国内物联网开发平台有哪些呢?

国内物联网开发平台有哪些呢?,第1张

物联网平台基于IaaS、PaaS、SaaS三种云计算服务模型,逐步完善了其功能体系,即ICP(基础设施云服务平台)、CMP(连接管理)、DMP(设备管理平台)、AEP(应用使能平台)、BAP(业务分析平台)等。
下面按照4大领域的玩家的分类方法逐一介绍PaaS物联网平台,其中包含通信领域、互联网领域、软件系统服务领域、垂直领域。
其中,通信领域包括以移动、联通、电信、华为、新华三为代表的电信运营商和电信设备商;互联网领域包括阿里、腾讯、百度、小米等;
软件系统服务领域包括IBM、微软、PTC等;
垂直领域主要分为两个部分,包括以三一重工、GE、西门子等为代表的工业类企业,以基本立子、普奥云、机智云、涂鸦智能、寄云等为代表的创业企业。

可参考下图填写高中生研究性学习与创新成果:

研究性学习代表成果

研究课题:“物联网时代”的特点及其在日常生活中的体现

成果简介:

本文首先介绍了“物联网”的概念及其在国内外的发展,并指出“物联网”概念已经是一个“中国制造”的概念,已被贴上“中国式”标签。伴随云计算日益普及以及人工智能(AI)技术日益成熟,物联网时代已经从 10 时代悄然迈入 20 时代。

物联网时代具有显著的特点,一是“物联网即服务”走向落地,二是物联网呈现局域化、功能化、行业化互联化,三是物联网技术设备升级,四是物联网的安全性引起重视。

随着物联网技术的不断发展,它已悄无声息地融入到人们的日常生活,并简单介绍了物联网 20 在物流、交通、家居、安防、医疗、建筑、零售等日常生活中的应用场景,展望了物联网的发展趋势。

“ 物联网时代 ” 的特点及其在日常生活中的体现

摘要 通过对“物联网”的概念介绍,引出物联网时代 20 的基本内涵,总结出物联网 20 时代的基本特点,并简单介绍了物联网 20 在物流、交通、家居、安防、医疗、建筑、零售等日常生活中的应用场景,并展望了物联网的发展趋势。

关键词 物联网 人工智能 云计算

物联网是继计算机、互联网与移动通信网之后的又一次信息产业浪潮,能够使我们的社会更加自动化,能够让我们的生活更加便利,能够整体提高社会的信息化程度,将在提升信息传送效率、改善民生、提高生产率、降低管理成本等社会各方面发挥重要作用。

本文系统介绍了物联网的起源、概念及其发展,阐述物联网时代 20 的一些特点,并简要叙述了物联网在交通、医疗、建筑等日常生活中的应用情况。

一、 “ 物联网时代 ” 基本内涵

1 11 物联网

1999 年,美国麻省理工大学教授凯文·阿什顿(Kevin Ashton)最早提出了物联网(IoT)的概念。阿什顿认为,计算机最终能够自主产生及收集数据而无需人工干预,因此将推动物联网的诞生。简单来说,物联网的理念在于物体之间的通信,以及相互之间的在线互动。

2005 年,在突尼斯举行的信息社会世界峰会上,国际电信联盟发布了《ITU 互联网报告 2005:物联网》,正式提出了“物联网”的概念,将物联网定义为通过各种信息传感设备。

如传感器、射频识别(RFID)技术、全球定位系统、红外线感应器、激光扫描器、气体感应器等各种装置与技术,实时采集任何需要监控、连接、互动的物体或过程,采集其声、光、热、电、力学、化学、生物、位置等各种需要的信息。

与互联网结合形成的一个巨大网络,其目的是实现物与物、物与人、所有的物品与网络的连接,方便识别、管理和控制。

中国物联网校企联盟将物联网定义为当下几乎所有技术与计算机、互联网技术的结合,实现物体与物体之间:环境以及状态信息实时的共享以及智能化的收集、传递、处理、执行。广义上说,当下涉及到信息技术的应用,都可以纳入物联网的范畴。

物联网的概念已经是一个“中国制造”的概念,它的覆盖范围与时俱进,已经超越了 1999 年 Ashton教授和 2005 年 ITU 报告所指的范围,物联网已被贴上“中国式”标签。

2 12 物联网时代

伴随云计算日益普及,以及人工智能(AI)技术日益成熟,推动信息科技向物联网时代转变,特别在IoT+AI 融合下,使得万物具有感知能力,物理设备不再冷冰冰,而是具有生命力,让物理世界和数字世界深度融合,继此行业边界越来越模糊,人类进入全新的智能社会。

物联网时代是通过射频识别、红外感应器、全球定位系统、激光扫描器、气体感应器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络时代。

物联网是互联网的应用拓展,与其说物联网是网络,不如说物联网是业务和应用。因此,应用创新是物联网发展的核心,以用户体验为核心的创新是物联网发展的灵魂。

随着“物联网”的概念从提出到发展,从实践到创新,物联网时代已经从 10 时代悄然迈入 20 时代。物联网 20 可以理解为 IoE(Internet of Everything),而物联网 10 是 IoT(Internet of Things),前者范围比后者更大,囊括的范围也更加广泛。

IoE 强调的万物互联概念是任何设备、事物都能通过网络连接起来,并在网络中彼此之间进行通讯。“万物互联”(IoE)的时代,所有的物(Everything)将会获得语境感知、增强的处理能力和更好的感应能力。

二、 “ 物联网时代 ” 的特点

与互联网时代相比,物联网时代具有显著的特点:

1、“物联网即服务”走向落地

既然叫做物联网 20 时代,当然是和物联网 10 时代有较明显的进步的。所以,物联网 20 时代的一个明显特征就是邬贺铨院士曾提到的“物联网即服务”走向落地。

2、物联网呈现局域化、功能化、行业化互联化

物联网既然要通过服务的方式落地,那么如何落地?此时承担落地职责的便是真正的物联网企业——物联网平台企业。物联网的人连物、物连物具有局域化、功能化、行业化互联化,各个行业应用在应用中形成对网络层的具体需求,并逐渐行业标准化。

3、物联网技术设备升级

上层应用逐渐与物联网网络层剥离开来,物联网网络支撑技术(NB-IoT、Lora 等)充分发展、百花齐放。在感知层将传感器升级为“传感器+执行器”,使“眼手”能够协调一致,发挥其更大的功能和作用。

4、物联网的安全性引起重视

物联网的安全性自这个概念提出以来,一直备受人们关注,今后,物联网的安全性将做为一个相对独立的研究领域,得到足够的重视与发展。

未来的物联网 20 应该通过人工智能、大数据、云计算、5G 等技术的完善,不断提升人工智能的水平,完善语言助手技术,加强物联网的安全性与信任感,外在体现就是 *** 控方式的迭代升级。

也就是说,未来的物联网设备不再单纯依靠语音控制来进行 *** 作,而是整合并运用人工智能、大数据、云计算、5G 等技术,这样即便我们的一个动作、一个眼神、一个想法,甚至即使我们面无表情,物联网也可以了解我们的想法。

三、 “ 物联网时代 ” 在日常生活中的体现

近些年,随着物联网技术的不断发展,它已悄无声息地融入到我们的生活中,小至路由器、智能音箱、冰箱,大到汽车、工业设备,越来越多的物品都接入了物联网。

31 智慧物流

智慧物流指的是以物联网、大数据、人工智能等信息技术为支撑,在物流的运输、仓储、运输、配送等各个环节实现系统感知、全面分析及处理等功能。当前,应用于物联网领域主要体现在三个方面:仓储、运输监测以及快递终端。

通过物联网技术实现对货物的监测以及运输车辆的监测,包括货物车辆位置、状态以及货物温湿度、油耗、车速等。物联网技术的使用能提高运输效率,提升整个物流行业的智能化水平。

2 32 智能交通

智能交通是物联网的一种重要体现形式,利用信息技术将人、车和路紧密的结合起来,改善交通运输环境、保障交通安全以及提高资源利用率。运用物联网技术具体的应用领域,包括智能公交车、共享单车、车联网、充电桩监测、智能红绿灯以及智慧停车等领域。

3 33 智能安防

安防是物联网的一大应用市场,因为安全永远都是人们的一个基本需求。传统安防对人员的依赖性比较大,非常耗费人力,而智能安防能够通过设备实现智能判断。

目前,智能安防最核心的部分在于智能安防系统,该系统是对拍摄的图像进行传输与存储,并对其分析与处理。一个完整的智能安防系统主要包括

三大部分:门禁、报警和监控,行业中主要以视频监控为主。

4 34 智慧能源环保

智慧能源环保属于智慧城市的一个部分,其物联网应用主要集中在水能、电能、燃气、路灯等能源以及井盖、垃圾桶等环保装置。

如智慧井盖监测水位以及其状态、智能水电表实现远程抄表、智能垃圾桶自动感应等。将物联网技术应用于传统的水、电、光能设备进行联网,通过监测,提升利用效率,减少能源损耗。

5 35 智能医疗

在智能医疗领域,新技术的应用必须以人为中心。而物联网技术是数据获取的主要途径,能有效地帮助医院实现对人的智能化管理和对物的智能化管理。

对人的智能化管理指的是通过传感器对人的生理状态(如心跳频率、体力消耗、血压高低等)进行监测,主要指的是医疗可穿戴设备,将获取的数据记录到电子健康文件中,方便个人或医生查阅。

除此之外,通过 RFID 技术还能对医疗设备、物品进行监控与管理,实现医疗设备、用品可视化,主要表现为数字化医院。

6 36 智慧建筑

建筑是城市的基石,技术的进步促进了建筑的智能化发展,以物联网等新技术为主的智慧建筑越来越受到人们的关注。当前的智慧建筑主要体现在节能方面,将设备进行感知、传输并实现远程监控,不仅能够节约能源同时也能减少楼宇人员的运维。

目前,智慧建筑主要体现在用电照明、消防监测、智慧电梯、楼宇监测以及运用于古建筑领域的白蚁监测。

7 37 智能制造

智能制造细分概念范围很广,涉及很多行业。制造领域的市场体量巨大,是物联网的一个重要应用领域,主要体现在数字化以及智能化的工厂改造上,包括工厂机械设备监控和工厂的环境监控。

通过在设备上加装相应的传感器,使设备厂商可以远程随时随地对设备进行监控、升级和维护等 *** 作,更好的了解产品的使用状况,完成产品全生命周期的信息收集,指导产品设计和售后服务。厂房的环境主要是采集温湿度、烟感等信息。

8 38 智能家居

智能家居指的是使用不同的方法和设备,来提高人们的生活能力,使家庭变得更舒适、安全和高效。物联网应用于智能家居领域,能够对家居类产品的位置、状态、变化进行监测,分析其变化特征,同时根据人的需要,在一定的程度上进行反馈。

9 39 智能零售

行业内将零售按照距离,分为了三种不同的形式:远场零售、中场零售、近场零售,三者分别以电商、商场/超市和便利店/自动售货机为代表。物联网技术可以用于近场和中场零售,且主要应用于近场零售,即无人便利店和自动(无人)售货机。

智能零售通过将传统的售货机和便利店进行数字化升级、改造,打造无人零售模式。通过数据分析,并充分运用门店内的客流和活动,为用户提供更好的服务,给商家提供更高的经营效率。

0 310 智慧农业

智慧农业指的是利用物联网、人工智能、大数据等现代信息技术与农业进行深度融合,实现农业生产全过程的信息感知、精准管理和智能控制的一种全新的农业生产方式,可实现农业可视化诊断、远程控制以及灾害预警等功能。

物联网应用于农业主要体现在两个方面,即农业种植和畜牧养殖。农业种植通过传感器、摄像头和卫星等收集数据,实现农作物数字化和机械装备数字化(主要指的是农机车联网)发展。

畜牧养殖指的是利用传统的耳标、可穿戴设备以及摄像头等收集畜禽产品的数据,通过对收集到的数据进行分析,运用算法判断畜禽产品健康状况、喂养情况、位置信息以及发情期预测等,对其进行精准管理。

四、物联网未来的发展趋势

物联网是继计算机、互联网和移动通信之后的又一次信息产业的革命性发展,已被正式列为国家重点发展的战略性新兴产业之一。

从智能安防到智能电网,从二维码普及到“智慧城市”落地,作为被寄予厚望的新兴产业,物联网正四处开花,在许多行业和领域得到应用,并悄然影响着人们的生活。

伴随着技术的进步和相关配套的完善,在未来几年,技术与标准国产化、运营与管理体系化、产业草根化将成为我国物联网发展的三大趋势。

以上内容参考 百度百科——探究性学习

常见的大数据术语表(中英对照简版):
A
聚合(Aggregation) – 搜索、合并、显示数据的过程
算法(Algorithms) – 可以完成某种数据分析的数学公式
分析法(Analytics) – 用于发现数据的内在涵义
异常检测(Anomaly detection) –
在数据集中搜索与预期模式或行为不匹配的数据项。除了“Anomalies”,用来表示异常的词有以下几种:outliers, exceptions,
surprises, contaminants他们通常可提供关键的可执行信息
匿名化(Anonymization) – 使数据匿名,即移除所有与个人隐私相关的数据
应用(Application) – 实现某种特定功能的计算机软件
人工智能(Artificial Intelligence) –
研发智能机器和智能软件,这些智能设备能够感知周遭的环境,并根据要求作出相应的反应,甚至能自我学习
B
行为分析法(Behavioural Analytics) –
这种分析法是根据用户的行为如“怎么做”,“为什么这么做”,以及“做了什么”来得出结论,而不是仅仅针对人物和时间的一门分析学科,它着眼于数据中的人性化模式
大数据科学家(Big Data Scientist) – 能够设计大数据算法使得大数据变得有用的人
大数据创业公司(Big data startup) – 指研发最新大数据技术的新兴公司
生物测定术(Biometrics) – 根据个人的特征进行身份识别
B字节 (BB: Brontobytes) – 约等于1000 YB(Yottabytes),相当于未来数字化宇宙的大小。1
B字节包含了27个0!
商业智能(Business Intelligence) – 是一系列理论、方法学和过程,使得数据更容易被理解
C
分类分析(Classification analysis) – 从数据中获得重要的相关性信息的系统化过程; 这类数据也被称为元数据(meta
data),是描述数据的数据
云计算(Cloud computing) – 构建在网络上的分布式计算系统,数据是存储于机房外的(即云端)
聚类分析(Clustering analysis) –
它是将相似的对象聚合在一起,每类相似的对象组合成一个聚类(也叫作簇)的过程。这种分析方法的目的在于分析数据间的差异和相似性
冷数据存储(Cold data storage) – 在低功耗服务器上存储那些几乎不被使用的旧数据。但这些数据检索起来将会很耗时
对比分析(Comparative analysis) – 在非常大的数据集中进行模式匹配时,进行一步步的对比和计算过程得到分析结果
复杂结构的数据(Complex structured data) –
由两个或多个复杂而相互关联部分组成的数据,这类数据不能简单地由结构化查询语言或工具(SQL)解析
计算机产生的数据(Computer generated data) – 如日志文件这类由计算机生成的数据
并发(Concurrency) – 同时执行多个任务或运行多个进程
相关性分析(Correlation analysis) – 是一种数据分析方法,用于分析变量之间是否存在正相关,或者负相关
客户关系管理(CRM: Customer Relationship Management) –
用于管理销售、业务过程的一种技术,大数据将影响公司的客户关系管理的策略
D
仪表板(Dashboard) – 使用算法分析数据,并将结果用图表方式显示于仪表板中
数据聚合工具(Data aggregation tools) – 将分散于众多数据源的数据转化成一个全新数据源的过程
数据分析师(Data analyst) – 从事数据分析、建模、清理、处理的专业人员
数据库(Database) – 一个以某种特定的技术来存储数据集合的仓库
数据库即服务(Database-as-a-Service) – 部署在云端的数据库,即用即付,例如亚马逊云服务(AWS: Amazon Web
Services)
数据库管理系统(DBMS: Database Management System) – 收集、存储数据,并提供数据的访问
数据中心(Data centre) – 一个实体地点,放置了用来存储数据的服务器
数据清洗(Data cleansing) – 对数据进行重新审查和校验的过程,目的在于删除重复信息、纠正存在的错误,并提供数据一致性
数据管理员(Data custodian) – 负责维护数据存储所需技术环境的专业技术人员
数据道德准则(Data ethical guidelines) – 这些准则有助于组织机构使其数据透明化,保证数据的简洁、安全及隐私
数据订阅(Data feed) – 一种数据流,例如Twitter订阅和RSS
数据集市(Data marketplace) – 进行数据集买卖的在线交易场所
数据挖掘(Data mining) – 从数据集中发掘特定模式或信息的过程
数据建模(Data modelling) – 使用数据建模技术来分析数据对象,以此洞悉数据的内在涵义
数据集(Data set) – 大量数据的集合
数据虚拟化(Data virtualization) –
数据整合的过程,以此获得更多的数据信息,这个过程通常会引入其他技术,例如数据库,应用程序,文件系统,网页技术,大数据技术等等
去身份识别(De-identification) – 也称为匿名化(anonymization),确保个人不会通过数据被识别
判别分析(Discriminant analysis) –
将数据分类;按不同的分类方式,可将数据分配到不同的群组,类别或者目录。是一种统计分析法,可以对数据中某些群组或集群的已知信息进行分析,并从中获取分类规则。
分布式文件系统(Distributed File System) – 提供简化的,高可用的方式来存储、分析、处理数据的系统
文件存贮数据库(Document Store Databases) – 又称为文档数据库(document-oriented database),
为存储、管理、恢复文档数据而专门设计的数据库,这类文档数据也称为半结构化数据
E
探索性分析(Exploratory analysis) –
在没有标准的流程或方法的情况下从数据中发掘模式。是一种发掘数据和数据集主要特性的一种方法
E字节(EB: Exabytes) – 约等于1000 PB(petabytes), 约等于1百万 GB。如今全球每天所制造的新信息量大约为1
EB
提取-转换-加载(ETL: Extract, Transform and Load) –
是一种用于数据库或者数据仓库的处理过程。即从各种不同的数据源提取(E)数据,并转换(T)成能满足业务需要的数据,最后将其加载(L)到数据库
F
故障切换(Failover) – 当系统中某个服务器发生故障时,能自动地将运行任务切换到另一个可用服务器或节点上
容错设计(Fault-tolerant design) – 一个支持容错设计的系统应该能够做到当某一部分出现故障也能继续运行
G
游戏化(Gamification) –
在其他非游戏领域中运用游戏的思维和机制,这种方法可以以一种十分友好的方式进行数据的创建和侦测,非常有效。
图形数据库(Graph Databases) –
运用图形结构(例如,一组有限的有序对,或者某种实体)来存储数据,这种图形存储结构包括边缘、属性和节点。它提供了相邻节点间的自由索引功能,也就是说,数据库中每个元素间都与其他相邻元素直接关联。
网格计算(Grid computing) – 将许多分布在不同地点的计算机连接在一起,用以处理某个特定问题,通常是通过云将计算机相连在一起。
H
Hadoop – 一个开源的分布式系统基础框架,可用于开发分布式程序,进行大数据的运算与存储。
Hadoop数据库(HBase) – 一个开源的、非关系型、分布式数据库,与Hadoop框架共同使用
HDFS – Hadoop分布式文件系统(Hadoop Distributed File
System);是一个被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统
高性能计算(HPC: High-Performance-Computing) – 使用超级计算机来解决极其复杂的计算问题
I
内存数据库(IMDB: In-memory) –
一种数据库管理系统,与普通数据库管理系统不同之处在于,它用主存来存储数据,而非硬盘。其特点在于能高速地进行数据的处理和存取。
物联网(Internet of Things) – 在普通的设备中装上传感器,使这些设备能够在任何时间任何地点与网络相连。
J
法律上的数据一致性(Juridical data compliance) –
当你使用的云计算解决方案,将你的数据存储于不同的国家或不同的大陆时,就会与这个概念扯上关系了。你需要留意这些存储在不同国家的数据是否符合当地的法律。
K
键值数据库(KeyValue Databases) –
数据的存储方式是使用一个特定的键,指向一个特定的数据记录,这种方式使得数据的查找更加方便快捷。键值数据库中所存的数据通常为编程语言中基本数据类型的数据。
L
延迟(Latency) – 表示系统时间的延迟
遗留系统(Legacy system) – 是一种旧的应用程序,或是旧的技术,或是旧的计算系统,现在已经不再支持了。
负载均衡(Load balancing) – 将工作量分配到多台电脑或服务器上,以获得最优结果和最大的系统利用率。
位置信息(Location data) – GPS信息,即地理位置信息。
日志文件(Log file) – 由计算机系统自动生成的文件,记录系统的运行过程。
M
M2M数据(Machine2Machine data) – 两台或多台机器间交流与传输的内容
机器数据(Machine data) – 由传感器或算法在机器上产生的数据
机器学习(Machine learning) –
人工智能的一部分,指的是机器能够从它们所完成的任务中进行自我学习,通过长期的累积实现自我改进。
MapReduce – 是处理大规模数据的一种软件框架(Map: 映射,Reduce: 归纳)。
大规模并行处理(MPP: Massively Parallel Processing) –
同时使用多个处理器(或多台计算机)处理同一个计算任务。
元数据(Metadata) – 被称为描述数据的数据,即描述数据数据属性(数据是什么)的信息。
MongoDB – 一种开源的非关系型数据库(NoSQL database)
多维数据库(Multi-Dimensional Databases) – 用于优化数据联机分析处理(OLAP)程序,优化数据仓库的一种数据库。
多值数据库(MultiValue Databases) – 是一种非关系型数据库(NoSQL),
一种特殊的多维数据库:能处理3个维度的数据。主要针对非常长的字符串,能够完美地处理HTML和XML中的字串。
N
自然语言处理(Natural Language Processing) –
是计算机科学的一个分支领域,它研究如何实现计算机与人类语言之间的交互。
网络分析(Network analysis) – 分析网络或图论中节点间的关系,即分析网络中节点间的连接和强度关系。
NewSQL – 一个优雅的、定义良好的数据库系统,比SQL更易学习和使用,比NoSQL更晚提出的新型数据库
NoSQL –
顾名思义,就是“不使用SQL”的数据库。这类数据库泛指传统关系型数据库以外的其他类型的数据库。这类数据库有更强的一致性,能处理超大规模和高并发的数据。
O
对象数据库(Object Databases) –
(也称为面象对象数据库)以对象的形式存储数据,用于面向对象编程。它不同于关系型数据库和图形数据库,大部分对象数据库都提供一种查询语言,允许使用声明式编程(declarative
programming)访问对象
基于对象图像分析(Object-based Image Analysis) –
数字图像分析方法是对每一个像素的数据进行分析,而基于对象的图像分析方法则只分析相关像素的数据,这些相关像素被称为对象或图像对象。
*** 作型数据库(Operational Databases) –
这类数据库可以完成一个组织机构的常规 *** 作,对商业运营非常重要,一般使用在线事务处理,允许用户访问 、收集、检索公司内部的具体信息。
优化分析(Optimization analysis) –
在产品设计周期依靠算法来实现的优化过程,在这一过程中,公司可以设计各种各样的产品并测试这些产品是否满足预设值。
本体论(Ontology) – 表示知识本体,用于定义一个领域中的概念集及概念之间的关系的一种哲学思想。(译者注:
数据被提高到哲学的高度,被赋予了世界本体的意义,成为一个独立的客观数据世界)
异常值检测(Outlier detection) –
异常值是指严重偏离一个数据集或一个数据组合总平均值的对象,该对象与数据集中的其他它相去甚远,因此,异常值的出现意味着系统发生问题,需要对此另加分析。
P
模式识别(Pattern Recognition) – 通过算法来识别数据中的模式,并对同一数据源中的新数据作出预测
P字节(PB: Petabytes) – 约等于1000 TB(terabytes), 约等于1百万 GB
(gigabytes)。欧洲核子研究中心(CERN)大型强子对撞机每秒产生的粒子个数就约为1 PB
平台即服务(PaaS: Platform-as-a-Service) – 为云计算解决方案提供所有必需的基础平台的一种服务
预测分析(Predictive analysis) –
大数据分析方法中最有价值的一种分析方法,这种方法有助于预测个人未来(近期)的行为,例如某人很可能会买某些商品,可能会访问某些网站,做某些事情或者产生某种行为。通过使用各种不同的数据集,例如历史数据,事务数据,社交数据,或者客户的个人信息数据,来识别风险和机遇
隐私(Privacy) – 把具有可识别出个人信息的数据与其他数据分离开,以确保用户隐私。
公共数据(Public data) – 由公共基金创建的公共信息或公共数据集。
Q
数字化自我(Quantified Self) – 使用应用程序跟踪用户一天的一举一动,从而更好地理解其相关的行为
查询(Query) – 查找某个问题答案的相关信息
R
再识别(Re-identification) – 将多个数据集合并在一起,从匿名化的数据中识别出个人信息
回归分析(Regression analysis) –
确定两个变量间的依赖关系。这种方法假设两个变量之间存在单向的因果关系(译者注:自变量,因变量,二者不可互换)
RFID – 射频识别; 这种识别技术使用一种无线非接触式射频电磁场传感器来传输数据
实时数据(Real-time data) – 指在几毫秒内被创建、处理、存储、分析并显示的数据
推荐引擎(Recommendation engine) – 推荐引擎算法根据用户之前的购买行为或其他购买行为向用户推荐某种产品
路径分析(Routing analysis) –
针对某种运输方法通过使用多种不同的变量分析从而找到一条最优路径,以达到降低燃料费用,提高效率的目的
S
半结构化数据(Semi-structured data) –
半结构化数据并不具有结构化数据严格的存储结构,但它可以使用标签或其他形式的标记方式以保证数据的层次结构
情感分析(Sentiment Analysis) – 通过算法分析出人们是如何看待某些话题
信号分析(Signal analysis) – 指通过度量随时间或空间变化的物理量来分析产品的性能。特别是使用传感器数据。
相似性搜索(Similarity searches) – 在数据库中查询最相似的对象,这里所说的数据对象可以是任意类型的数据
仿真分析(Simulation analysis) –
仿真是指模拟真实环境中进程或系统的 *** 作。仿真分析可以在仿真时考虑多种不同的变量,确保产品性能达到最优
智能网格(Smart grid) – 是指在能源网中使用传感器实时监控其运行状态,有助于提高效率
软件即服务(SaaS: Software-as-a-Service) – 基于Web的通过浏览器使用的一种应用软件
空间分析(Spatial analysis) – 空间分析法分析地理信息或拓扑信息这类空间数据,从中得出分布在地理空间中的数据的模式和规律
SQL – 在关系型数据库中,用于检索数据的一种编程语言
结构化数据(Structured data)
-可以组织成行列结构,可识别的数据。这类数据通常是一条记录,或者一个文件,或者是被正确标记过的数据中的某一个字段,并且可以被精确地定位到。
T
T字节(TB: Terabytes) – 约等于1000 GB(gigabytes)。1 TB容量可以存储约300小时的高清视频。
时序分析(Time series analysis) –
分析在重复测量时间里获得的定义良好的数据。分析的数据必须是良好定义的,并且要取自相同时间间隔的连续时间点。
拓扑数据分析(Topological Data Analysis) –
拓扑数据分析主要关注三点:复合数据模型、集群的识别、以及数据的统计学意义。
交易数据(Transactional data) – 随时间变化的动态数据
透明性(Transparency) – 消费者想要知道他们的数据有什么作用、被作何处理,而组织机构则把这些信息都透明化了。
U
非结构化数据(Un-structured data) – 非结构化数据一般被认为是大量纯文本数据,其中还可能包含日期,数字和实例。
V
价值(Value) – (译者注:大数据4V特点之一)
所有可用的数据,能为组织机构、社会、消费者创造出巨大的价值。这意味着各大企业及整个产业都将从大数据中获益。
可变性(Variability) – 也就是说,数据的含义总是在(快速)变化的。例如,一个词在相同的推文中可以有完全不同的意思。
多样(Variety) – (译者注:大数据4V特点之一)
数据总是以各种不同的形式呈现,如结构化数据,半结构化数据,非结构化数据,甚至还有复杂结构化数据
高速(Velocity) – (译者注:大数据4V特点之一) 在大数据时代,数据的创建、存储、分析、虚拟化都要求被高速处理。
真实性(Veracity) – 组织机构需要确保数据的真实性,才能保证数据分析的正确性。因此,真实性(Veracity)是指数据的正确性。
可视化(Visualization) –
只有正确的可视化,原始数据才可被投入使用。这里的“可视化”并非普通的图型或饼图,可视化指是的复杂的图表,图表中包含大量的数据信息,但可以被很容易地理解和阅读。
大量(Volume) – (译者注:大数据4V特点之一) 指数据量,范围从Megabytes至Brontobytes
W
天气数据(Weather data) – 是一种重要的开放公共数据来源,如果与其他数据来源合成在一起,可以为相关组织机构提供深入分析的依据
X
XML数据库(XML Databases) –
XML数据库是一种以XML格式存储数据的数据库。XML数据库通常与面向文档型数据库相关联,开发人员可以对XML数据库的数据进行查询,导出以及按指定的格式序列化
Y
Y字节 (Yottabytes) – 约等于1000 ZB (Zettabytes),
约等于250万亿张DVD的数据容量。现今,整个数字化宇宙的数据量为1 YB, 并且将每18年翻一番。
Z
Z字节 (ZB: Zettabytes) – 约等于1000 EB (Exabytes), 约等于1百万
TB。据预测,到2016年全球范围内每天网络上通过的信息大约能达到1 ZB。
附:存储容量单位换算表:
1 Bit(比特) = Binary Digit
8 Bits = 1 Byte(字节)
1,000 Bytes = 1 Kilobyte
1,000 Kilobytes = 1 Megabyte
1,000 Megabytes = 1 Gigabyte
1,000 Gigabytes = 1 Terabyte
1,000 Terabytes = 1 Petabyte
1,000 Petabytes = 1 Exabyte
1,000 Exabytes = 1 Zettabyte
1,000 Zettabytes = 1 Yottabyte
1,000 Yottabytes = 1 Brontobyte
1,000 Brontobytes = 1 Geopbyte

Gartenr报告中描述到,物联网(IoT)平台是一种软件,它扮演着“物”与IT系统和业务流程之间的中介角色,促使企业引入具有潜在变革性的数字业务创新能力,为实现以资产为中心的业务解决方案提供了中间件基础,并且是以灵活的方式管理多个物联网应用程序。

因为,物联网平台并没有一个标准的定义,就如物联网并不是一项新技术,而是已有技术在新情景和新用例中的应用。每一个行业巨头都可以根据自己的业务特点,整合业务和产品线,抽离共性技术、业务流程等重组出一个“业务平台”,并称之为物联网平台。例如,系统服务/软件厂商通过开放开发工具、API来搭建一个AEP平台;工业巨头将某一细分领域的Kown-how数字化并封装成一套解决方案,便能够提供一个工业互联网平台。

当然,一个平台的构建并没有说的那么简单,它是一个系统的工程,需要上下游的资源整合优化,以及根据业务需求和顶层规划进行有逻辑的重组,而不是简简单单的叠加。

常见物联网平台有

互联网领域 :
阿里云—Link物联网平合、百度云—天工智能物联网平台、小米—小米IOT开发者平台
通信领域 :
中国移动— OneNeT、华为—Ocean Connect、中国通信服务—CCS开放物联网平台

物联网(IoT)是英文Internet of Things的缩写。简单的说,它是指以某种方式将一切设备连接到互联网的意思,从智能手机、平板电脑到汽车、冰箱。

你可能在某些时候会听到物联网这个词,但是你对它可能不知所以然,究竟这个物联网是什么样的网?

物联网(IoT)是英文Internet of Things的缩写。简单的说,它是指以某种方式将一切设备连接到互联网的意思,从智能手机和平板电脑(普通)到汽车和冰箱。

物联网主要功能在于如何将设备、服务、应用程序都连接到互联网,让其发挥更大的作用,至于将什么设备连入物联网以及连入原因几乎没有任何限制。

物联网提高生活质量的重要方式在于让数据共享变得更加容易:物联网将有助于简化我们的生活,从长远来看可以为我们处理一些琐碎的事情。

还是不明白?看以下例子:

健康监测:物联网意味着患者可以随时监控健康状态,及时发现问题,从而避免更严重问题出现,如果出现问题,医疗保健专业人员将会立即得知。

自动驾驶:你听说过自动驾驶汽车吗?它们通过连接到互联网,实时访问不断更新的地图数据库,以确保到达目的地的最佳路线。它们能够感知到其他自动驾驶车辆,能够通过特殊传感器来检测道路上的障碍物和交通标志、信号等,它们实际上比人为驾驶的汽车更加安全。

智慧农业:借鉴以前的一个例子,农民也可以通过物联网获益,可以使用特殊传感器告诉作物何时需要浇水(以及浇水量),然后通过自动供水系统精确地完成浇水,这时候,农民完全可以忙于其他事情。

所以,物联网正在积极改善各个行业的应用标准。以上三个例子只是物联网所能实现功能的一小部分而已。

不是很清楚你对这个平台的定位,就我现在的经验来说,物联网、直播、绿色服务这三者想要有机的结合,我还没有头绪。

对于物联网的核心来说,是通过各种传感设备作为前端,实现机器对于信息的采集,在通过互联网作为基础,实现物与物、人与物之间的互联互通。可以说,物联网相对来说是比较专业的,需要根据所处的行业来设计和提供比较专业的解决方案。

而直播是一个新兴的产业,可以说,直播是以人为基础的,直播的技术本身其实并不是非常的核心,核心在于人,或者说是主播、网红。物联网这样的专业领域和直播这样的泛娱乐要做结合,感觉怪怪的,直播写代码吗?

然后是绿色服务,这个概念就更加泛泛了。服务是一个很大的概念,在软件层面有基础设施即服务(IaaS),平台即服务(PaaS),软件即服务(SaaS),这三个大的概念又会牵扯出云计算、大数据、云平台、人工智能等等很多领域。

抛开软件层面,服务也是一个很大的概念,美团可以说是在卖服务、淘宝可以说是在卖服务、滴滴也可以说是服务,但是各个平台的差异性非常非常大。所以,绿色服务的平台可以说就是一个空话,说了等于没说。

现在,要把物联网、直播、绿色服务整合在一起,还是一个智能化的平台,这三者的交集是什么呢?我们虽然说跨界,但是也需要有共性,不能生拉硬拽,这个我暂时看不懂。

然后是用户群体是哪些?是2B的某个行业?还是2C的某个特定群体?没有清晰的用户肖像的话,那么这个平台就是自己的YY。

最后就是商业模式了。做不赚钱的生意就是在耍流氓,大家做生意不是做慈善,都是要有商业模式的,也就是怎么赚钱。作为互联网,赚钱的方式无非就几种:流量广告(传统互联网)、卖商品(电商)、卖服务(O2O)。这个智能化平台是什么模式呢?这个要想清楚。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13219064.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-22
下一篇 2023-06-22

发表评论

登录后才能评论

评论列表(0条)

保存