细胞的表面,直接影响细胞的形状。微丝具有多种功能,在不同细胞的表现不同,在肌细胞组成粗肌丝、细肌丝,可以收缩(收缩蛋白),在非肌细胞中主要起支撑作用、非肌性运动和信息传导作用。
微丝主要由肌动蛋白(actin)构成,和肌球蛋白(myosin,一种分子马达蛋白)一起作用,使细胞运动。它们参与细胞的变形虫运动、植物细胞的细胞质流动与肌肉细胞的收缩:
植物细胞的细胞质流动: 微丝中的actin(肌动蛋白)与myosin(肌球蛋白)在细胞质形成三维的网络体系。actin位于外质,myosin位于内质。 myosin连结着细胞质颗粒,由ATP供给能量,myosin与细胞质颗粒的结合体沿着actin filament滑动,从而带动整个细胞质的环流。
变形虫运动(amoeboid movememt,阿米巴运动): 肌肉细胞的收缩:
如同微管蛋白,肌动蛋白的基因组成一个超家族,并组成多种极为相似的结构。例如,各种肌肉细胞有不同的机动蛋白:①骨骼肌的条纹纤维;②心肌的条纹纤维;③血管壁的平滑肌;④胃肠道壁的平滑肌。它们在氨基酸组分上有微小的差异(大约在400个氨基酸残基序列中有4-6个变异),在肌肉与非肌细胞中都还存在β及γ肌动蛋白,它们与具有横纹的α肌动蛋白可有25个氨基酸的差异。
G-肌动蛋白单体(含ATP)可聚合为呈纤维状的F-肌动蛋白(含ADP),它们可由Mg2+及高浓度的K+或Na+诱导而聚合,聚合后ATP水解为ADP及C-肌动蛋白ADP单体,组成F-肌动蛋白。在骨骼肌的细肌丝(thin filament,由肌动蛋白构成)与粗肌丝(thick filament,由肌球蛋白构成)相互作用而使肌肉收缩(肌球蛋白可以起作肌动蛋白激活的ATPase的作用)。肌球蛋白也存在于哺乳动物的非肌细胞中(但以非聚合状态存在)。 [编辑本段]中间纤维 细胞骨架的第三种纤维结构称中等纤维或中间纤维(intermediate filament,IF),又称中间丝、中等纤维,为中空的骨状结构,直径介于微管和微丝之间(8nm-10nm),其化学组成比较复杂。构成它的蛋白质多达5种,常见的有波形蛋白(vimentin)、角蛋白(keratin)。在不同细胞中,成分变化较大。中间纤维使细胞具有张力和抗剪切力。中间纤维有共同的基本结构,即构建成一个中央α螺旋杆状区,两侧则是大小和化学组成不同的端区。端区的多样性决定了中间纤维外形和性质的差异和特异性。
以上这些结构单元并非是一成不变的,而是随细胞的生命活动而呈现高度的动态性,它们均由单体蛋白以较弱的非共价键结合在一起,构成纤维型多聚体,很容易进行组装和去组装,这正是实现其功能所必需的特点。 [编辑本段]其他蛋白 不仅如此,细胞骨架还包含有很多结构单元的附属蛋白质,比如:
分子马达(molecular motors): 动力蛋白(dynein), kinesin, myosin
结合蛋白:vinculin, cofilin, tropomyosin等等
广义的细胞骨架还包括核骨架(nucleoskeleton)、核纤层(nuclear lamina)和细胞外基质(extracellular matrix),形成贯穿于细胞核、细胞质、细胞外的一体化网络结构。狭义细胞骨架(cytoskeleton)概念是指真核细胞中的蛋白纤维网络结构它所组成的结构体系称为“细胞骨架系统”,与细胞内的 遗传系统 生物膜系统 并称“细胞内的三大系统”发现较晚,主要是因为一般电镜制样采用低温(0-4℃)固定,而细胞骨架会在低温下解聚直到20世纪60年代后,采用戊二醛常温固定,才逐渐认识到细胞骨架的客观存在真核细胞借以维持其基本形态的重要结构,被形象地称为细胞骨架,它通常也被认为是广义上细胞器的一种 广义细胞骨架概念:在细胞核中存在核骨架-核纤层体系核骨架、核纤层与中间纤维在结构上相互连接,贯穿于细胞核和细胞质的网架体系
细胞骨架不仅在维持细胞形态,承受外力、保持细胞内部结构的有序性方面起重要作用,而且还参与许多重要的生命活动,如:在细胞分裂中细胞骨架牵引染色体分离,在细胞物质运输中,各类小泡和细胞器可沿着细胞骨架定向转运;在肌肉细胞中,细胞骨架和它的结合蛋白组成动力系统;在白细胞(白血球)的迁移、精子的游动、神经细胞轴突和树突的伸展等方面都与细胞骨架有关另外,在植物细胞中细胞骨架指导细胞壁的合成 [编辑本段]微管 微管可在所有哺乳类动物细胞中存在,直径大于12nm,除了红细胞(红血球)外,所有微管均由约55kD的α及β微管蛋白(tubulin)组成它们 细胞骨架正常时以β二聚体形式存在,并以头尾相连的方式聚合,形成微管蛋白原纤维(protofilament),一般由13根这样的原纤维构成一个中空的微管,直径22~25nm少数变异的微管如线虫等所有的则有其他数目的原纤维微管确定膜性细胞器(membrane-enclosed organelle)的位置和作为膜泡运输的导轨微管是细胞骨架的架构主干,并也是某些胞器的主体,例如中心粒(centriole)就是由9组3联微管组成的构造,而真核生物的纤毛(cilium)与鞭毛(flagellum)也是由以微管为9+2结构,即由9个二联微管和一对中央微管构成,其中二联微管由AB两个管组成,A管由13条原纤维组成,B管由10条原纤维组成,两者共享5条A管对着相邻的B管伸出两条动力蛋白臂,并向鞭毛中央发出一条辐基体的微管组成为9+0,并且二联微管为三联微管所取代,结构类似于中心粒组成的轴丝(axoneme)为主体
从各种组织中提纯微管蛋白可以发现还存在一些其他蛋白成分(5%-20%),称之谓微管相关蛋白(microtube associated proteins MAPs)这些蛋白具有组织特异性,表现出从相同αβ二聚体聚合形成的微管具有独特的性质,已从人类不同组织中发现了多种α及β微管蛋白,并追踪微管基因表现出部分基因家族,某些基因被认为是编码独特的微管蛋白
微管形成的有些结构是比较稳定的,是由于微管结合蛋白的作用和酶修饰的原因如神经细胞轴突、纤毛和鞭毛中的微管纤维大多数微管纤维处于动态的聚合和灾变(一种突然的,迅速的,一般不可逆转的分解)状态,这是实现其功能所必需的性质(如纺锤体)与秋水仙素(colchicine)结合的微管蛋白可加合到微管上,并阻止其他微管蛋白单体继续添加,进而破坏纺锤体的结构,长春花碱具有类似的功能紫杉酚(taxol),能促进微管的聚合,并使已形成的微管稳定,然而这种稳定性会破坏微管的正常功能这些药物可以利用破坏微管功能以阻止细胞分裂,成为癌症治疗的新希望内膜系统(endomembrane system)是通过细胞膜的内陷而演变成的复杂系统。它构成各种细胞器(organelle),如内质网、线粒体、高尔基复合体、溶酶体等。这些细胞器均是互相分隔的封闭性区室,各具备一套独特的酶系,执行着专一的生理功能。
细胞质内质网
(endoplasmic reticulum,ER)是扁平囊状或管泡状膜性结构,它们以分支互相吻合成为网络,其表面有附着核糖核蛋白s体者称为粗面内质网(rough endoplasmic reticulum,RER),膜表面不附着核糖核蛋白体者称为滑面内质网(smooth endoplasmic reticulum,SER),两者有通连。
核糖核蛋白体附着在内质网上,其主要功能是合成分泌蛋白质( 如免疫球蛋白、消化酶等),但也制造某些结构蛋白质(如膜镶嵌蛋白质、溶酶体酶等)。粗面内质网分布于绝大部分细胞中,而在分泌蛋白旺盛的细胞(如浆细胞、腺细胞),粗面内质网特别发达,其扁囊密集呈板层状,并占据细胞质很大一部分空间。一般说来,可根据粗面内质网的发达程度来判断细胞的功能状态和分化程度。
滑面内质网多是管泡状,仅在某些组胞中很丰富,并因含有不同的酸类而功能各异,①类固醇激素的合成,在分泌类固醇激素的细胞中;滑面内质网膜上有合成胆固醇所需的酶系,在此合成的胆固醇再转变为类固醇激素;②脂类代谢,小肠吸收细胞摄入脂肪酸、甘油及甘油一酯,在滑面内质网上酯化为甘油三酯,肝细胞摄取的脂肪酸也是在滑面内质网上被氧化还原酶分解,或者再度酯化;③解毒作用,肝细胞的滑面内质网含有参与解毒作用的各种酶系,某些外来药物、有毒代谢产物及激素等在此经过氧化、还原,水解或结合等处理,成为无毒物质排出体外;④离子贮存与调节,横纹肌细胞中的滑面内质网又称肌浆网,其膜上有钙泵,可将细胞质基质中的Ca2+泵入、贮存起来,导致肌细胞松弛,在特定因素作用下,贮存的Ca2+释出,引起肌细胞收缩。胃底腺壁细胞的滑面内质网有氯泵,当分泌盐酸时将CIˉ释放,参与盐酸的形成。
细胞质高尔基复合体(Golgi complex)由扁平囊、小泡和大泡三部分组成,它在细胞中仿分布和数量依细胞的类型不同而异。扁平囊(saccule) 有3-10 层,平行紧密排列构成高尔基复合体的主体,它有一面常凸超称生成面(forming face),另一面凹陷,称成熟面(maturing face)扁平羹上有孔穿通,并朝向生成面。生成面附近有一些小泡(vesicle),直径为40~80nm,是由附近粗面内质网芽生而来,将租面内质网中合成的蛋白质轻运到扁平囊,故小泡又称运输小泡。大泡(vacuole)位于成熟面,是高尔基复合体的生成产物,包括溶酶体、分泌泡等。溶酶体逐渐离开高尔基复合体而分散到细胞各部。分泌泡互相融合,其内容物电子密度增高,成为分泌颗粒。在蛋白质分泌旺盛的细胞中高尔基复合体发达。高尔基复合体对来自粗面内质网的蛋白质进行加工、修饰、糖化与浓缩,使之变为成熟的蛋白质,如在胰岛B细胞中将前胰岛素加工成为胰岛素。高尔基复合体具有多种糖基转移酶,许多蛋白质在此被糖化形成糖蛋白。此外,名种溶酶也在高尔基复合体浓聚形成初级溶酶体。
细胞质溶酶体
(lysosome)为有膜包裹的小体,内含多种酸性水解酶,如酸性磷酸酶、组织蛋白酶、胶原蛋白酶、核糖核酸酶、葡萄糖苷酸和脂酶等,能分解各种内源性或外源性物质。它们的最适ph为50。不向细胞中的溶酶体不尽相同,(但均含酸性磷酸酶,故该酶为溶酶体的标志酶。按溶酶体是否含有被消化物质(底物)可将其分为初级溶酶体(primary lysosme)和次级溶酶体(secondary lysosome)。
(1)初级溶酶体:也称原溶酶体(protolysosome)。一般呈圆形或椭圆形,直径多介于25~50nm现如今发现亦有长杆状或缓状溶酶体。其内容物呈均质状,电子密度中等或较高不含底物。在少数细胞,如破骨细胞和炎症部位的中性粒细胞,溶酶体酶可被释放到细胞外发挥水解作用
(2)次级溶酶体:也称吞噬性溶酶体(phagolysosome),是由次级溶酶体和将被水解的各种吞噬底物融合而构成,因此其体积较大,形态多样,内容物为非均质状。根据其作用废物的来源不同,分为自噬性溶酶体和异噬性溶酶体。自噬性溶酶体(autophago lysosome)的作用底物是内源性的,即来自细胞内的衰老和崩解的细胞器或局部细胞质等。异噬性溶酶体(heterophago lysosome)的作用底物是经由细胞的吞饮或吞噬而被摄入细胞内的外源性物质,是溶酶体与吞噬体融合而成,多见于吞噬了细菌的中性粒细胞和吞噬了异物的巨噬细胞。并噬性溶酶体与自噬性溶酶体中的底物有的被分解为单糖、氨基酸等小分子物质,它们可通过溶酶体膜进入细胞质基质,被细胞利用;有的则不能被消化(如尘埃、金属颗粒等异物、衰老细胞器的某些类脂成分),它们残留于溶酶体中,当溶酶体酶活性耗竭,溶酶体内完全由残留物占据,则称之为残余体(residual body)。在哺乳动物,残余体滞留在细胞中,常见的残余体有脂褐素颗粒和髓样结构。均由自噬性溶酶体演化而来。脂褐素颗粒(lipofuscin granule)为不规则形,由电子密度不同的物质及脂滴构成,在光镜下呈褐色,多见于神经细胞、心肌细胞、肝细胞及分泌类固醇激素的细胞,并随年龄增长而增多。髓样结构(myelin figure)的内部为大量板层排列的膜,可能因膜性成分消化不全所致。初级溶酶体与吞饮小泡或其它小泡融合形成多泡体(multivesicular body),其外有界膜,内含很多低电子密度小泡,基质具有酸性鳞酸酶活性。
细胞质线粒体
(mitochondria) 常为杆或椭圆形,横径为 05~1ηm 长2~6ηm但在不同类型激胞中线粒体的形状、大小和数量差异甚大。电镜下,线粒体具有双层膜,外膜光滑,厚6~7nm,膜中有2~3nm小孔,分子量为1万以内的物质可自由通过;内膜厚5~6nm,通透性较小。外膜与内膜之间有约8nm。膜间腔,或称外腔。由膜向内折叠形成线粒体嵴(mitochohdrial crista),嵴之间为嵴间腔,或称内腔,充满线粒体基质。基质中常可见散在的,直径25~50nm。电子致密的嗜饿酸基质颗粒(matrix granule),主要由磷脂蛋白组成,并含有钙、镁、磷等元素。基质中除基质颗粒外还含有脂类、蛋白质、环状DNA分子核糖体。线粒体嵴膜上有许多有柄小球体,即基粒(elementary particle) ,其直径为8~10nm,它由头、柄和基片三部分组成。球形的头与柄相连而突出于内膜表面,基片镶嵌于膜脂中。
基粒中含有ATP合成酶,能利用呼吸链产生的能量合成ATP, 并把能量贮存于ATP中。细胞生命活动所需能量的约95%由线粒体以ATP的方式提供,因此,线粒体是细胞能量代谢中心,线粒体嵴实为扩大了内膜面积,故代谢率高,耗能多的细胞。嵴多而密集大部分细胞的线粒体嵴为板层状。杆状线粒体的嵴多与其长轴垂直排列,圆形线粒体的嵴多以周围向中央放射状排列;在少数细胞,主要基分泌类固醇激素的细胞(如肾上腺皮质细胞等),线粒体峭多呈管状或泡状;有些细胞(如肝细胞)的线粒体兼有板层状和管状两种。
线粒体另一个功能特点是可以合成一些蛋白质。现如今,科学家推测,在线粒体中合成的蛋白质约占线粒体全部蛋白的10%,这些蛋白疏水性强,和内膜结合在一起。线起体合成蛋白质均是按照细胞核基因组的编码辑导合成。如果没有细胞核遗传系统,线粒体RNA则不能表达。因此表明线粒体会成蛋白质的半自主性。
关于线粒体形成的机制,较普遍接受的看法是,线粒体依靠分裂而进行增殖。线粒体的发生过程可分为两个阶段,在第一阶段中,线粒体的膜进行生长和复制,然后分裂增殖。第二阶段包括线粒体本身的分化过程,建成能够行使氧化磷酸化功能的机构。线粒体生长和分化阶段分别接受两个独立遗传系统的控制,因此,它不是一个完全自我复制的实体。
细胞质过氧化氢酶体
过氧化物酶体(peroxisome)又称微体(microbody),是有膜包裹的圆形小体,直径为02~04μm,多见于肝细胞与肾小管上疫细胞。在人其内容物为低电子密度的均质状;在某些动物尚含电子致密的核心,是尿酸氢化酶的结晶。过氧化物体含有40多种酶,不同细胞所含酶的种类不同,但过氧化氢酶则存在所有细胞的过氧化物酶体中。各种氧酶能使相应的底物氧化,在氧化底物过程中,氧化酶使氧还原成过氧化氢,而过氧化氢酶能使过氧化氢还原成水。这种氧化反应在肝、肾细胞中是非常重要的。
细胞质核糖体
(ribosme) 是由核糖体RNA(rRNA)和蛋白质组成的椭圆形致密颗粒,并非膜性结构,(因属细胞器,故在此叙述)颗粒大小约为15nm×25nm。核糖体由一个大亚基与一个小亚基构成。大亚基含两条rRNA与约40个相关蛋白质分子,并有一条中央曾;小亚基含一条rRNA与约40个相关蛋白质分子,非功能状态的核糖体 单个存在。当一定数量(3~30)的核糖体由一条mRNA细丝穿行于它们的大、小亚基之间把它们串联起来,则成为功能状态的多核糖体(polyribosome),电镜下呈串珠状或花簇状。核糖体能将mRNA所含的核苷酸密码翻译为氨基酸序列,即肽链合成的肽链从大亚基中央管释出,肽链可进一步聚合形成蛋白质细胞质基 质中的游离核糖体(free ribosome)合成细胞自身的结构蛋白,如细胞骨架蛋白细胞基质中的酶类等,供细胞代谢、增殖和生长需要。因此,在旺盛增殖中的细胞游离核糖体极多。于内质网膜表面的附着核糖体(attached ribosome)除合成结构蛋白外,主要合成分泌性蛋白。核糖体丰富的细胞,光镜下胞质呈嗜碱性。
细胞质细胞骨架
编辑
细胞的特定形状以及运动等,均有赖于细胞质内蛋白质丝织成的网状结构——细胞骨架(cytoskeleton)。细胞骨架是由微管、微丝、中间丝和微梁网组成。
细胞质微管
(microtubule)是细而长的中空圆柱状结构。管径约15nm,长短不等,常数根平行排列。微管由微管蛋白(thbulin)聚合而成。微管蛋白单体为直径约5nm的球形蛋白质,它们串连成原纤维,13条原纤维纵向平行排列围成微管。微管有单微管、二联微管和三联做管三种类型。细胞中绝大部分微管为单微管,在低温、Ca2+和秋水仙素作均下易解聚为微管蛋白,故属于不稳定微管。二联微管主要位于纤毛与精子鞭毛中,三联微管参与构成中心体和基体,均为稳定微管。
微管具有多种功能。微管的支架作用可保持细胞形状,如血小板周边部的环行微管使其呈双凸圆盘状,神经细胞的微管支撑其突起,如果加入秋水仙素使微管解聚,则血小板变圆,神经细胞突起缩回。微管参与细胞的运动,如细胞分裂时,由微管组成的纺锤体可使染色体向两极移动,如果加入秋水仙素则分裂停止于中期,纤毛和鞭毛的摆动、胞吞和胞吐作用、细胞内物质的运送都需要微管参与。
细胞质微丝
(microfilament)广泛存在于多种细胞中,微丝常成群或成束存在,在一些高度特化的细胞(如肌细胞),它们能形成稳定的结构,但更常见的是形成不稳定的束或复杂的网。它们可根据细胞周期和运动状态的需要,改变其在细胞内的形态和空间位置,并能够根据在细胞的不同状态而聚合或解聚。
分布于肌细胞和非肌细胞中的微丝分细丝和粗丝两种。细丝(thin filament)直径约6nm,长约lμm,主要由肌动蛋白(actin)组成,故又称肌动蛋白丝(actinfilament),通常所说的微丝指此而言。细胞松弛素B能使细丝解聚,从而抑制细胞运动;粗丝(thick filament)直径侧10~15nm,长约15μm,主要由肌球蛋白(myosin)组成,故又称肌球蛋白丝(myosinfilament)。
微丝是肌细胞内的恒定结构。在横纹肌细胞内;细丝与粗丝以一定比例(约为2:1)有规则排列成肌原纤维,其收缩机制已明确。平滑肌细胞内细丝与粗丝之比约为15:1,二者的排列不规则。非肌细胞中一般只能看到细丝,粗丝可能因存在时间短暂,或于电镜标本制备过程中解聚为肌球蛋白,难于观察到。在某些因素作用下,非肌细胞中的微丝迅速解策为其结构蛋白;在相反因素作用下,结构蛋白又装配成微丝。其中细丝交联成网以构成细胞骨架的一部分,并维持细胞质基质的胶质状态;细丝与粗丝的局部相互作用能引发运动。在活跃运动的细胞(主要在细胞质周边部)或细胞局部(如伪足),以及需察机械支持的部位(如微绒毛),都有丰富的微丝。因此,微丝除具有支持作用外,还参与细胞的收缩、变形运动、细胞质流动、细胞质分裂以及胞吞、胞吐过程。
细胞质中间丝
(intermediate filament)又称中等纤维,直径约为8~11nm,介于细丝与粗丝之间,因而得名。中间丝可分为五种,各由不同蛋白质构成。在成体中绝大部分细胞仅含有一种中间丝,故具有组织特异性,且较稳定。五种中间丝的形态相仿,难于分辨。但用免疫组织化学方法则能将它们区分,从而可进一步分析细胞的类型。
(1) 角质蛋白丝(keratin filament): 分布于上皮细胞,在复层扁平上皮细胞内尤其丰富,常聚集成束,又称张力丝(tonofilament)。张力丝附着于桥粒(一种细胞连接),能加固细胞间的连接。张力丝除起支持作用外,还有助于保持细胞的韧性和d性。
(2) 结蛋白丝(desmin filament):分布于肌细胞,在横纹肌细胞内,结蛋白丝所形成的细网连接相邻肌原纤维并使肌节位置对齐;在Z膜股处,细网包围肌原纤维并与细胞膜连接。在平滑肌细胞内,结蛋白丝连接在密体与密斑之间形成立体网架,并与肌动蛋白丝相连。总之,结蛋白丝作为肌细胞的细胞骨架网,发挥固定和机械性整合作用。
(3) 波形蛋白丝(vimentin filament):主要存在于成纤维细胞和来自胚胎间充质的细胞。在少数含有两种中间丝的细胞中,波形蛋白丝是其中的一种,波形蛋白丝主要在核周形成网架,对核起机械性支持,并稳定其在细胞内的位置。
(4) 神经丝(neurofilament):存在于神经细胞的胞体与突起中,由神经丝蛋白组成,与微管共同构成细胞骨架,并协助物质运输。
(5) 神经胶质丝(neurogial filament):主要存在于星形胶质细胞内,由胶质原纤维酸性蛋白组成,多聚集成束,交织走行于胞体,并伸入突起内。
细胞质微梁网
(microtrabecular lattict)是用超高压电镜等技术在完整细胞中观察到的由直径3~6nm的纤维交织形成的立体网架。有人认为它是一种镶嵌在其 它纤维系统中的微梁网格。也有人认为,它是微管、微丝和中间丝系统紧密联系和交错相插,或是某些被磨
损的细胞骨架所显示的图像。总之,它仍是一个有争议的结构。
细胞质中心体
编辑
中心体(centrosome)多位于细胞核周围,由一对互相垂直的中心粒(centriole)构成。中心粒呈是短圆筒状,长05μm直径为外02μm,由9组三联微管与少量电子致密的均质状物构成其壁。相邻的三联微管相互斜向排列,状如风车旋翼。在壁外侧有时可见9个球形的中心粒卫星(centriolar satellite)。大小约70nm。在细胞分裂时,以中心粒卫星为起点形成纺锤体,参与染色体的分离(详见"细胞周期" )。有纤毛或鞭毛的细胞,中心粒形成基体,参与微管组的形成。
细胞质包涵物
编辑
是细胞质中本身没有代谢活性,却有特定形态的结构。有的是贮存的能源物质,如糖源颗粒、脂滴;有的是细胞产物,如分泌颗粒、黑素颗粒;残余体也可视为包涵物。
细胞质糖原颗粒
(glycogen granule)是细胞贮存葡萄糖的存在形式,于PAS反应时呈红色。电镜下,其电子密度高,无膜包裹,并呈两种类型:β颗粒,直径为20~30nm,形状不规则,分散存在。多见于肌细胞;α颗粒,是β颗粒的聚合体,呈花簇状,大小不一,多见于肝细胞。
细胞质脂滴
(fat drop)是细胞贮存脂类的存在形式,内含甘油三酯、脂肪酸、胆固醇等。脂滴在脂肪细胞中最多,
细胞结构
其次为分泌类固醇激素的细胞。在前者,常常一个脂滴即占据细胞的绝大部分空间;在后者,则多是小的球状。在普通光镜标本制备过程中,脂滴被二甲苯、乙醇溶解而遗留大小不等的空泡。电镜下,脂滴无膜包裹,多是低或中等电子密度,与所含脂肪酸的不饱和程度有关。
细胞质分泌颗粒
(secretory granule)常见于各种腺细胞、内含酶、激素等生物活性物质。分泌颗粒的形态、大小及在细胞内的分布位置因细胞种类而异,但都有膜包裹 [2] 。
细胞质细胞质遗传
编辑
细胞质遗传的物质基础是细胞质中的DNA,细胞质遗传在实践中的应用很广泛。
细胞质概念
由细胞质基因所决定的遗传现象和遗传规律,也称为非孟德尔遗传,核外遗传。
细胞质特性
1. 后代的表型象母亲( 又叫母系遗传,偏母遗传) ;
2. 不遵循孟德尔遗传,后代不出现一定的比例;
3. 正交和反交后代的表型不同。
细胞质机制
精卵结合中形成的合子父母双亲所提供的遗传物质不均等,在杂种受精卵的原生质体中,核来自于父母双方,而细胞质却几乎完全来自其母亲(精子受精时胞质很少甚至不能进入卵细胞中)。
在细胞分裂过程中,细胞质基因呈现不均等分配,因此细胞质遗传不遵循孟德尔定律。
细胞质物质基础
线粒体基因组(mtDNA)
叶绿体基因组(ctDNA CpDNA)
细胞共生体基因组
细菌质粒基因组
非细胞器基因组
细胞器基因组
细胞质基因组
叶绿体基因组
1细胞核遗传与细胞质遗传的区别
(1)细胞核和细胞质的遗传物质都是DNA分子,但是分布的位置不同。细胞核遗传的遗传物质在细胞核中,细胞质遗传的遗传物质在细胞质中。
(2)细胞核和细胞质的遗传桥梁都是配子,但是细胞核遗传雌雄配子的核遗传物质相等,而细胞质遗传物质主要存在于卵细胞中。
(3)细胞核和细胞质的性状表达主要通过体细胞进行的。核遗传物质的载体(染色体)有均分机制,进行均分遵循遗传规律;细胞质遗传物质的载体(具有DNA的细胞器)没有均分机制,而是随机的。
(4)细胞核遗传时,正反交相同细胞质遗传时,F1的性状均与母本相同,即母系遗传。
2线粒体和叶绿体是半自主性细胞器
研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、rRNA),核糖体等。说明这两种细胞器都具有独立进行转录和翻译的功能,也就是说,线粒体和叶绿体都具有自身转录RNA和翻译蛋白质的体系。但迄今为止,人们发现叶绿体只能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别上千种。这说明,线粒体和叶绿体中自身编码,合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的。也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性。因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器。
狭义的细胞骨架 (cytoskeleton) 概念是指真核细胞中的蛋白纤维网架体系 ( 微管 (microtubule, MT) 、微丝 (microfilament, MF ) 及中间纤维(intermediate filament, IF )组成的体系)。它所组成的结构体系称为“细胞骨架系统”,与细胞内的遗传系统、生物膜系统、并称“细胞内的三大系统”。直到20世纪60年代后,采用戊二醛常温固定,才逐渐认识到细胞骨架的客观存在。是真核细胞藉以维持其基本形态的重要结构,被形象地称为细胞骨架,它通常也被认为是广义上细胞器的一种。广义的细胞骨架概念是细胞核骨架、细胞质骨架、细胞膜骨架和胞外基质所形成的网路体系。核骨架、核纤层与中间纤维在结构上相互连线,贯穿于细胞核和细胞质的网架体系。
基本介绍 中文名 :细胞骨架 外文名 :cytoskeleton 所属学科 :生物学 表述 :真核细胞中的蛋白纤维网路结构 组成 :微管、微丝、中间纤维 进化特点 :高度保守 作用,微管,微丝,中间纤维,原核生物,疾病及危害,其他蛋白,发现历史, 作用 细胞骨架 (cytoskeleton)是指真核细胞中的蛋白纤维网路结构。发现较晚,主要是因为一般电镜制样采用低温(0-4℃)固定,而细胞骨架会在低温下解聚。直到20世纪60年代后,采用戊二醛常温固定,才逐渐认识到细胞骨架的客观存在。真核细胞藉以维持其基本形态的重要结构,被形象地称为细胞骨架,它通常也被认为是广义上细胞器的一种。 细胞骨架不仅在维持细胞形态,承受外力、保持细胞内部结构的有序性方面起重要作用,而且还参与许多重要的生命活动,如:在细胞分裂中细胞骨架牵引染色体分离,在细胞物质运输中,各类小泡和细胞器可沿着细胞骨架定向转运;在肌肉细胞中,细胞骨架和它的结合蛋白组成动力系统;在白细胞(白血球)的迁移、精子的游动、神经细胞轴突和树突的伸展等方面都与细胞骨架有关。另外,在植物细胞中细胞骨架指导细胞壁的合成。 微管 微管 (microtubule) 可在所有哺乳类动物细胞中存在,直径大于12nm,除了红细胞 ( 红血球 ) 外,所有微管均由约55kD的α及β微管蛋白 (tubulin) 组成。它们正常时以(αβ)二聚体形式存在,并以头尾相连的方式聚合,形成微管蛋白原纤维 (protofilament) ,一般由13根这样的原纤维构成一个中空的微管,直径22~25nm。少数变异的微管如线虫等所有的则有其他数目的原纤维。微管确定膜性细胞器(membrane-enclosed organelle)的位置和作为膜泡运输的导轨。微管是细胞骨架的架构主干,并也是某些胞器的主体,例如中心粒(centriole)就是由9组3联微管组成的构造,而真核生物的纤毛(cilium)与鞭毛(flagellum)也是由以微管为9+2结构,即由9个二联微管和一对中央微管构成,其中二联微管由AB两个管组成,A管由13条原纤维组成,B管由10条原纤维组成,两者共享5条。A管对着相邻的B管伸出两条动力蛋白臂,并向鞭毛中央发出一条辐。基体的微管组成为9+0,并且二联微管为三联微管所取代。组成的轴丝(axoneme)为主体。 细胞骨架 从各种组织中提纯微管蛋白可以发现还存在一些其他蛋白成分(5%-20%),称之谓微管相关蛋白(microtube associated proteins MAPs)。这些蛋白具有组织特异性,表现出从相同αβ二聚体聚合形成的微管具有独特的性质,已从人类不同组织中发现了多种α及β微管蛋白,并追踪微管基因表现出部分基因家族,某些基因被认为是编码独特的微管蛋白。 微管形成的有些结构是比较稳定的,是由于微管结合蛋白的作用和酶修饰的原因。如神经细胞轴突、纤毛和鞭毛中的微管纤维。大多数微管纤维处于动态的聚合和灾变(一种突然的,迅速的,一般不可逆转的分解)状态,这是实现其功能所必需的性质(如纺锤体)。与秋水仙素(colchicine)结合的微管蛋白可加合到微管上,并阻止其他微管蛋白单体继续添加,进而破坏纺锤体的结构,长春花碱具有类似的功能。紫杉酚(taxol),能促进微管的聚合,并使已形成的微管稳定,然而这种稳定性会破坏微管的正常功能。这些药物可以利用破坏微管功能以阻止细胞分裂,成为癌症治疗的新希望。 在人类至少发现两种明显区别的α-微管蛋白及三种明显区别的β-微管基因,它们产生具有特定功能的微管蛋白mRNA,由于这些编码在结构组分上十分近似蛋白质分子,在不同组织存在多少特异性的具有差异表达的微管蛋白亚型,尚待深入研究。 除了α-与β-微管蛋白有编码相似的不同变异型,近几年来又发现了多种编码差异更大的新的微管蛋白,形成不同的基因家族。其中gamma微管蛋白位于细胞内的微管组织中心(microtubule organizing center, MTOC),是用以提供α及β微管蛋白进行聚合反应形成微管的起始核心。而delta与epsilon则被认为与中心体(centrosome)的结构与形成有关。其他尚有eta, zeta, theta等等多种变异,不过通常仅存在少数几种真核单细胞生物如原虫或纤毛虫里,可能跟这些生物独特的结构与生理习性有关,进一步详情仍待研究 。 微丝 微丝(microfilament)也普遍存在于所有真核细胞中,是一个实心状的纤维,直径为4nm-7nm一般细胞中含量约占细胞内总蛋白质的1%-2%,但在活动较强的细胞中可占20%-30%。在一般细胞主要分布于细胞的表面,直接影响细胞的形状。微丝具有多种功能,在不同细胞的表现不同,在肌细胞组成粗肌丝、细肌丝,可以收缩(收缩蛋白),在非肌细胞中主要起支撑作用、非肌性运动和信息传导作用。 细胞骨架 微丝主要由肌动蛋白(actin)构成,和肌球蛋白(myosin,一种分子马达蛋白)一起作用,使细胞运动。它们参与细胞的变形虫运动、植物细胞的细胞质流动与肌肉细胞的收缩: 植物细胞的细胞质流动: 微丝中的actin(肌动蛋白)与myosin(肌球蛋白)在细胞质形成三维的网路体系。actin位于外质,myosin位于内质。 myosin连结著细胞质颗粒,由ATP供给能量,myosin与细胞质颗粒的结合体沿着actin filament滑动,从而带动整个细胞质的环流。 变形虫运动(amoeboid movememt,阿米巴运动): 肌肉细胞的收缩: 如同微管蛋白,肌动蛋白的基因组成一个超家族,并组成多种极为相似的结构。例如,各种肌肉细胞有不同的肌动蛋白:①骨骼肌的条纹纤维;②心肌的条纹纤维;③血管壁的平滑肌;④胃肠道壁的平滑肌。它们在胺基酸组分上有微小的差异(大约在400个胺基酸残基序列中有4-6个变异),在肌肉与非肌细胞中都还存在β及γ肌动蛋白,它们与具有横纹的α肌动蛋白可有25个胺基酸的差异。 G-肌动蛋白单体(含ATP)可聚合为呈纤维状的F-肌动蛋白(含ADP),它们可由Mg2+及高浓度的K+或Na+诱导而聚合,聚合后ATP水解为ADP及C-肌动蛋白ADP单体,组成F-肌动蛋白。在骨骼肌的细肌丝(thin filament,由肌动蛋白构成)与粗肌丝(thick filament,由肌球蛋白构成)相互作用而使肌肉收缩(肌球蛋白可以起作肌动蛋白激活的ATPase的作用)。肌球蛋白也存在于哺乳动物的非肌细胞中(但以非聚合状态存在)。 中间纤维 细胞骨架的第三种纤维结构称中间纤维(intermediate filament,IF),又称中间丝、中等纤维,直径介于微管和微丝之间(8nm-10nm),其化学组成比较复杂。构成它的蛋白质多达5种,常见的有波形蛋白(vimentin)、角蛋白(keratin)、结蛋白、神经元纤维、神经胶质纤维。在不同细胞中,成分变化较大。中间纤维使细胞具有张力和抗剪下力。中间纤维有共同的基本结构,即构建成一个中央α螺旋杆状区,两侧则是大小和化学组成不同的端区。端区的多样性决定了中间纤维外形和性质的差异和特异性。 细胞骨架 以上这些结构单元并非是一成不变的,而是随细胞的生命活动而呈现高度的动态性,它们均由单体蛋白以较弱的非共价键结合在一起,构成纤维型多聚体,很容易进行组装和去组装,这正是实现其功能所必需的特点。 原核生物 长期以来,人们认为细胞骨架仅为真核生物所特有的结构,但近年来的研究发现它也存在于细菌等原核生物中。 目前为止,人们已经在细菌中发现的FtsZ、MreB 和CreS 依次与真核细胞骨架蛋白中的微管蛋白、肌动蛋白丝及中间丝类似。FtsZ 能在细胞分裂位点装配形成Z 环结构,并通过该结构参与细胞分裂的调控;MreB能形成螺旋丝状结构,其主要功能有维持细胞形态、调控染色体分离等;CreS存在于新月柄杆菌中,它在细胞凹面的细胞膜下面形成弯曲丝状或螺旋丝状结构,该结构对维持新月柄杆菌细胞的形态具有重要作用。 疾病及危害 细胞在病理情况下常常会出现细胞骨架系统异常。如阿尔茨海默症患者,在脑神经元中发现有大量扭曲变形的微管和大量受损的中间纤维;在恶性转化的细胞中,常表现为微管减少和解聚,细胞骨架异常可增强癌细胞的运动能力。研究表明,微丝束及其末端黏着斑的破坏以及肌动蛋白小体的出现,与肿瘤细胞的浸润和转移特性有关。 此外,中间纤维的分布具有严格的组织特异性,绝大多数肿瘤细胞在发生转移后仍表现其原发肿瘤的中间纤维类型,故可作为临床肿瘤的鉴别诊断和肿瘤细胞是否转移的判据。中间纤维显微技术与羊膜刺穿结合,可用于先天胎儿畸形的诊断,例如,若羊水中含有神经元纤维和神经胶质纤维细胞,则提示胎儿或有中枢神经系统畸形。 羊膜刺穿示意图 其他蛋白 不仅如此,细胞骨架还包含有很多结构单元的附属蛋白质,比如: 分子马达(molecular motors): 动力蛋白(dynein), kinesin, myosin 结合蛋白:vinculin, cofilin, tropomyosin等等 广义的细胞骨架还包括核基质(nucleoskeleton)、核纤层(nuclear lamina)和细胞外基质(extracellular matrix),形成贯穿于细胞核、细胞质、细胞外的一体化网路结构。 发现历史 细胞骨架(cytoskeleton)是指真核细胞中的蛋白纤维网路结构。发现较晚,主要是因为一般电镜制样采用低温(0-4℃)固定,而细胞骨架会在低温下解聚。直到20世纪60年代后, 细胞骨架 采用戊二醛常温固定,才逐渐认识到细胞骨架的客观存在。真核细胞藉以维持其基本形态的重要结构,被形象地称为细胞骨架,它通常也被认为是广义上细胞器的一种。细胞骨架不仅在维持细胞形态,承受外力、保持细胞内部结构的有序性方面起重要作用,而且还参与许多重要的生命活动,如:在细胞分裂中细胞骨架牵引染色体分离,在细胞物质运输中,各类小泡和细胞器可沿着细胞骨架定向转运;在肌肉细胞中,细胞骨架和它的结合蛋白组成动力系统;在白细胞(白血球)的迁移、精子的游动、神经细胞轴突和树突的伸展等方面都与细胞骨架有关。另外,在植物细胞中细胞骨架指导细胞壁的合成。 细胞骨架细胞的特定形状以及运动等,都有赖于细胞质内蛋白质丝织成的网状结构,该网状结构便称之为细胞骨架。细胞骨架是由微管、微丝、中间丝和微梁网组成。
第一,微管是细而长的中空圆柱状结构。
细胞微管细胞骨架内的管径约有15微米,长短不等,常数根平行排列。微管由微管蛋白聚合而成。微管蛋白单体为直径约5微米的球形蛋白质,它们串连成原纤维,13条原纤维纵向平行排列围成中空微管。微管有单微管、二联微管和三联微管三种类型。细胞中绝大部分微管为单微管,在低温、Ca2+ 和秋水仙素作用下容易解聚为微管蛋白,因此属于不稳定微管。二联微管主要位
于纤毛与精子鞭毛中,三联微管参与构成中心体和基体,它们都是稳定微管。
不同类型的细胞微管微管具有多种功能。微管的支架作用可保持细胞的形状,如血小板周边部的环形微管使其呈双凸圆盘状,神经细胞的微管支撑其突起,如果加入秋水仙素使微管解聚,则血小板变圆,神经细胞突起缩回。
微管参与细胞的运动,如细胞分裂时,由微管组成的纺锤体可使染色体向两极移动,如果加入秋水仙素则分裂停止于中期,纤毛和鞭毛的摆动、胞吞和胞吐作用、细胞内物质的运送都需要微管的参与。
第二,微丝广泛存在于多种细胞中。
细胞中的微丝微丝常成群或成束存在,在一些高度特化的细胞(如肌细胞)中,它们能形成稳定的结构,但更常见的是形成不稳定的束或复杂的网。它们可根据细胞周期和运动状态的需要,改变其在细胞内的形态和空间位置,并能够根据在细胞的不同状态而聚合或解聚。分布在肌细胞和非肌细胞中的微丝有细丝和粗丝两种。细丝直径约6纳米,长约l微米,主要由肌动蛋白组成,因此又称肌动蛋白丝,通常所说的微丝就是指这个而说的。细胞松弛素B能使细丝解聚,从而抑制细胞运动。粗丝直径侧10~15纳米,长约15微米,主要由肌球蛋白组成,因此又称肌球蛋白丝
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)