iwatchs7和s8银色有区别吗

iwatchs7和s8银色有区别吗,第1张

有区别。
1芯片:AppleWatchSeries8配备S8SiP芯片,而AppleWatchSeries7S7SiP芯片,S8SiP芯片相比S7SiP芯片有小幅的提升。
2续航:AppleWatchSeries8续航长达18小时,同时拥有“低电量模式”,可关闭一些非必要功能,最长可达36小时的续航;而对于AppleWatchSeries7来说,虽然续航也长达18小时,但没有“低电量模式”,因此在某些情况下,S8在续航方面有一定优势。
3防尘:AppleWatchSeries8拥有IP6X级的防尘功能,而WatchSeries7并没有标注防尘等级。
4配色材质:AppleWatchSeries8在铝金属材质的配色上有午夜色、星光色、银色、红色,而WatchSeries8在铝金属材质的配色上少了银色,但多了绿色和蓝色。而在不锈钢材质上,两者的配色都一样,但WatchSeries7多了一种钛金属材质,这是两者在配色材质上的区别。

根据国际半导体路线组织(ITRS)的定义:SiP为将多个具有不同功能的有源电子元件与可选无源器件,以及诸如MEMS或者光学器件等其他器件优先组装到一起,实现一定功能的单个标准封装件,形成一个系统或者子系统。

从架构上来讲,SiP是将多种功能芯片,包括处理器、存储器等功能芯片集成在一个封装内,从而实现一个基本完整的功能。与SOC(片上系统)相对应。不同的是系统级封装是采用不同芯片进行并排或叠加的封装方式,而SOC则是高度集成的芯片产品。

扩展资料

SiP超越摩尔定律下的重要实现路径。众所周知的摩尔定律发展到现阶段,行业内有两条路径:一是继续按照摩尔定律往下发展,走这条路径的产品有CPU、内存、逻辑器件等,这些产品占整个市场的50%。

另外就是超越摩尔定律的More than Moore路线,芯片发展从一味追求功耗下降及性能提升方面,转向更加务实的满足市场的需求。这方面的产品包括了模拟/RF器件,无源器件、电源管理器件等,大约占到了剩下的那50%市场。

长电 科技 是全球领先的集成电路制造和技术服务提供商,提供全方位的芯片成品制造一站式服务,包括集成电路的系统集成、设计仿真、技术开发、产品认证、晶圆中测、晶圆级中道封装测试、系统级封装测试、芯片成品测试并可向世界各地的半导体客户提供直运服务。

通过高集成度的晶圆级(WLP)、25D/3D、系统级(SiP)封装技术和高性能的倒装芯片和引线互联封装技术,长电 科技 的产品、服务和技术涵盖了主流集成电路系统应用,包括网络通讯、移动终端、高性能计算、车载电子、大数据存储、人工智能与物联网、工业智造等领域。长电 科技 在全球拥有23000多名员工,在中国、韩国和新加坡设有六大生产基地和两大研发中心,在逾22个国家和地区设有业务机构,可与全球客户进行紧密的技术合作并提供高效的产业链支持。

随着市场对便携式移动数据访问设备的需求快速增长,市场对功能融合和封装复杂性的要求也在提升。同时对更高集成度,更好电气性能、更低时延,以及更短垂直互连的要求,正在迫使封装技术从 2D 封装向更先进的 25D 和 3D 封装设计转变。为了满足这些需求,各种类型的堆叠集成技术被用于将多个具有不同功能的芯片集中到越来越小的尺寸中。

长电 科技 积极推动传统封装技术的突破,率先在晶圆级封装、倒装芯片互连、硅通孔(TSV)等领域中采用多种创新集成技术,以开发差异化的解决方案,帮助客户在其服务的市场中取得成功。

3D 集成技术正在三个领域向前推进:封装级集成、晶圆级集成和硅级集成。

• 封装级集成

利用常规的焊线或倒装芯片工艺进行堆叠和互连,以构建传统的堆叠芯片和堆叠封装结构,包括:

堆叠芯片 (SD) 封装 ,通常在一个标准封装中使用焊线和倒装芯片连接,对裸片进行堆叠和互连。配置包括 FBGA-SD、FLGA-SD、PBGA-SD、QFP-SD 和 TSOP-SD。

层叠封装(PoP) ,通常对经过全面测试的存储器和逻辑封装进行堆叠,消除已知合格芯片 (KGD) 问题,并提供了组合 IC 技术方面的灵活度。倒装芯片 PoP 选项包括裸片 PoP、模塑激光 PoP 和裸片模塑激光 PoP 配置 (PoP-MLP-ED)。

封装内封装 (PiP) ,封装内封装 (PiP) 通常将已封装芯片和裸片堆叠到一个 JEDEC 标准 FBGA 中。经过预先测试的内部堆叠模块 (ISM) 接点栅格阵列 (LGA) 和 BGA 或已知/已探测合格芯片 (KGD),通过线焊进行堆叠和互连,然后模塑形成一个与常规FBGA封装相似的 CSP。

3D 晶圆级集成 (WLP) 使用再分布层和凸块工艺来形成互连。晶圆级集成技术涵盖创新的扇入(FIWLP) 和扇出 (FOWLP) 选项,包括:

嵌入式晶圆级 BGA(eWLB) - 作为一种多功能的扇出型嵌入式晶圆级 BGA 平台,eWLB 灵活的重建制造工艺可以降低基板的复杂性和成本,同时在一系列可靠、低损耗的 2D、25D 和 3D 解决方案中实现高性能、小尺寸和非常密集的互连。长电 科技 的 3D eWLB-SiP 和 eWLB-PoP 解决方案包括多个嵌入式无源和有源元器件,提供面对背、面对面选项,以及单面、15 面、双面超薄 PoP 配置。对于需要全 3D 集成的应用,长电 科技 的面对面 eWLB PoP 配置通过 eWLB 模塑层,在应用处理器和存储器芯片之间提供直接的垂直互连,以实现高带宽、极细间距的结构,其性能不逊色于 TSV 技术。

包封 WLCSP (eWLCSP ) - 一种创新的 FIWLP 封装,采用扇出型工艺,也称为 FlexLine 方法,来构建这种创新、可靠的包封 WLCSP 封装。

WLCSP - 标准晶圆级 CSP 封装。随着各种工艺技术的发展,例如低固化温度聚合物、将铜材料用于凸块下金属化 (UBM) 和 RDL,我们可以实现更高的密度,提高 WLCSP 封装的可靠性。

在真正的 3D IC 设计中,目标是将一个芯片贴合在另一个芯片上,两者之间没有任何间隔(无中介层或基材)。目前,“接近 3D”的集成通常也称为 25D 集成,其实现方法是使用薄的无源中介层中的硅通孔 (TSV),在封装内部连接芯片。芯片之间的通信通过中介层上的电路进行。FOWLP 工艺还可以产生一种被称为25D eWLB的创新过渡技术,在这种技术中,使用薄膜扇出型结构来实现高密度互连。长电 科技 的硅级集成产品组合包括:

25D / 扩展 eWLB - 长电 科技 基于 eWLB 的中介层可在成熟的低损耗封装结构中实现高密度互连,提供更高效的散热和更快的处理速度。3D eWLB 互连(包括硅分割)是通过独特的面对面键合方式实现,无需成本更高的 TSV 互连,同时还能实现高带宽的 3D 集成。基于 eWLB 的中介层简化了材料供应链,降低了整体成本,为客户提供了一个强大的技术平台和路径,帮助客户将器件过渡到更先进的 25D 和 3D 封装。

MEOL集成的25D封装 - 作为首批在25D 封装领域拥有成熟 MEOL TSV 集成经验的 OSAT 之一,长电 科技 在这个新兴互连技术领域扮演着重要角色,专注于开发经济高效的高产量制造能力,让 TSV 成为具有商业可行性的解决方案。长电 科技 还与众多的客户、研究机构和领先代工厂开展协作,为集成式 3D 封装解决方案开发有效的商业模式。

25/3D集成技术圆片级与扇出封装技术系统级封装技术倒装封装技术焊线封装技术MEMS与传感器

长电 科技 为以下封装选项提供晶圆级技术:

• eWLB(嵌入式晶圆级球栅阵列)
• eWLCSP(包封晶圆级芯片尺寸封装)
• WLCSP(晶圆级芯片尺寸封装)
• IPD(集成无源器件)
• ECP(包封芯片封装)
• RFID(射频识别)

当今的消费者正在寻找性能强大的多功能电子设备,这些设备不仅要提供前所未有的性能和速度,还要具有小巧的体积和低廉的成本。这给半导体制造商带来了复杂的技术和制造挑战,他们试图寻找新的方法,在小体积、低成本的器件中提供更出色的性能和功能。长电 科技 在提供全方位的晶圆级技术解决方案平台方面处于行业领先地位,提供的解决方案包括扇入型晶圆级封装 (FIWLP)、扇出型晶圆级封装 (FOWLP)、集成无源器件 (IPD)、硅通孔 (TSV)、包封芯片封装 (ECP)、射频识别 (RFID)。

突破性的 FlexLineTM 制造方法

我们的创新晶圆级制造方法称为 FlexLineTM 方法,为客户提供了不受晶圆直径约束的自由,同时实现了传统制造流程无法实现的供应链简化和成本的显著降低。FlexLine 制造方法是不同于常规晶圆级制造的重大范式转变,它为扇入型和扇出型晶圆级封装提供了很高的灵活性和显著的成本节省。

FlexLine方法,为客户提供了不受晶圆直径约束的自由,同时实现了传统制造流程无法实现的供应链简化和成本的显著降低。

用于 25D 和 3D 集成的多功能技术平台

FlexLine方法,为客户提供了不受晶圆直径约束的自由,同时实现了传统制造流程无法实现的供应链简化和成本的显著降低。

半导体公司不断面临复杂的集成挑战,因为消费者希望他们的电子产品体积更小、速度更快、性能更高,并将更多功能集成到单部设备中。半导体封装对于解决这些挑战具有重大影响。当前和未来对于提高系统性能、增加功能、降低功耗、缩小外形尺寸的要求,需要一种被称为系统集成的先进封装方法。

系统集成可将多个集成电路 (IC) 和元器件组合到单个系统或模块化子系统中,以实现更高的性能、功能和处理速度,同时大幅降低电子器件内部的空间要求。

什么是系统级封装?

系统级封装 (SiP) 是一种功能电子系统或子系统,包括两个或更多异构半导体芯片(通常来自不同的技术节点,针对各自的功能进行优化),通常搭载无源元器件。SiP 的物理形式是模块,根据最终应用的不同,模块可以包括逻辑芯片、存储器、集成无源器件 (IPD)、射频滤波器、传感器、散热片、天线、连接器和/或电源芯片。

先进 SiP 的优势

为了满足用户提高集成度、改善电气性能、降低功耗、加快速度、缩小器件尺寸的需求,以下几大优势促使业界转向先进的SiP 解决方案:

• 比独立封装的元器件更薄/更小的外形尺寸
• 提高了性能和功能集成度
• 设计灵活性
• 提供更好的电磁干扰 (EMI) 隔离
• 减少系统占用的PCB面积和复杂度
• 改善电源管理,为电池提供更多空间
• 简化 SMT 组装过程
• 经济高效的“即插即用”解决方案
• 更快的上市时间 (TTM)
• 一站式解决方案 – 从晶圆到完全测试的 SiP 模块

应用

当前,先进的 SiP 和微型模块正被应用于移动设备、物联网 (IoT)、可穿戴设备、医疗保健、工业、 汽车 、计算和通信网络等多个市场。每种先进 SiP 解决方案的复杂程度各不相同,这取决于每种应用需要的元器件的数量和功能。

以下是高级 SiP 应用的一些示例:

根据应用需求和产品复杂度,我们提供多种先进 SiP 配置,从带有多个有源和无源元件、通过倒装芯片、引线键合和SMT进行互连的传统2D 模块,到更复杂的模块,如封装内封装 (PiP)、层叠封装 (PoP)、25D 和 3D 集成解决方案。先进的SiP 模块配置 (2D/25D/3D) 针对特定终端应用进行定制,旨在充分发挥它们的潜在优势,包括性能、成本、外形尺寸和产品上市时间 (TTM)。

在倒装芯片封装中,硅芯片使用焊接凸块而非焊线直接固定在基材上,提供密集的互连,具有很高的电气性能和热性能。倒装芯片互连实现了终极的微型化,减少了封装寄生效应,并且实现了其他传统封装方法无法实现的芯片功率分配和地线分配新模式。

长电 科技 提供丰富的倒装芯片产品组合,从搭载无源元器件的大型单芯片封装,到模块和复杂的先进 3D 封装,包含多种不同的低成本创新选项。长电 科技 的丰富倒装芯片产品组合包括:

FCBGA 和 fcCSP 都使用锡球来提供第二级 (BGA) 互连。

颠覆性的低成本倒装芯片解决方案:fcCuBE

长电 科技 还提供名为“fcCuBE ”的创新低成本倒装芯片技术。fcCuBE 是一种低成本、高性能的先进倒装芯片封装技术,其特点是采用铜 (Cu) 柱凸块、引线焊接 (BOL) 互连以及其他增强型组装工艺。顾名思义,fcCuBE 就是采用铜柱、BOL 和增强工艺的倒装芯片。fcCuBE 技术适用于各种平台。自 2006 年获得首个与 fcCuBE 相关的创新 BOL 工艺专利以来,长电 科技 投入大量资金,将这一变革性技术发展成为引人注目的倒装芯片解决方案,广泛应用于从低端到高端的移动市场以及中高端消费和云计算市场的终端产品。

fcCuBE 的优势是推动来自成本敏感型市场,如移动和消费类市场,以及网络和云计算市场的客户广泛采用这种封装,因为在这些市场上,布线密度和性能的增加是必然趋势。fcCuBE 的独特 BOL 互连结构可扩展到非常细的凸块间距,实现高 I/O 吞吐量,同时缓解与应力相关的芯片与封装之间的交互作用 (CPI),而这种现象通常与无铅和铜柱凸块结构相关。这对于中高端的网络和消费类应用而言尤其重要。

长电 科技 提供全方位一站式倒装芯片服务

凭借在晶圆级封装、晶圆探针和最终测试方面的强劲实力,长电 科技 在为客户提供全方位一站式服务方面独具优势。长电 科技 提供从涉及到生产的全方位一站式倒装芯片服务,包括高速、高引脚数的数字和射频测试。

焊线形成芯片与基材、基材与基材、基材与封装之间的互连。焊线被普遍视为最经济高效和灵活的互连技术,目前用于组装绝大多数的半导体封装。

长电 科技 的多种封装方法都采用焊线互连:

铜焊线

作为金线的低成本替代品,铜线正在成为焊线封装中首选的互连材料。铜线具有与金线相近的电气特性和性能,而且电阻更低,在需要较低的焊线电阻以提高器件性能的情况下,这将是一大优势。长电 科技 可以提供各类焊线封装类型,并最大程度地节省物料成本,从而实现最具成本效益的铜焊线解决方案。

层压封装

基于层压的球栅阵列 (BGA) 互连技术最初推出的目的是满足高级半导体芯片不断增长的高引线数要求。BGA 技术的特点是将引线以小凸块或焊球的形式置于封装的底面,具有低阻抗、易于表面安装、成本相对较低和封装可靠性高等特点。长电 科技 提供全套的基于层压的 BGA 封装,包括细间距、超薄、多芯片、堆叠和热增强配置。

除了标准层压封装之外,长电 科技 还提供多种先进堆叠封装选项,包括一系列层叠封装 (PoP) 和封装内封装 (PiP) 配置。

引线框架封装

引线框架封装的特点是芯片包封在塑料模塑复合物中,金属引线包围封装周边。这种简单的低成本封装仍然是很多应用的最佳解决方案。长电 科技 提供全面的引线框架封装解决方案,从标准引线框架封装到小巧薄型热增强封装,包括方形扁平封装 (QFP)、四边/双边无引脚、扁平封装 (QFN/DFN)、薄型小外型封装 (TSOP)、小外形晶体管 (SOT)、小外形封装 (SOP)、双内联封装 (DIP)、晶体管外形 (TO)。

存储器器件

除了增值封装组装和测试服务之外,长电 科技 还提供 Micro-SD 和 SD-USB 这两种格式的存储卡封装。Micro-SD 是集成解决方案,使用 NAND 和控制器芯片,SD-USB 则是裸片和搭载 SMT 元器件的预封装芯片。长电 科技 的存储卡解决方案采用裸片级别组装、预封装芯片组装,或者两者结合的方式。

全方位服务封装设计

我们在芯片和封装设计方面与客户展开合作,提供最能满足客户对性能、质量、周期和成本要求的产品。长电 科技 的全方位服务封装设计中心可以帮助客户确定适用于复杂集成电路的最佳封装,还能够帮助客户设计最适合特定器件的封装。

25/3D集成技术圆片级与扇出封装技术系统级封装技术倒装封装技术焊线封装技术MEMS与传感器

MEMS and Sensors

随着消费者对能够实现传感、通信、控制应用的智能设备的需求日益增长,MEMS 和传感器因其更小的尺寸、更薄的外形和功能集成能力,正在成为一种非常关键的封装方式。MEMS 和传感器可广泛应用于通信、消费、医疗、工业和 汽车 市场的众多系统中。

传感器

传感器是一种能够检测/测量物理属性,然后记录并报告数据和/或响应信号的装置或系统。传感器通常组装在模块中,这些模块能够基于模拟或传感器馈送信号来作出响应。传感器有很多不同的类型和应用,例如压力传感器、惯性传感器、话筒、接近传感器、指纹传感器等

微机电系统 (MEMS)

MMEMS 是一种专用传感器,它将机械和电气原件通过分立或模块方式组合起来。MEMS是典型的多芯片解决方案,例如感应芯片与专用集成电路 (ASIC) 配对使用。MEMS 器件可以由机械元件、传感器、致动器、电气和电子器件组成,并置于一个共同的硅基片上。在消费、 汽车 和移动应用中使用基于 MEMS 的传感器具备一些优势,包括体积小、功耗低、成本低等。

集成一站式解决方案

凭借我们的技术组合和专业 MEMS 团队,长电 科技 能够提供全面的一站式解决方案,为您的量产提供支持,我们的服务包括封装协同设计、模拟、物料清单 (BOM) 验证、组装、质量保证和内部测试解决方案。长电 科技 能够为客户的终端产品提供更小外形尺寸、更高性能、更低成本的解决方案。我们的创新集成解决方案能够帮助您的企业实现 MEMS 和传感器应用的尺寸、性能和成本要求。

1 嵌入式晶圆级球栅阵列 (eWLB) - 单芯片、多芯片和堆叠的层叠封装配置
2 晶圆级芯片尺寸封装 (WLCSP) - 非常小的单芯片
3 倒装芯片芯片尺寸封装 (fcCSP)- 单芯片或多芯片的倒装芯片配置
4 细间距球栅阵列 (FBGA) - 单芯片或多芯片配置
5 接点栅格阵列 (FBGA) - 单芯片或多芯片配置
6 四边扁平无引脚 (FBGA) - 单芯片或多芯片配置

长电 科技 提供全方位一站式倒装芯片服务

凭借在晶圆级封装、晶圆探针和最终测试方面的强劲实力,长电 科技 在为客户提供全方位一站式处理方面独具优势。长电 科技 提供从设计到生产的全方位一站式倒装芯片服务,包括高速、高引脚数的数字和射频测试。

全方位一站式解决方案的优势

• 缩短产品上市时间
• 提升整体流程效率
• 提高质量
• 降低成本
• 简化产品管理

长电 科技 位于中国、新加坡、韩国和美国的全球特性分析团队,致力于为全球客户提供先进的封装表征服务,确保客户拥有高质量、高性能、可靠和高性价比的封装设计,以满足他们的市场需求。

晶圆凸块技术可以在半导体封装中提供显著的性能、外形尺寸和成本优势。晶圆凸块是一种先进的制造工艺,在切割之前就在半导体晶圆表面形成金属焊球或凸块。晶圆凸块实现了器件中的芯片与基材或印刷电路板之间的互连。焊球的成分和尺寸取决于多种因素,例如半导体器件的外形尺寸、成本以及电气、机械和热性能要求。

长电 科技 在晶圆凸块的众多合金材料和工艺方面拥有丰富的经验,包括采用共晶、无铅和铜柱合金的印刷凸块、锡球和电镀技术。我们的晶圆凸块产品包括 200mm 和 300mm 晶圆尺寸的晶圆凸块和再分配,以提供完整的一站式先进倒装芯片封装和晶圆级封装解决方案。

长电 科技 的认证质量测试中心,提供多种可靠性试验,包括环境可靠性测试、使用寿命可靠性测试、板级可靠性试验,和全方位的故障分析服务。

封测市场高景气,公司治理和业务协同不断强化,业绩实现高速增长: 公司 2020 年归母净利润同比+137117%,业绩实现高速增长,主要得益 于公司进一步深化海内外制造基地资源整合、提高营运效率、改善财务 结构,大幅度提高了经营性盈利能力。2020 年,公司海外并购的新加坡 星科金朋实现营业收入 1341 亿美元,同比增长 2541%,净利润从 2019 年的亏损 5,43169 万美元到 2020 年的盈利 2,29399 万美元,实现全面 扭亏为盈。另外,收购后,子公司长电国际利用星科金朋韩国厂的技术、 厂房等新设立的长电韩国工厂(JSCK)在 2020 年实现营业收入 1235 亿美元,同比增长 6497%;净利润 5,83349 万美元,同比增长 66997%。 2021 年第一季度,公司业绩延续高增长趋势,归母净利润同比 +18868%,毛利率 1603%,同比+293pct,净利率 576%,同比+341pct。

公司可为客户提 供从设计仿真到中后道封测、系统级封测的全流程技术解决方案,已成 为中国第一大和全球第三大封测企业。公司产能全球布局,各产区的配 套产能完善,随着产能利用率的持续提升,公司生产规模优势有望进一 步凸显,同时,各产区互为补充,各具技术特色和竞争优势,完整覆盖 了低、中、高端封装测试领域,在 SiP、WL-CSP、25D 封装等先进封 装领域优势明显。公司聚焦 5G 通信、高性能计算、 汽车 电子、高容量 存储等关键应用领域,大尺寸 FC BGA、毫米波天线 AiP、车载封测方 案和 16 层存储芯片堆叠等产品方案不断突破,龙头地位稳固。

用户资源和 高附加价值产品项目,加强星科金朋等工厂的持续盈利能力。目前,公 司国内工厂的封测服务能力持续提升,车载涉安全等产品陆续量产,同 时,韩国厂的 汽车 电子、5G 等业务规模不断扩大,新加坡厂管理效率 和产能利用率持续提升,盈利能力稳步改善。随着公司各项业务和产线 资源整合的推进,公司盈利能力有望持续提升,未来业绩增长动能充足。

1,展讯:

作为中国领先的手机芯片供应商之一,展讯通信(上海)有限公司一直致力于自主创新,目前已形成2G/25G/3G/35G移动通信技术基带、射频芯片产品系列,完成TD-SCDMA、TD-LTE核心芯片研发及产业化等国家重点攻关课题。

2,士兰微:

熟悉杭州士兰微电子股份有限公司的人都知道,该公司的核心发展理念为“诚信、忍耐、探索、热情”。经过15年的发展,士兰微已成为国内规模最大的、集IC芯片设计与制造于一体的企业之一,整体生产经营规模处于国内集成电路行业的前列。

3,华大:

2003年成立的中国华大集成电路设计集团有限公司是一家国有大型IC设计企业。经过几年的资源整合,已将成立之初的18家二、三级企业整合为6家核心企业,强化了集团的主业发展能力。通过瞄准新兴市场,不断强化企业的主导产品,走专业化的发展道路,形成了以信息安全产品、消费类芯片、高新电子以及测试服务等6大领域为主的核心业务。

4,中芯国际:

中芯国际集成电路制造有限公司是中国大陆规模最大、技术最先进的集成电路芯片代工企业。在技术方面,其在大陆最早实现65nm/55nm技术的量产;拥有大陆最先进的45nm/40nm试生产技术;具备大陆唯一的32nm/28nm技术研发能力,同时计划于2013年第三季度初基本实现28nm工艺。

5,华润:

华润微电子有限公司是国内唯一具备开放式晶圆代工、设计、测试封装和分立器件制造完整产业链的半导体公司。自1997年进入微电子行业后,经过十余年的发展,已成为国内新型功率器件和特色晶圆代工领域的领导者、国家重大专项的牵头实施者。

s7sip芯片比s6芯片好很多。苹果s6和s7手表相比,S7比S6的屏幕边框缩窄了百分之40,S7比S6的屏幕面积增加了百分之20,S7比S6增加了IP6X级防尘,苹果手表s7采用S7SiP芯片,苹果手表s6采用S6SiP芯片。

s7sip芯片与s6芯片的特点

S7通过两个设计增大了屏幕面积,一是表身尺寸二是屏占比,S7表壳的高度增加了1mm,设为41mm和45m 两个版本,而之前的S6是40mm和44mm两个版本,所以S7相对于S6三围要大一些,另外S7相对于S6的屏幕边框缩窄了百分之40。

所以总的算起来S7相对于S6的屏幕面积增加了将近百分之20,可以显示更多的内容,苹果也为此给S7重新设计了界面,除了字号增大之外也可以支持全键盘输入,交互能力更丰富,芯片方面,S7保留S6上就配有的W3无线芯片和U1超宽频芯片,主芯片由S6SiP升级为S7SiP。

ASIC和SOC都行,SOC目前较火也比较有前途。
封装测试那是本科生干的事,待遇也不高。射频,待遇好,不过工作难找而且有辐射,如果做RFID,往物联网上靠也不错,不过物联网目前来看还是噱头。MEMS,恩,超火,不过属于器件方向的,而且偏向理论研究,工作不怎么好找。至于其他的方向,偏向器件,也就是微电子与固体电子学中的固体电子方向了,也不是说没前途,只是和设计搭不上边了,基本是研究各种材料和工艺的,如果要想学的话,读博进研究所算是相对好点的了。
2
3
4
都还不错,最好的当然是4了。

759平方毫米显示面积
其他参数:
处理器
S6 SiP芯片配备64位双核处理器,速度比S5最高可提升20%;W3 Apple无线芯片;U1芯片(超宽频)
*** 作系统
watchOS
存储容量
32GB
屏幕类型
LTPO OLED 全天候视网膜显示屏(1000尼特亮度)
屏幕尺寸
759平方毫米显示面积
屏幕分辨率
324×394
WiFi
无线局域网(80211b/g/n 24GHz和5GHz)
蓝牙
蓝牙50
GPS功能
GPS/GNSS
电池类型
内置锂离子充电电池
基本参数
产品特性
蓝牙功能,WiFi功能,GPS功能,防水功能,心率感应器,加速度感应器,陀螺仪
出品地区
美国
产品类型
GPS手表,运动手表,智能手表
适用人群
成年人
处理器
S6 SiP芯片配备64位双核处理器,速度比S5最高可提升20%;W3 Apple无线芯片;U1芯片(超宽频)
*** 作系统
watchOS
存储容量
32GB
显示屏
屏幕类型
LTPO OLED 全天候视网膜显示屏(1000尼特亮度)
屏幕尺寸
759平方毫米显示面积
屏幕分辨率
324×394
功能参数
防水功能
50米防水
传感器
指南针,全天候高度计,血氧传感器(血氧app),第二代光学心率传感器,加速感应器,陀螺仪,环境光传感器
WiFi
无线局域网(80211b/g/n 24GHz和5GHz)
蓝牙
蓝牙50
GPS功能
GPS/GNSS
其它参数
Apple Watch Series 6 支持 GMT 表盘、正计时表盘、字体排印表盘、艺术表盘、拟我表情表盘、条纹表盘等新表盘。watchOS 还可以让开发者根据不同应用类型打造不同等表盘。
其它功能
Apple Watch Series 6 采用第六代封装模块,处理器基于 A13 仿生芯片打造,比前代快 20%,带来全新血氧 App,支持血氧检测,能在 15 秒内完成一次测量。
电源参数
充电方式
磁力充电线
电池类型
内置锂离子充电电池
续航时间
最长可达18小时
其它参数
产品材质
陶瓷和蓝宝石玻璃表背,银色铝金属表壳,回环式运动表带
产品颜色
深海军蓝色,暗橄榄绿色,梅子色,金橘色,木炭色,奶白色,红色
表盘形状
方形
产品尺寸
40×34×104mm
适合130–200mm腕围
产品重量
305g
包装清单
表壳,表带,1米磁力充电线

2017年中国半导体封装测试技术与市场年会已经过去一个月了,但半导体这个需要厚积薄发的行业不需要蹭热点,一个月之后,年会上专家们的精彩发言依然余音绕梁。除了“封装测试”这个关键词,嘉宾们提的最多的一个关键词是“物联网”。因此,将年会上的嘉宾观点稍作整理,让我们再一起思考一下物联网时代的先进封装。
智能手机增速放缓

半导体下游市场的驱动力经历了几个阶段,首先是出货量为亿台量级的个人电脑,后来变成十亿台量级的手机终端和通讯产品,而从2010年开始,以智能手机为代表的智能移动终端掀起了移动互联网的高潮,成为最新的杀手级应用。回顾之前的二三十年,下游电子行业杀手级应用极大的拉动了半导体产业发展,不断激励半导体厂商扩充产能,提升性能,而随着半导体产量提升,半导体价格也很快下降,更便宜更高性能的半导体器件又反过来推动了电子产业加速发展,半导体行业和电子行业相互激励,形成了良好的正反馈。但在目前, 智能手机的渗透率已经很高,市场增长率开始减缓,下一个杀手级应用将会是什么?

物联网可能成为下一个杀手级应用

根据IHS的预测,物联网节点连接数在2025年将会达到700亿。

从数量上来看,物联网将十亿量级的手机终端产品远远抛在后面,很可能会成为下一波的杀手级应用。但物联网的问题是产品多样化,应用非常分散。我们面对的市场正从单一同质化大规模市场向小规模异质化市场发生变化。对于半导体这种依靠量的行业来说,芯片设计和流片前期投入巨大,没有量就不能产生规模效应,摊销到每块芯片的成本非常高。

除了应对小规模异质化的挑战, 物联网需要具备的关键要素还包括 :多样的传感器(各类传感器和Sensor Hub),分布式计算能力(云端计算和边缘计算),灵活的连接能力(5G,WIFI,NB-IOT,Lora, Bluetooth, NFC,M2M…),存储能力(存储器和数据中心)和网络安全。这些关键要素会刺激CPU/AP/GPU,SSD/Memory,生物识别芯片,无线通讯器件,传感器,存储器件和功率器件的发展。

物联网多样化的下游产品对封装提出更多要求

物联网产品的多样性意味着芯片制造将从单纯追求制程工艺的先进性,向既追求制程先进性,也最求产品线的宽度发展。物联网时代的芯片可能的趋势是:小封装,高性能,低功耗,低成本,异质整合(Stacking,Double Side, EMI Shielding, Antenna…)。

汽车电子的封装需求: 汽车电子目前的热点在于ADAS系统和无人驾驶AI深度学习。全球汽车2016年产销量约为8000万台,其中中国市场产销量2800万台,为汽车电子提供了足够大的舞台。ADAS汽车系统发展前景广阔,出于安全考虑,美国NHTSA要求从2018年5月起生产的汽车需要强制安装倒车影像显示系统。此外,车道偏离警示系统(LDW),前方碰撞预警系统(FCW),自动紧急刹车系统(AEBS),车距控制系统(ACC),夜视系统(NV)市场也在快速成长。中国一二线城市交规越来越严格也使得人们对ADAS等汽车电子系统的需求提升。ADAS,无人驾驶,人工智能,深度学习对数据处理实时性要求高,所以要求芯片能实现超高的计算性能,另外对芯片和模块小型化设计和散热也有要求,未来的汽车电子芯片可能需要用25D技术进行异构性的集成,比如将CPU,GPU,FPGA,DRAM集成封装在一起。

个人移动终端的封装需求: 个人消费电子市场也将继续稳定增长,个人消费电子设备主要的诉求是小型化,省电,高集成度,低成本和模块化。比如个人移动终端要求能实现多种功能的模块化,将应用处理器模块,基带模块,射频模块,指纹识别模块,通讯模块,电源管理模块等集成在一起。这些产品对芯片封装形式的要求同样是小型化,省电,高集成度,模块化,芯片封装形式主要是“Stack Die on Passive”,“Antenna in SiP”,“Double Side SiP等。比如苹果的3D SiP集成封装技术,从过去的ePOP & BD PoP,发展到目前的是HBW-PoP和FO-PoP,下一代的移动终端封装形式可能是FO-PoP加上FO-MCM,这种封装形式能够提供更加超薄的设计。

5G 网络芯片的封装需求: 5G网络和基于物联网的NB-IOT网络建设意味着网络芯片市场将会有不错的表现。与网络密切祥光的大数据,云计算和数据中心,对存储器芯片和FPGA GPU/CPU的需求量非常大。通信网络芯片的特点是大规模,高性能和低功耗,此外,知识产权(IP)核复杂、良率等都是厂商面临的重要问题。这些需求和问题也促使网络芯片封装从Bumping & FC发展到25D,FO-MCM和3D。而TSV技术的成功商用,使芯片的堆叠封装技术取得了实质性进展,海力士和三星已成功研发出3D堆叠封装的高带宽内存(HBM),Micron和Intel等也正在联合推动堆叠封装混合存储立方体(HMC)的研发。在芯片设计领域,BROADCOM、GLOBAL FOUNDRIES等公司也成功引入了TSV技术,目前已能为通信网络芯片提供25D堆叠后端设计服务。

上游晶圆代工厂供应端对封装的影响

一方面,下游市场需求非常旺盛,另外一方面,大基金带领下的资本对晶圆代工制造业持续大力投资,使得上游的制造一直在扩充产能据SEMI估计,全球将于2017年到2020年间投产62座半导体晶圆厂,其中26座在中国大陆,占全球总数的42%。目前晶圆厂依然以40

nm以上的成熟制程为主,占整体晶圆代工产值的60%。未来,汽车电子,消费电子和网络通信行业对芯片集成度、功能和性能的要求越来越高,主流的晶圆厂中芯和联电都在发展28nm制程,其中台积电28nm制程量产已经进入第五年,甚至已经跨入10Xnm制程。

随着晶圆技术节点不断逼近原子级别,摩尔定律可能将会失效。如何延续摩尔定律?可能不能仅仅从晶圆制造来考虑,还应该从芯片制造全流程的整个产业链出发考虑问题,需要 对芯片设计,晶片制造到封装测试都进行系统级的优化。 因此, 晶圆制造,芯片封测和系统集成三者之间的界限将会越来越模糊。 首先是芯片封测和系统集成之间出现越来越多的子系统,各种各样的系统级封装SiP需要将不同工艺和功能的芯片,利用3D等方式全部封装在一起,既缩小体积,又提高系统整合能力。Panel板级封装也将大规模降低封装成本,提高劳动生产效率。其次,芯片制造和芯片封测之间出现了扇入和扇出型晶圆级封装,FO-WLP封装具有超薄,高I/O脚数的特性,是继打线,倒装之后的第三代封装技术之一,最终芯片产品具有体积小,成本低,散热佳,电性能优良,可靠性高等优势。

先进封装的发展现状

先进封装形式在国内应用的越来越多,传统的TO和DIP封装类型市场份额已经低于20%,

最近几年,业界的先进封装技术包括以晶圆级封装(WLCSP)和载板级封装(PLP)为代表的21D,3D封装,Fan Out WLP,WLCSP,SIP以及TSV,

2013年以前,25D TSV封装技术主要应用于逻辑模块间集成,FPGA芯片等产品的封装,集成度较低。2014年,业界的3D TSV封装技术己有部分应用于内存芯片和高性能芯片封装中,比如大容量内存芯片堆叠。2015年,25D TSV技术开始应用于一些高端GPU/CPU,网络芯片,以及处理器(AP)+内存的集成芯片中。3D封装在集成度、性能、功耗,更小尺寸,设计自由度,开发时间等方面更具优势,同时设计自由度更高,开发时间更短,是各封装技术中最具发展前景的一种。在高端手机芯片,大规I/O芯片和高性能芯片中应用广泛,比如一个MCU加上一个SiP,将原来的尺寸缩小了80%。

目前国内领先封装测试企业的先进封装能力已经初步形成

长电科技王新潮董事长在2017半导体封装测试年会上,对于中国封测厂商目前的先进封装技术水平还提到三点:

SiP 系统级封装: 目前集成度和精度等级最高的SiP模组在长电科技已经实现大规模量产;华天科技的TSV+SiP指纹识别封装产品已经成功应用于华为系列手机。

WLP 晶圆级封装 :长电科技的Fan Out扇出型晶圆级封装累计发货超过15亿颗,其全资子公司长电先进已经成为全球最大的集成电路Fan-In WLCSP封装基地之一;晶方科技已经成为全球最大的影像传感器WLP晶圆级封装基地之一。

FC 倒装封装: 通过跨国并购,国内领先企业获得了国际先进的FC倒装封装技术,比如长电科技的用于智能手机处理器的FC-POP封装技术;通富微电的高脚数FC-BGA封装技术;国内三大封测厂也都基本掌握了16/14nm的FC倒装封装技术。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13222373.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-22
下一篇 2023-06-22

发表评论

登录后才能评论

评论列表(0条)

保存