“物联网就是物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。 物联网的两种业务模式: 1.MAI(M2M Application Integration), 内部MaaS; 2.MaaS(M2M As A Service), MMO, Multi-Tenants(多租户模型)。 随着物联网业务量的增加,对数据存储和计算量的需求将带来对“云计算”能力的要求: 1.云计算:从计算中心到数据中心在物联网的初级阶段,PoP即可满足需求; 2. 在物联网高级阶段,可能出现MVNO/MMO营运商(国外已存在多年),需要虚拟化云计算技术,SOA等技术的结合实现互联网的泛在服务:TaaS (everyTHING As A Service)。1、云计算
一般来讲云计算,云端即是网络资源,从云端来按需获取所需要的服务内容就是云计算。云计算是指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的资源(硬件、平台、软件)。提供资源的网络被称为“云”。“云”中的资源在使用者看来是可以无限扩展的,并且可以随时获取,按需使用,随时扩展,按使用付费。这种特性经常被称为像水电一样使用IT基础设施。广义的云计算是指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的服务。这种服务可以是IT和软件、互联网相关的,也可以是任意其他的服务。
2、物联网
简单理解:物物相连的互联网,即物联网。物联网在国际上又称为传感网,这是继计算机、互联网与移动通信网之后的又一次信息产业浪潮。世界上的万事万物,小到手表、钥匙,大到汽车、楼房,只要嵌入一个微型感应芯片,把它变得智能化,这个物体就可以“自动开口说话”。再借助无线网络技术,人们就可以和物体“对话”,物体和物体之间也能“交流”,这就是物联网。随着信息技术的发展,物联网行业应用版图不断增长。如:智能交通、环境保护、政府工作、公共安全、平安家居、智能消防、工业监测、老人护理、个人健康、花卉栽培、水系监测、食品溯源等。大的理想就是智慧地球,目前实际生活中存在并在建设的智慧城市都是物联网炒的概念。
3、大数据
大数据(big data),就是指种类多、流量大、容量大、价值高、处理和分析速度快的真实数据汇聚的产物。大数据或称巨量资料或海量数据资源,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
大数据的4V特点:Volume、Velocity、Variety、Veracity。
即:数量Volume、多样性Variety、速度Velocity、和真实性Veracity。
4、大数据,云计算,物联网和移动互联网的关系
物联网对应了互联网的感觉和运动神经系统。云计算是互联网的核心硬件层和核心软件层的集合,也是互联网中枢神经系统萌芽。大数据代表了互联网的信息层(数据海洋),是互联网智慧和意识产生的基础。包括物联网,传统互联网,移动互联网在源源不断的向互联网大数据层汇聚数据和接受数据。云计算与物联网推动大数据发展。物联网硬件包括四大模块构成:M2M;两化融合;传感网和RFID,
所需硬件可以从这四个环节分析,比较常见的如传感器、RFID、嵌入式设备以及通信设备等。
M2M是将数据从一台终端传送到另一台终端,也就是就是机器与机器(Machine to Machine)的对话
两化融合是信息化和工业化的高层次的深度结合, 是指以信息化带动工业化、以工业化促进信息化,走新型工业化道路;两化融合的核心就是信息化支撑,追求可持续发展模式
传感网的定义为随机分布的集成有传感器、数据处理单元和通信单元的微小节点,通过自组织的方式构成的无线网络
射频识别,RFID(Radio Frequency Identification)技术,又称无线射频识别,是一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触
云计算与物联网的关系
在很多时候云计算与物联网这两个名词是同时出现的,大家在直觉上认为这两个技术是有关系的,但总是没有很清楚的认识。有的地方一提到物联网就想到传感器的制造和物联信息系统。其实云计算和物联网两者之间本没有什么特殊的关系,物联网只是今后云计算平台的一个普通应用,物联网和云计算之间是应用与平台的关系。物联网的发展依赖于云计算系统的完善,从而为海量物联信息的处理和整合提供可能的平台条件,云计算的集中数据处理和管理能力将有效的解决海量物联信息存储和处理问题。没有云计算平台支持的物联网其实价值并不大,因为小范围传感器信息的处理和数据整合是早就有了的技术,如工控领域的大量系统都是这样的模式,没有被广泛整合的传感器系统是不能被准确的称为是物联网的。所以云计算技术对物联网技术的发展有着决定性的作用,没有统一数据管理的物联网系统将丧失其真正的优势,物物相联的范围是十分广阔的,可能是高速运动的列车、汽车甚至是飞机,当然也可能是家中静止的电视、空调、茶杯,任何小范围的物物相联都不能被称为真正的物联网。
同时对于云计算平台来说物联网并不是特殊的应用,对于云平台来说物联网只是其所支持的所有应用中的一种而已,云计算平台对待物联网系统与对待其它应用是完全一样的,并没有任何区别,因为云计算并不关心应用是什么。
所以对于物联网技术来说它需要解决的核心问题是:云计算平台的成熟和传感器技术的发展。有些地方仓促上马物联网项目不考虑其核心问题的解决将会使物联网技术陷入困境。当然对于一些行业性的、区域性的物联网项目,根据实际情况还是值得去做一些尝试的,这样既能满足现在的需要也能为今后的全面数据整合提供有益的经验。
物联网、大数据和云计算三者,在信息技术飞速发展的今天都是相辅相成、互相依存的关系。
简单来说,物联网是基于互联网技术来进行更广范围内的信息通信,解决的是具体的设备和软件之间的融合问题。
大数据和云计算都是近几年来兴起的潮流信息名词。在网络和信息技术飞速发展的今天,我们已经进入了流量时代,大数据和云计算就显得日益重要。简单的说大数据就是在一定的时间和空间范围内,运用各种系统工具及网络,将数据进行抓取和储存,是物联网和云计算的一个桥梁。而云计算,同样也是基于互联网技术,对数据进行各种计算和处理。
可见他们之间的关系是互相连接密不可分的。物联网是提供大数据的来源,通过大量设备采集初始数据,再存储到大数据中,同时提供给云计算进行算法计算,再将结果反馈给物联网;物联网为云计算提供设备和服务支持;大数据为云计算提供,数据分析和决策的依据。
如果没有了大数据和云计算的支持,物联网带来了的巨大数据也得不到足够的空间存储和处理,没有运算和反馈,这些数据将没有任何的意义。同样的,大数据和云计算需要依赖物联网所带来的巨大的数据,没有了数据的采集就构不成大数据,没有了网络的覆盖和连接,云计算也得不到实现。
所以三者互为基础,互相联系,互相促进。某种程度上看,是网络信息系统的一个处理整体。
云计算与大数据概述云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。狭义云计算指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需资源;广义云计算指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需服务。这种服务可以是IT和软件、互联网相关,也可是其他服务。它意味着计算能力也可作为一种商品通过互联网进行流通。
大数据(big data),或称海量数据,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。
大数据管理,分布式进行文件系统,如Hadoop、Mapreduce数据分割与访问执行;同时SQL支持,以Hive+HADOOP为代表的SQL界面支持,在大数据技术上用云计算构建下一代数据仓库成为热门话题。从系统需求来看,大数据的架构对系统提出了新的挑战:
1、集成度更高。一个标准机箱最大限度完成特定任务。
2、配置更合理、速度更快。存储、控制器、I/O通道、内存、CPU、网络均衡设计,针对数据仓库访问最优设计,比传统类似平台高出一个数量级以上。
3、整体能耗更低。同等计算任务,能耗最低。
4、系统更加稳定可靠。能够消除各种单点故障环节,统一一个部件、器件的品质和标准。
5、管理维护费用低。数据藏的常规管理全部集成。
6、可规划和预见的系统扩容、升级路线图。
云计算与大数据的关系
简单来说:云计算是硬件资源的虚拟化,而大数据是海量数据的高效处理。虽然从这个解释来看也不是完全贴切,但是却可以帮助对这两个名字不太明白的人很快理解其区别。当然,如果解释更形象一点的话,云计算相当于我们的计算机和 *** 作系统,将大量的硬件资源虚拟化后在进行分配使用。
可以说,大数据相当于海量数据的“数据库”,通观大数据领域的发展我们也可以看出,当前的大数据发展一直在向着近似于传统数据库体验的方向发展,一句话就是,传统数据库给大数据的发展提供了足够大的空间。
大数据的总体架构包括三层:数据存储,数据处理和数据分析。数据先要通过存储层存储下来,然后根据数据需求和目标来建立相应的数据模型和数据分析指标体系对数据进行分析产生价值。
而中间的时效性又通过中间数据处理层提供的强大的并行计算和分布式计算能力来完成。三者相互配合,这让大数据产生最终价值。
不看现在云计算发展情况,未来的趋势是:云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力,借用Google一篇技术论文中的话:“动一下鼠标就可以在妙极 *** 作PB级别的数据”,确实让人兴奋不能止。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)