物联网涉及技术众多,传感器收集数据是第一个阶段。现如今,在个人随身携带的电子设备、在城市交通、在制造企业,甚至可以说在社会生活的很多角落,都有传感器分布其中。它们保持着工作的状态,源源不断地产生海量的即时数据。
接下来是传输网络。超高速、低延时和可靠的基础设施网络,这是在“每毫秒都很重要”的应用场景中十分必要的数据传输工具。
以及边缘计算的应用。边缘计算有三个特点:高效、实时、更安全。从概念上讲,边缘计算使数据处理尽可能接近源的地方,在设备或网络本身进行计算,而不是外部服务器或者中央数据中心。如此一来,边缘计算减少了潜在的带宽瓶颈,保证了数据反馈的实时性,目前也成为了与云计算不相上下的一项热门技术。
然后融入到场景应用。当数据传输到位,大数据、云计算、人工智能等技术开始接入,最后的结果,是创造出各种各样符合需求的工具和功能,帮助各行各业的企业依据数据做出更快更好的决策。
甚至还有人工智能。“万物互联”是第一步,而后终将迎来“万物智联”。除了数据处理与分析以外,我们期待通过“人工智能”让设备本身实现更有意义的相互交流,推动低时延应用更快、更精确、更可靠的成熟落地。可以想象,物联网带来的海量数据就随着这样一条复杂的产业链而不断往上攀登,推动着社会生活向好的方向发展变化。
物联网技术的发展还是为了人们能够更好的生活,对于现在的物联网来说它有众多使用场景,比如:
在园区仓储物流管理的应用
园区内仓储物流有三个环节:行驶在园区内的载货卡车、中转仓库、生产车间的物流存储。为了能保证仓库及生产车间的存货保证在一个合理水平,供应链管理需要实时了解这三个地方的物料情况。在传统人工场景下,需要人工检测并补给物料,由于没有完善的定位系统,需要依赖人工去查找物料位置,因此经常出现物料补给紧张导致产线暂停的情况,大大降低了效率。但通过IoT技术,在物料箱上安装终端电子标签,可实时上报物料种类、及位置信息,这样可对园区仓储物流进行高效管理。
在智能装配的应用
通过IoT链路给生产线设备嵌入电子标签,可实时上传设备状态及定位信息,全面掌控设备健康信息,为企业预测性维护计划提供依据,提高了生产管理能力和效率,实现可视化生产;另外通过实时上传能耗数据,可动态掌握功耗情况,节能降耗。
在能源行业应用
通过IoT网关可将钻井平台的油压、油温等参数实时传递到中控室,确保钻井平台的实时监控,保证生产作业安全;露天矿通常处于偏远区域,矿坑深,面积大,通过对车辆的运营状态进行监控、对车辆进行定位及控制,同时上报矿坑斜坡参数,进行远程安全生产。
在智能社区应用
通过在小区水表、电表、气表安装终端模组,可实时读取信息并检测小区环境参数。模组通过接收基站信号,可将终端数据无线上传,做到智能抄表。另外,还可用于家电等智能控制、以及停车位的检测。
物联网技术给我们带来安全和便利也改变着我们的生活方式。
今年科技业最火的议题,莫过于物联网。国际研究暨顾问机构Gartner预测,2017年全球使用中的连网对象数量将达到84亿个,较2016年增加31%,到2020年更将增至204亿个,此外2017年端点与服务相关支出金额也将达2兆美元大关。
“研华30年前就开始做物联网,一直是冷门产业,没想到现在突然成为主流,像作梦一样!”研华董事长刘克振略带夸张地说。他观察发现,产业每隔15年就有一次模式移转,上一次是从PC转到Mobile,这一次则是从Mobile转到IoT(物联网)。在这模式移转的过程中,产业将会出现四大变革:
变革一,从B2C到B2B
过去科技厂不论卖PC,笔记本电脑或是手机,都是直接面对消费者的B2C模式,然而在物联网时代,将是以企业对企业的B2B模式为主流。“物联网做的是一整套的系统,”刘克振解释,物联网产业分为芯片,平台组建,系统集成,与云端服务四大方面,而做这四种产业公司的商业模式都以B2B为主流。
变革二,从少样多量到多样少量
物联网时代带来的另一项模式移转,是“量”与“样”的概念。“厂商首先要克服的,就是PC时代的『大量』心态,”刘克振表示,在PC时代,芯片是英特尔与ARM的天下,前者更占了九成市场。但在物联网时代,不同的系统需要截然不同的芯片,产业将打破垄断走向百花齐放的方向。
变革三,从水平整合到垂直整合
“在物联网时代,拥有domain knowledge(领域知识)是致胜的关键!”刘克振笃定表示,过去PC时代企业讲求的是水平整合,但物联网要求的是从头到尾垂直整合的能力。必须对目标领域非常了解,专注去做,在市场上才有竞争优势,“很少是又做工厂,又做医疗。”
变革四,从快速变化到慢速变化
由于物联网是一套长期使用的系统,产业也跟过去消费性电子产品快速变化的步调截然不同。“拚的不是快,而是拚软硬整合的能力”。
发掘科技一家专业的物联网硬件方案公司:发掘科技
物联网是一个超级产业,涉及领域非常多,其中又有很多细分技术,而且应用碎片化。2020年,工信部发出了《关于深入推进移动物联网全面发展的通知》,意在推动移动物联网的规模化发展,将物联网碎片化的应用“串”起来。2020年,我国窄带物联网NB-IoT基站数和5G基站数均超过了70万个,移动物联网连接数超过了108亿。2021年,物联网发展将有哪些主要趋势?NB-IoT仍在爬坡
目前我国NB-IoT的连接数已经超过了12亿,应用创新不断深化,水表、气表等领域应用已经达到了千万级,智慧停车、智慧路灯、智慧物流等百万级的应用领域正在不断涌现。
数据显示,目前中国电信的NB-IoT用户近8000万,NB-IoT连接数全球第一,NB市场占有率行业第一。同时,中国电信还部署了全球物联网领域首个异地多活NB-IoT设备服务平台,可提供亿级以上物联网设备服务,确保端到端业务流程安全。
凭借广覆盖、低功耗、低成本、大连接等特点,NB-IoT已经成为蜂窝物联网领域的主流技术。市场研究机构CounterpointIoT的最新研究数据显示,全球移动物联网连接数将在2025年突破50亿大关,其中NB-IoT的贡献比将接近一半。
2021年,由于NB-IoT的规模应用,芯片的生产成本会进一步下降,即使考虑到近期芯片、元器件缺货,NB-IoT模组整体价格下降的趋势不会改变。随着城市管理智能化的深入,NB-IoT的商业部署只会进一步加快,这将带动提高NB-IoT基站的使用率和新基站的部署。但期望NB-IoT能够在越过1亿连接数后,产生“滚雪球”的产业效应,只是一种乐观估计,主要原因是NB-IoT的应用场景、接入平台还比较分散,从梅特卡夫定律看,NB-IoT目前处于连接数的积累阶段,发展拐点还没有到来。
同时,NB-IoT也面临一些挑战,业内人士认为这些挑战体现在NB-IoT功耗、网络覆盖、商业模式三个方面。
NB-IoT的主要优势之一是低功耗。当前在移动物联网上,普遍采用的还是2G模块,NB-IoT的功耗比2G略好,但在中等频率和高频率实时使用时并没有非常明显的优势,而NB-IoT深度待机模式的功耗和2G掉电模式相差不多。所以以目前NB-IoT模块的实际功耗看,十年的超长待机时间是无法实现的,因此在低功耗一项上,NB-IoT优势并没有预计的大,所以采用NB-IoT的动力不够强。在网络覆盖上,NB-IoT相对于2G/3G/4G网络,其覆盖范围和网络质量还需提高,这也会影响用户的使用信心。在商业模式上,即使运营商开启高频服务功能,每年NB-IoT资费可以提升到35~40元,虽然提升了物联网业务的ARPU值(每用户平均收入),但对于运营商的直接收入贡献还非常有限。
LoRa发力室内场景
目前,在全球范围内已超过1亿个LoRa终端接入节点,中国作为最大的物联网应用市场,占了近半的LoRa节点部署数量,在一些能源、公共安全、智慧楼宇、电力、军事工业等行业得到应用。目前,LoRa技术也正在发力于室内场景应用,这将会成为LoRa最值得期待的市场。
LoRa最早于国外起步,在欧、美等国获得应用,但是应用相对分散。相比国外,国内起步较晚,LoRaWAN 协议的标准化落地情况比较差,但是发展速度快、应用丰富、规模大。作为和NB-IoT相似的技术,LoRa的问题与挑战主要是缺少政策及运营商的大力支持,但因为LoRa有其适用的场景,连接数一直在增长。
LoRa的问题是严重碎片化,这不仅制约LoRa产业的发展,也制约着LoRa企业的发展,且目前的产品丰富度无法满足碎片化应用需求,而且国内已有应用领域的市场增量有限,需要寻找新的应用领域拓展市场。目前电力和家居行业转向通过LoRa技术来解决问题。
从LoRa产业链看,相比于其他多数的无线通信技术,LoRa技术除了技术层面上的优势以外,丰富 健康 的产业链生态也是其优势之一,目前已形成了一个从LoRa芯片、模组、网关、终端、平台、系统集成商到解决方案提供商以及互联网企业、电信运营商等共同参与的格局。
哪些领域机会更多
疫情暴发以来,非接触式的远距离测温仪、巡逻无人机、防疫机器人等物联网产品在疫情防控和复工复产中,得到了广泛运用,2021年,这些应用会进一步升级,并将向在医疗保健中发挥作用发展。Forrester的研究预测,物联网会通过可穿戴设备和传感器实现主动的医疗保健参与,这将是2021年物联网应用的一大趋势。
Forrester认为,消费者将在2021年获得更多种类的无线连接。不仅有5G和移动物联网设备,蓝牙、Zigbee和近场通信(NFC)都在解决类似的物联网使用案例。Forrester的报告指出。诸如可穿戴设备和传感器之类的互动和主动参与将激增,它们可以检测患者在家中的 健康 状况。COVID-19之后的医疗保健将以数字医疗经验为主导,并将提高虚拟医疗的有效性。在家中监视的便利性将激发消费者对数字 健康 设备的赞赏和兴趣,因为他们可以对自己的 健康 有更深入的了解。数字医疗设备的价格将变得对消费者更加友好。
由于新冠肺炎疫情,迫使许多患者留在家里或延误了必要的护理,这使慢性病得不到控制,可预防的病得不到重视。医疗机构可以利用接入物联网的医疗设备增进对患者 健康 的了解,跟踪个性化医疗的结果。
另一方面,智能办公的利用率也会大大增长,Forrester期望至少80%的公司为未来的办公室制定全面的战略,其中包括IoT应用程序以增强员工安全性并提高资源效率,例如智能照明、电源、能源、环境监控和基于传感器的空间利用率等。高流量区域的活动监视对于优先进行站点清洁,管理拥挤区域以及修改办公室布局以实现 社会 疏远非常必要。更小尺寸、更快运行、灵活敏捷的端到端解决方案是有效路径
物联网时代是一个计算无处不在的新时代,每个设备、每个物体都将具备计算能力,这意味着集成的计算解决方案必将向尺寸更小、运行速度更快、功能更敏捷、产量更大的方向演化。
新型低能耗需求的可穿戴设备:物联网技术终端落地的正面力量
低功耗蓝牙与WiFi应用:物联网发展应用的中坚力量
作为推动物联网发展和应用的中坚力量,WiFi、智能蓝牙、NFC和GPS这些成熟、高效的无线连接设计可以提高设备应用的效率,使得制造商能够设计、制造并推出消费者买得起的产品,从而鼓励大众消费。
观察物联网产业的发展规模最直观的数据就是“物联网终端连接数”,从连接数看,据前瞻产业研究院统计数据显示,2015年我国物联网链接数量为639亿个,截止至到2017年我国物联网链接数量达到了1535亿个,相比2016年增长了698%。初步预计2018年我国物联网链接数量突破20亿个,在2019年我国物联网链接数量将达3125亿个,同比增长3852%。并预测在2020年我国物联网链接数量将达到40亿个,相比2017年增长约160%,而且这还是产业视角的保守估计,从物联网的连接构成看,目前应用最多三个方向为智能硬件、智能家电和智能计量,细分行业中智能家居和智能安防的发展最快,这一切应该与巨头的推动有关。
5G落地将推动社会迈入万物互联物联网时代
从中国高层的多次部署,到资本市场的资金热捧,近期最受舆论关注的概念之一莫过于“新基建”。其中,5G被多次提及,成为“新基建”的主要抓手。作为颠覆性技术,5G的落地将推动社会迈入万物互联的物联网时代。
物联网融合各行各业推动智能化转型
物联网作为全新的连接方式,近年来呈现突飞猛进的发展态势。在中国,物联网的大规模应用与新一轮科技与产业变革融合发展,预计2022年,中国物联网行业市场规模将超过724万亿元。他表示,各行各业的智能化转型如火如荼,物联网作为连接人、机器和设备的关键支撑技术,应加快推动布局,抓智能化转型机遇。
物联网行业就业前景怎样
根据报告,当前中国物联网产业主要采取重点地区率先试点,其他地区逐步跟进的方法来推动发展。因此,物联网安装调试人员的就业以一二线大城市、经济发达地区及无锡、杭州等试点地区为主。随着产业发展,尤其是5G技术在多个城市展开试点,二三线城市也在积极布局物联网产业试点规划,就业形势会越来越好。
得益于国家政策的大力支持和越来越多企业的频频布局,中国物联网产业快速发展,对相关人才的需求也持续增长。调查预测,未来5年物联网安装调试员人才需求量近500万人。
——以上数据及分析请参考于前瞻产业研究院《中国物联网行业细分市场需求与投资机会分析报告》。
在过去的几年里,物联网蓬勃发展。根据行业研究,到2021年,全球将安装350亿台物联网设备,到2025年将安装7544亿台。本质上,作为一个技术驱动的互联设备网络,物联网有潜力更好地实现系统内的数据共享。它让机器和设备进行交互的能力将会对各行各业行业产生积极影响。
从使用物联网设备的数据密集型体验到基本的健康和安全需求,几乎没有什么趋势能够超越它,从而加剧了其重要性。
1连网设备制造商将投资医疗保健
远程医疗需求仍有望继续增加。据行业专家称,由于便利和更实惠的价格,消费者对数字医疗设备的兴趣越来越大,到2026年,该技术将增长至1856亿美元。
2物联网将在制造业普及
制造业和其他使用昂贵机器的环境已经体验到了远程监控的好处。在物联网驱动技术的帮助下,制造商和制药企业今年能够将工业资产与远程 *** 作连接起来,确保在大流行期间一切如常。根据行业报告,这些好处和积极影响有望在2021年为物联网带来大量投资。基础行业专家、特别是现场服务公司和工业设备公司将越来越多地使用此技术,从而使连网机器在2021年继续获得发展动力。
3行为互联网有望发展壮大
行为互联网(IoB)从各种来源捕获人们生活的“数字信息”,公共或私人实体可以利用这些信息来影响行为。
这里的一些有用的技术工具包括位置跟踪、大数据和面部识别。这一趋势凸显了将客户放在每个组织战略中心的重要性,以确保长期成功。
4智能建筑技术将推动员工体验转型
根据2021年的行业报告,智能建筑技术将专注于物联网应用,以实现智能办公举措。这些举措将包括智能照明、能源和环境监测,以及基于传感器的空间利用和活动监测。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)