钢铁行业在积极化解过剩产能的基础上加快推进钢铁行业转型升级,当前的重点就是加快智能制造发展,即借助智能制造技术,转变生产管理模式,实现敏捷制造和精细化管理,进而推动钢铁行业的转型升级。
智能制造引领新一轮制造业革命,也是一场具有划时代意义的深刻的工业革命。《中国制造2025》明确坚持创新驱动、智能转型、强化基础、绿色发展,加快我国从制造大国向制造强国转变。推进钢铁行业智能制造是时代发展的必然趋势,也是我国实现钢铁强国的必由之路。
时下,我国钢铁行业正在全面贯彻实施《钢铁工业调整升级规划(2016-2020年)》(以下简称《规划》)。“十三五”期间,我国钢铁工业将进入以结构调整、转型升级为主的发展阶段,也是钢铁工业结构性改革的关键阶段。钢铁行业要积极适应、把握、引领经济发展新常态,落实供给侧结构性改革,以全面提高钢铁工业综合竞争力为目标,以化解过剩产能为主攻方向,坚持结构调整、创新驱动、绿色发展、质量为先、开放发展,加快实现调整升级,提高我国钢铁工业发展质量和效益。
要实现钢铁工业“十三五”规划的目标,钢铁企业必须全面推进智能制造,而《规划》为我国钢铁行业如何推进智能制造指明了方向,确定了目标,指出了路径。
钢企智能制造探索步伐加快
如今,不少钢铁企业已经在智能制造上开拓探索和实践,取得了较好的成效。宝武集团、沙钢等大型钢企采用工业机器人、无人行车、无人台车、无人仓库等智能制造技术来提高劳动效率,降低生产成本,在钢铁生产自动化、库存、营销等关键环节智能化水平先进。
一些大型钢厂将智能制造分成“3+1”模式,即“智能装备、智能工厂、智能互联和基础设施”,进行探索和实施。据介绍,目前,该领域研发的课题主要是钢铁制造全流程在线检测—监测技术及数字化、智能化嵌入技术,分布与集成相结合的余热余能梯级利用和系统回收技术,钢铁生产智能化能源管控与环境优化技术,污染物分布与集中结合的协同控制与一体化脱除技术,钢厂与相关产业互补链接及与周边社会共生共荣生态链接技术,钢铁流程制造和服务一体化网络集成技术,钢铁制造流程物质流、能量流、信息流协同动态调控技术,高性能钢铁产品定制化、减量化生产及装备技术,高性能钢铁产品全生命周期智能化设计、制备加工技术。
从目前来看,不少钢企纷纷进入智能制造领域:
有的钢厂借助“互联网+”、物联网和智能制造技术,依托传感器、工业软件、网络通信系统、新型人机交互方式,实现人、设备、产品等制造要素和资源的相互识别、实时联通,促进钢铁研发、生产、管理、服务与互联网紧密结合,推动钢铁生产方式的定制化、柔性化、绿色化、网络化、智能化。
有些技术、资金实力雄厚的钢铁企业,则以钢铁流程绿色化、智能化集成为目标,重点围绕制造流程结构优化、制造流程技术提升、钢铁制造服务平台建立、新型商业模式建立与运营四大关键路径进行研发。
有的钢厂以关键环节机器换人为抓手,尝试和实践全工序机器换人,提升智能化生产水平,先后建成5000毫米宽厚板和特棒示范智能车间,形成了独具特色的智能制造发展之路。
有的钢厂明确智能制造目标,稳步推进:减少人工作业,提升自动化能力;全面推进建立区域化、工序化的信息监控、管控平台;制订公司智能化制造规划,并成立智能制造推进项目团队,以实现从机械化、自动化、信息化到智能化的逐步转变。
有的钢企确定了智能制造目标,即在未来几年内建设、改造一批智能化产线,完成基于互联网来满足用户个性化需求的智能化研发、生产、销售体系构建,促进企业实现向智能制造模式的转型。
钢企推进智能制造该如何着力?
一家钢企从事自动化生产工作的负责人坦言:“我们公司不是不想尝试智能制造,而是不知道该怎么着手。”
曾有一家大型钢铁企业工程师也向笔者表示,目前,国内钢铁智能化仍处于初级阶段,在实际生产过程中还是以经验为主导,尽管个别生产线有自己的数据库,但一般为生产工艺的数据,在上下游衔接等方面没有形成一个统一的系统。
那么,钢铁行业该如何加快推进智能制造?在一系列钢铁产业发展的高峰论坛上,业内专家就我国钢铁业推进智能制造发表了各自的见解,给钢铁企业诸多的思考和启迪。
业内专家指出,钢铁行业在积极化解过剩产能的基础上加快推进钢铁行业转型升级,当前的重点就是加快智能制造发展,即借助智能制造技术,转变生产管理模式,实现敏捷制造和精细化管理,进而推动钢铁行业的转型升级。智能制造是制造业未来发展的重大趋势,也是当前钢铁行业转型升级、提质增效的重要着力点。早在2015年工信部发布的《2015年智能制造试点示范专项行动实施方案》,决定自2015年启动实施智能制造试点示范专项行动,以促进工业转型升级,加快制造强国建设进程。其中,钢铁行业已被列入工信部的智能制造试点范围。
专家同时强调,推进钢铁行业智能制造是一个庞大的系统工程,涉及资金、技术、人力等诸多方面,系统策划是确保目标一步一步实现的有效方法,不能急功近利、一哄而上,而要稳扎稳打、分步实施、循序渐进,即针对我国钢铁行业和智能制造的特点,逐步推进制造过程智能化。诸如,在重点领域试点建设智能工厂或数字化车间,加快人机智能交互、工业机器人、智能物流管理等技术和装备在生产过程中的应用,促进钢铁制造工艺的仿真优化、数字化控制、状态信息实时监测和自适应控制等的发展。同时,在此基础上全面实施高级计划排程(APS)系统,实现敏捷制造和精准交货。
专家表示,在推进企业决策智能化方面,目前主要以两化深度融合为载体。钢铁智能制造的核心是对信息资源的有效开发和高效利用,目标是提高资源的全局利用效率,其重点在于决策的智能化。为提高资源和能源利用效率,钢铁企业应采用系统优化的思想,建立具有冶炼技术和经济成本的双重模型,实现单部门局部优化与多部门一体化全局优化的平衡。
大数据是传统数据库、数据仓库、商业智能概念外延的扩展和手段。推进大数据的集成应用,关键在于健全钢铁行业信息化基础设施,整合冶金数据资源,突破钢铁行业大数据核心技术,提升钢铁大数据分析应用能力,提高数据安全保障能力,培养复合型大数据人才,组织实施制造业大数据创新应用试点,以推动制造模式变革和冶金行业的转型升级,培育发展冶金产业新业态。
以上由物联传媒转载,如有侵权联系删除
北京产业互联网既肩负着再造数字经济万亿级产业集群的重要使命,也承担着促进数字经济与实体经济融合应用的重要任务。为此,北京软件和信息服务业协会在《数字经济应用场景-案例说》栏目中重磅推出产业互联网系列,旨在生动地展现数字经济如何具体重塑产业的新局面,唤起人们对数字经济,特别是产业互联网改变生产、生活和生产关系的认知。
本期案例中,陕西建工将传统产业与互联网链接,在产业互联网浪潮下,实现了企业全面数字化:一方面实现了数据采集全覆盖,形成了完整的企业核心数据资产;另一方面核心指标体系助决策,实现集团管控横向到边、纵向到底。
产业互联网类型:建筑互联网
案例提供单位:广联达 科技 股份有限公司
陕西建工生产调度中心
广联达利用BIM、云计算、大数据、物联网、移动互联网、人工智能等核心技术,帮助3000家建筑业企业、上万个项目数字化系统成功上线,成功实现数字化转型,500多各类型标杆企业及项目遍布全国各地。其中,陕西建工集团的数字化转型可以称得上是行业典范。
转型诉求
陕西建工的信息化工作始于上世纪90年代,在其不同的 历史 时期都发挥了重要作用。进入2020年,随着陕西建工业务的快速发展,集团在整体数字化转型方面逐渐又发现了以下新痛点:
1、传统的企业级项目管理系统当前信息的实时性和准确度,已不能满足集团对大量项目集中管控的需求;
2、集团内各业务系统之间的整体性尚有不足,信息孤岛仍然存在;
3、项目管理精细化程度需要进一步提升,以促进项目提质增效;
4、各类业务相关的数据采集的效率不高,同时数据分析的能力较弱。
陕西建工无论从企业层面还是项目层面,都有了更加急迫的信息化需求。
企业层面,特别需要一个既能看到包含项目在内的各级组织的生产经营数据,又能对项目现场进行远程沟通和指挥调度的平台。项目层面,迫切需要企业在人员、机械、物资、资金、技术等各种生产要素方面进行协调,以对项目进行更好的支持。
此外,在资源采购环节上一段时间内存在着资源少、信息不对称、采购时间周期长、 *** 作不透明等一些顽疾,致使项目成本高,项目利润处于较低的状态。
创新应用场景
陕西建工的数字化转型,定位于集团的生产经营分析与决策平台,也是项目、企业、集团三个层级之间联系的桥梁和纽带,既要关注企业管理的需求,更要注重解决项目实际诉求。通过构建项目与企业的一体化平台,打造基于数据的项企一体化管理新模式,缩短企业与项目的管理距离,逐步打破企业与项目之间信息易断层、易失真的现状,从而提升企业对重大项目的管控力度与管控效率。
陕西建工数字化平台分为两大板块,即企业层板块和项目层板块。
企业层板块重在打造“数字陕建”理念,实现多维度立体地展现企业实力。通过大数据将企业运行的各项数据指标进行图形化展现,根据不同业务板块构建了综合、经营、生产、 科技 质量、安全监督、设备监督六个舱体。该板块的核心亮点在于主数据的统一及业务数据的互通,并把分散于各个业务系统、各级组织、各个项目上的数据进行集中采集、分析、整理、展现。
项目层板块重在突出“智慧建造”主题,聚焦于对施工项目的精细化管理,发挥智慧工地与BIM相结合的优势,提高项目可视化程度,强化数据采集能力,进而保障企业层数据的真实性与及时性。该板块的内容包含各项目的基本情况、智能物联网监测、视频监控、安全管理、质量管理、劳务管理、生产管理、党建管理等,并通过数据、视频、、文字等方式全方位展现项目情况,让企业对项目的了解更直接、掌握更全面。
产业赋能价值
通过项目的实施,陕西建工实现了数据采集全覆盖和核心指标体系助决策。
1、数据采集全覆盖,形成了完整的企业核心数据资产
根据陕西建工的信息化现状,平台配套采取了多种方式以实现数据采集的全覆盖。针对100多个重点项目,上线了项目BIM+智慧工地数据决策系统,实现了项目全面信息的采集;针对3000多个一般项目,上线了质量安全巡检系统,实现了项目关键信息的采集;针对其他已有的10余个业务系统,进行了与平台的集成,实现了相关业务数据的同步导入;针对无法提取数据的业务系统,配置了12张智慧报表以进行数据导入或录入。通过以上多种方式的配套,实现了真正的项企一体化,彻底打破了数据孤岛,形成了完整的企业核心数据资产。
2、核心指标体系助决策,实现集团管控横向到边、纵向到底
根据陕西建工的业务特点,平台设计了一套包含100多项具有企业特色指标的核心指标体系,以反映项目和企业的运营管理情况。通过这些指标组合呈现各种结果,集团可以重点关注重点项目的运营情况或关键问题,进而分析原因并依据数据做出管理决策,实现集团管控横向到边、纵向到底的诉求。
基于数字技术应用的数字建筑,结合先进的精益建造的方法,集成人员、流程、数据、技术和业务系统,实现建筑的全过程、全要素、全参与方的数字化、在线化、智能化,构建项目、企业和产业的平台生态新体系,从而推动新设计、新建造、新运维为代表的产业升级,实现让每一个工程项目成功的产业目标。
陕西建工将传统产业与互联网链接,在产业互联网浪潮下,实现了企业全面数字化;同时集团致力于对信息的利用,资源的共享与互补,加强行业间的合作交流,将激发工程建筑行业更多的潜在效益,构建建筑产业供应链平台化与生态化。下一步陕西建工将致力于同国家战略融合与区域发展协同,补短板,断长板,依托互联网数字经济和技术,助力建筑业转型升级和高质量发展。
智能制造各地政策及发展目标解读重庆:力争2022年智能制造关联产业产值突破400亿元近期,重庆印发了发展智能制造实施方案,该方案明确了重庆在智能制造方面的目标及任务。
力争到2020年,全市智能制造取得明显进展,累计推动2500家企业实施智能化改造,建设5个具备国内较强竞争力的工业互联网平台、20个智能工厂和200个数字化车间,创建10个行业级智能制造标杆企业,建设5个智能制造示范园区,68%以上规模工业企业迈入数字化制造阶段,52%以上规模工业企业迈入数字化网络化制造阶段,“两化”融合发展水平指数达到58,智能制造关联产业产值突破300亿元,汽车、电子、装备等有条件、有基础的重点产业智能转型取得明显效果。
到2022年,全市智能制造进一步发展,累计推动5000家企业实施智能化改造,建设10个具备国内较强竞争力的工业互联网平台。84%以上规模工业企业迈入数字化制造阶段,64%以上规模工业企业迈入数字化网络化制造阶段,“两化”融合发展水平指数达到62,智能制造关联产业产值突破400亿元。
山东:加速企业智能化转型根据《规划》到2022年,山东传统制造业重点领域将基本实现数字化制造,条件、基础好的重点产业和重点企业基本实现智能化转型。
到2022年,山东省传统产业企业数字化研发设计工具普及率要达到72%以上,规模以上工业企业关键工序数控化率达到57%以上,万人机器人数量将达到200台以上,山东省制造业数字化、智能化水平在国内位居前列;智能制造试点示范项目实施前后企业运营成本降低20%,产品研制周期缩短20%,生产效率提高20%,能源利用率提高13%,产品不良品率要大幅度降低。
安徽:新一代人工智能产业发展规划到2020年,人工智能发展环境和基础设施不断完善,重点前沿理论和应用技术进步明显,在产品智能、工业智能和服务智能等重点领域涌现一批优秀企业,集聚一批高水平的领军人才和创新团队,在人工智能平台、智能工业机器人、智能家电、智能装备制造等领域形成特色应用。人工智能产业规模超过150亿元,带动相关产业规模达到1000亿元。
中期目标。到2025年,重点前沿理论和应用技术在部分领域取得突破,相关技术在智能农业、智能制造、智能医疗、智慧城市等领域得到广泛应用,在智能无人设备、服务机器人等领域确立竞争优势,培育若干具有国际先进水平的人工智能企业和人才团队。人工智能产业规模达到500亿元,带动相关产业规模达到4500亿元。
广东:2025制造业全面进入智能化制造阶段到2025年,广东省制造业综合实力、可持续发展能力显著增强,在全球产业链、价值链中的地位明显提升,全省建成全国智能制造发展示范引领区和具有国际竞争力的智能制造产业集聚区。
到2025年:全省制造业全面进入智能化制造阶段,基本建成制造强省。制造业水平显著提升,规模以上工业全员劳动生产率提升至25万元/人。自主创新能力明显提升,规模以上工业企业研发投入占主营业务收入的比重达到17%以上,安全可控的智能技术产品配套能力和信息化服务能力明显增强。信息化与工业化深度融合,规模以上工业企业信息技术集成应用达到国内领先水平,制造业质量竞争力指数达到865。骨干企业国际地位凸显,培育一批年主营业务收入超100亿元、1000亿元的工业企业,涌现一批掌握核心关键技术、拥有自主品牌、开展高层次分工的国际化企业。具有自主知识产权的技术、产品和服务的国际市场份额大幅提高,建成全国智能制造发展示范引领区和具有国际竞争力的智能制造产业集聚区。
上海:制造业转型升级发展规划深入贯彻制造强国、全球科技创新中心建设战略和供给侧结构性改革部署,将智能制造作为“上海制造”向“上海智造”转变的主攻方向,实施智能制造应用“十百千”工程,坚持应用牵引、软硬协同、分类施策、政府引导,大力推广智能制造应用新模式,建立智能制造应用新机制,到2020年,力争把上海打造成为全国智能制造应用的高地、核心技术的策源地以及系统解决方案的输出地。
江苏:2020年将建成1000家智能车间日前,为加快推动互联网、大数据、人工智能和实体经济深度融合,推进工业经济高质量发展,江苏省印发《关于进一步加快智能制造发展的意见》。目标到2020年,全省建成1000家智能车间,创建50家左右省级智能制造示范工厂,试点创建10家左右省级智能制造示范区。
根据《意见》要求,要加强领军服务机构建设,进一步提升智能制造专业服务水平——培育壮大系统解决方案供应商。到2020年,江苏省培育形成100家左右国内有影响力的本土化、品牌化智能制造领军服务机构。
2019智能制造业十大发展趋势01
安全生产将成为重中之重
当智能制造融合了机器人、人工智能众多前沿科技后,人为能够及时控制的事故似乎变得更加简单,但是在设备增多的情况下,如何有效管理人机交互时的安全性是重点之一。
另外,在工业物联网进入制造业后,工业物联网遭到数据攻击的事件常有发生,所以企业的设备、产品等数据的安全也显得尤为重要。
02
智能制造行业将会近一步扩大
智能制造在汽车行业、3C电子领域的应用已经逐步加深,当各企业开始认识到智能制造是实现中国制造2025的重要方向后,数字化、网络化、智能化能够对企业的产值和效率持续优化,智能制造会进一步渗透石化、纺织、机械等行业。
03
通用性技术或将成为AI+的突破口
在定制化柔性制造、多场景生产的大力发展下,通用性技术并不能满足生产需求。对于AI赋能传统工业,就能够容易解决这些需求。
在大数据的积累下,企业能够利用AI实现专业场景的快速转变,真正做到制造向“智”造转型。
04
数字双胞胎技术或将崛起
数字孪生技术将作为企业数字化升级和智能工厂建设的第一选择,车企可以通过这些技术在研发过程中解决生产过程复杂、资源浪费等产生高成本的问题,以更低的成本做出数字化模型。
通过降低成本,汽车行业在明年的销量可期。同时,在3C领域引入数字双胞胎技术也可带动行业的发展。
预计到2020年,至少50%年收入超过10亿元的制造商将为其产品或资产启动至少一项数字孪生项目。
05
打造精准大数据闭环
近些年,工业大数据开始被企业所重视,利用大数据能够挖掘那些隐藏在背后的客户价值,帮助企业完成时限客户需求、生产系统、商业模式、决策模式的转变。大数据能够帮助企业从0做到1,然后再从1做到N,从N做到1(个性化)。
要实现这样的模式,就需要企业构建从构建从采集、分析、转化、反馈等环节的精准数据流闭环。
06
更多互联网企业进军智能制造
互联网企业进军工业领域,即“互联网+智能制造”已取得初步成效。阿里云与西门子合作,宣布正式进军工业物联网,同时百度智慧工厂以及京东智慧供应链等都在打造自己的智能制造产业。
互联网企业具有长时间的数据积累和技术优势,在进军工业领域后,能够给传统制造企业带来更多的技术应用场景,加速企业智能制造的转型。
07
用户需求将引导企业转型
工业发展进程正在从企业产品牵引用户需求转变为用户需求引领企业生产,智能制造将会改变传统制造从生产环节降低成本增效,进而转向提供高附加值的衍生服务,从提供智能产品到智能服务实现附加值提升。
08
行业级工业互联网平台成熟发展
通用性行业平台由于纵深程度有限,市场供给与需求并不匹配,使得企业上云意愿不强,尚未探索出成熟的市场化模式。
行业级工业互联网平台由于兼具聚焦和普适双重特性,面对智能制造各行业不同需求,有望率先探索出可行的市场化商业模式。
09
聚焦智能制造解决方案等细分行业
由于国内智能制造起步较晚,对于人才的挖掘和培养以及资金压力是企业所面临的最大问题,如果从几个发展方向上切入智能制造,或许只有大企业才能负担起。
如果中小企业从智能制造系统等细分领域深入研究将有望成为独角兽。
10
超高附加值制造领域带来机遇
增材制造技术应用在桌面级应用以及简单的工艺大规模的场景不具备成本优势,而作为发动机、风电叶片、潜艇螺旋桨等为代表的超高附加值、超大型定制化单品制造领域可能会在2019年给增材制造在工业领域带来机会。
——预见2023:《2023年中国物联网产业全景图谱》(附市场规模、竞争格局和发展前景等)
行业主要上市公司:大富科技(300134)、梦网集团(002123)、共进股份(603118)、胜宏科技(300476)、润和软件(300339)、立昂技术(300603)等
本文核心数据:物联网产业规模、竞争格局、发展前景预测等
产业概况
1、定义
所谓“物联网”(Internet of
Things,IOT),又称传感网,指的是将各种信息传感设备,如射频识别(RFID)装置、红外感应器、全球定位系统、激光扫描器等种种装置与互联网连接起来并形成一个可以实现智能化识别和可管理的网络。
早期的物联网是指依托射频识别技术的物流网络,随着技术和应用的发展,物联网的内涵已经发生了较大的变化。现阶段,物联网是指在物理世界的实体中部署具有一定感知能力、计算能力和执行能力的各种信息传感设备,通过网络设施实现信息传输、协同和处理,从而实现广域或大范围的人与物、物与物之间信息交换需求的互联。物联网依托多种信息获取技术,包括传感器、射频识别(RFID)、二维码、多媒体采集技术等。物联网的几个关键环节可以归纳为“感知、传输、处理”。
2、产业链剖析:共有四大层面
所谓产业链,是以生产相同或相近产品的企业集合所在产业为单位形成的价值链,是承担着不同的价值创造职能的相互联系的产业围绕核心产业,通过对信息流、物流、资金流的控制,在采购原材料、制成中间产品以及最终产品、通过销售网络把产品送到消费者手中的过程中形成的由供应商、制造商、分销商、零售商、最终用户构成的一个功能链结构模式。
从产业链条来看,物联网的产业链条由上而下可以分为感知层、传输层、平台层和应用层四个层级。
自2018年中美贸易摩擦以来,美国加大了对中国高新技术出口的限制,不断扩大实体清单,影响了中国一些科技主导型企业的发展,这从侧面警示了中国在全球供应链中地位的脆弱性。物联网通过传感器把物理世界与数字世界联系起来,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。其中传感器作为数据采集的源头,已经成为各种应用能力所需的数据来源所在。目前中国国内也涌现出了一些传感器芯片重点生产企业,如:高德红外、西人马、士兰微、敏芯微电子、博通、全志科技、大唐微电子、复旦微电子等。
行业发展历程:处于市场验证期
物联网是通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等
信息传感设备,按约定的协议,把任何物体与因特网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。物联网发展历史悠久,可分为三个阶段:
行业政策背景:政策大力推进
根据最新发布的《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》,在“十四五”期间,明确新基建,还要让5G用户普及率提高到56%。并且5次提到关于物联网的规划发展,除了划定数字经济的7大重点产业外,其余4次提到的场合均体现出对物联网发展重点的表述。
十四五规划中划定了7大数字经济重点产业,包括云计算、大数据、物联网、工业互联网、区块链、人工智能、虚拟现实和增强现实,这7大产业也将承担起数字经济核心产业增加值占GDP超过10%目标的重任。
产业发展现状
1、中国物联网连接数快速增长
全球物联网仍保持高速增长。物联网领域仍具备巨大的发展空间,根据GSMA发布的《The mobile economy
2020(2020年移动经济)》报告显示,2019年全球物联网总连接数达到120亿,预计到2025年,全球物联网总连接数规模将达到246亿,年复合增长率高达13%。我国物联网连接数全球占比高达30%,2019年我国的物联网连接数363亿。而根据2021年9月世界物联网大会上的数据,2020年末,我国物联网的数量已经达到453亿个,预计2025年能够超过80亿个。
2、应用层与平台层价值最高
从产业链价值分布看,应用层和平台层贡献最大的附加值,分别占到35%左右,传输连接层虽然重要,但产值规模较小;底层的感知层元器件由于种类众多,产业价值也较大,占到20%左右。
3、物联网应用者使用情况调研
微软发布的第三版《IoT Singal(物联网信号)》报告显示,2021年物联网的应用持续保持增长。91%的受访组织是物联网应用者。
物联网项目可分为四个阶段:学习、试验/概念验证、购买和使用。2021年,29%的物联网项目处于学习阶段;处于试验/概念验证阶段的项目比例仍保持不变,2020年和2021年均为25%;处于购买阶段的项目比例增加了1%,从2020年的21%增加到2021年的22%;处于使用阶段的项目在2020年和2021年保持稳定,均为25%。
4、中国物联网市场规模突破25万亿
目前,物联网已较为成熟地运用于安防监控、智能交通、智能电网、智能物流等。近几年来,在各地政府的大力推广扶持下,物联网产业逐步壮大。再加之近几年厂商对物联网这一概念的普及,民众对物联网的认知程度不断提高,使得我国物联网市场规模整体呈快速上升的趋势。2019年我国物联网市场规模约在176万亿元左右,2020年根据赛迪公布的数据,我国物联网市场规模约达到214万亿元左右。初步统计,2021年市场规模为263万亿元。预计未来三年,中国物联网市场规模仍将保持18%以上的增长速度。中国物联网市场投资前景巨大,发展迅速,在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。
产业竞争格局
1、区域竞争:北京物联网相关项目最多
工信部共公开2批《物联网关键技术与平台创新类、集成创新与融合应用类项目公示名单》,结合2批的项目名单分析,目前中国物联网关键技术与平台创新类、集成创新与融合应用类项目主要集中在北京、浙江、广东和山东。
2、企业竞争:各个行业的企业在相关领域有所布局,以龙头企业间的竞争为主
物联网技术的应用是传统行业转型升级的根本,传统行业转型升级的方向以“数字化”和“智慧化”为主。根据物联网的应用领域来看,企业在各自行业的“数字化”和“智慧化”有所布局。
互联网周刊发布了2021物联网企业100强,榜单显示华为排名第一、海尔智家、海康威视位居第二和第三,小米集团、中兴通讯、大华股份、阿里云、联通数科物联网、科大讯飞、神州控股进入前十,依次排名第4-10名。
产业发展前景:物联网将继续保持高速增长
1、发展前景:市场规模不断扩大,产业物联网占比逐渐上升
物联网是中国新一代信息技术自主创新突破的重点方向,蕴含着巨大的创新空间,在芯片、传感器、近距离传输、海量数据处理以及综合集成、应用等领域,创新活动日趋活跃,创新要素不断积聚。物联网在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。中国以加快转变经济发展方式为主线,更加注重经济质量和人民生活水平的提高,采用包括物联网在内的新一代信息技术改造升级传统产业,提升传统产业的发展质量和效益,提高社会管理、公共服务和家居生活智能化水平。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。综合多方面的情况分析,前瞻认为未来6年中国物联网的发展将保持高速增长,到2027年市场规模超过7万亿元。
根据信通院于2020年12月发布的《2020中国物联网白皮书》,2019年中国物联网连接数中产业物联网和消费者市场各占一半,预计到2025年,物联网连接数的大部分增长来自于产业市场,产业物联网的连接数将占到总体的61%。由此来看,未来产业物联网的市场发展潜力大于消费物联网。
2、发展趋势:重点城市带动周边城市发展,分工协作格局将进一步显现
国内物联网产业已初步形成环渤海、长三角、珠三角,以及中西部地区等四大区域集聚发展的总体产业空间格局。其中,长三角地区产业规模位列四大区域的首位。未来中国物联网产业空间演变将呈现出三大趋势:
更多本行业研究分析详见前瞻产业研究院《中国物联网行业细分市场需求与投资机会分析报告》。
物联网工程指的是物联网工程专业。比如移动终端、工业系统等等,和服务功能。
物联网工程是将无处不在的末端设备和设施,具备“内在智能”传感器、移动终端、工业系统、楼控系统、家庭智能设施、视频监控系统等、和“外在使能”的,贴上RFID的各种资产、携带无线终端个人与车辆等等“智能化物件或动物”或“智能尘埃”。
各种无线和/或有线的长距离和/或短距离通讯网络实现互联互通应用大集成、基于云计算的SaaS营运等模式,内网、专网、和/或互联网环境下,适当的信息安全保障机制。
提供安全可控乃至个性化的实时在线监测、定位追溯、报警联动、调度指挥、预案管理、远程控制、安全防范、远程维保、在线升级、统计报表、决策支持、领导桌面集中展示的等管理和服务功能,实现对“万物”的“高效、节能、安全、环保”的“管、控、营”一体化。
随着全球信息化的浪潮,信息化产业不断发展、延伸,已经深入了众多的企业及个人,SOA系统架构的出现,将给信息化带来一场新的革命。
纵观信息化建设与应用的历程,尽管出现过XML(标准通用标记语言的子集)、Unicode、UML等众多信息标准,但是许多异构系统之间的数据源仍然使用各自独立的数据格式、元数据以及元模型,这是信息产品提供商一直以来形成的习惯。各个相对独立的源数据集成一起,往往通过构建一定的数据获取与计算程序来实现,这样的做法需要花费大量工作。信息孤岛大量存在的事实,使信息化建设的ROI(投资回报率)大大降低,ETL成为集中这些异构数据的有效工具。ETL常用于从源系统中提取数据,将数据转换为与目标系统相兼容的格式,然后将其装载到目标系统中。数据经过获取、转换、装载后,要产生应用价值,还需另外的数据展现工具予以实现,如此复杂的数据应用过程,必定产生高昂的应用成本。
结构化的数据管理尚可通过以上方法,予以实现其集成应用。在非结构化的内容方面,这些具有挑战性的问题令人生畏。内容管理的应用方案基于不同的信息化应用系统,而且大部分是纵向的以组织部门为界限的。在内容管理市场中,经常使用来自不同厂商的产品来提供这些解决方案。即使是同一个厂商的产品,相互之间的功能也是经常重叠,并且无法集成。
随着信息化建设的深入,不同应用系统之间的功能界限已趋于模糊。同时企业资源计划系统和协同商务系统,又需要商业智能的分析展现数据提供用户 *** 作依据。
在激烈竞争且多变的市场环境下,企业的管理模式很难固化,应用传统的信息化软件,当企业要做出一些改动时需要面对巨大的挑战。
SOA系统架构的出现,信息化变革
微软大中华区服务部总经理辛儿伦介绍说,从上世纪60年代应用于主机的大型主机系统,到80年代应用于PC的CS架构,一直到90年度互联网的出现,系统越来越朝小型化和分布式发展。2000年WebService出现后,SOA被誉为下一代Web服务的基础框架,已经成为计算机信息领域的一个新的发展方向。
SOA的出现给传统的信息化产业带来新的概念,不再是各自独立的架构形式,能够轻松的互相联系组合共享信息。
可复用以往的信息化软件。基于SOA的协同软件提供了应用集成功能,能够将ERP、CRM、HR等异构系统的数据集成。
松散耦合方式,只要充分了解业务的进程,就可以不用编写一行代码,通过流程图实现一套我们自己的信息系统。就像已经给你准备好了砖瓦和水泥,只需要想好盖什么样的房子就可以轻松的盖起。加快开发速度,并且减少了开发和维护的费用。软件将所有的管理提炼成表单和流程,以记录管理的内容,指定过程的流转方向。
更简便的信息和数据集成。信息集成功能可以将散落在广域网和局域网上的文档、目录、网页轻松集成,加强了信息的协同相关性。同时,复杂、成本高昂的数据集成,也变成了可以简单且低成本实现的参数设定。创建了完全集成的信息化应用新领域。
在具体的功能实现上,SOA协同软件所实现的功能包括了知识管理、流程管理、人事管理、客户管理、项目管理、应用集成等,从部门角度看涉及了行政、后勤、营销、物流、生产等。从应用思想上看,SOA协同软件中的信息管理功能,全面兼顾了贯穿整个企业组织的信息化软硬件投入。尽管各种IT技术可以用于不同的用途,但是信息管理并没有任意地将信息分为结构化或者非结构化的部分,因此ERP等结构化管理系统并不是信息化建设的全部;同时,信息管理也没有将信息化解决方案划分为部门的视图,因此仅仅以部分为界限去构建软件应用功能的思想未必是不可撼动的。基于SOA的协同软件与ERP、CRM等传统应用软件相比,关键的不同在于它可以在合适的时间、合适的地点并且有正当理由向需要它提供服务的任何用户提供服务。
物联网主要技术。在物联网应用中有三项关键技术为物联网开辟出极为广阔的应用前景:
1、传感器技术:这也是计算机应用中的关键技术。大家都知道,到目前为止绝大部分计算机处理的都是数字信号。自从有计算机以来就需要传感器把模拟信号转换成数字信号计算机才能处理。
2、RFID标签:也是一种传感器技术,RFID技术是融合了无线射频技术和嵌入式技术为一体的综合技术,RFID在自动识别、物品物流管理有着广阔的应用前景,这也是为什么“物流”这个词总是与“物联网”同时出现。
3、嵌入式系统技术:是综合了计算机软硬件、传感器技术、集成电路技术、电子应用技术为一体的复杂技术。经过几十年的演变,以嵌入式系统为特征的智能终端产品随处可见;小到人们身边的MP3,大到航天航空的卫星系统。嵌入式系统正在改变着人们的生活,推动着工业生产以及国防工业的发展。如果把物联网用人体做一个简单比喻,传感器相当于人的眼睛、鼻子、皮肤等感官,网络就是神经系统用来传递信息,嵌入式系统则是人的大脑,在接收到信息后要进行分类处理。这个例子很形象的描述了传感器、嵌入式系统在物联网中的位置与作用。
物联网应用领域。物联网用途广泛,遍及智能交通、环境保护、政府工作、公共安全、平安家居、智能消防、工业监测、环境监测、路灯照明管控、景观照明管控、楼宇照明管控、广场照明管控、老人护理、个人健康、花卉栽培、水系监测、食品溯源、敌情侦查和情报搜集等多个领域。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)