智慧农业项目名称有哪些

智慧农业项目名称有哪些,第1张

智慧农业项目名称有很多,以下是一些常见的智慧农业项目名称:
1 农业物联网
2 智慧果园
3 智慧农场
4 农业大数据
5 农业无人机
6 智慧温室
7 智慧农机
8 智慧养殖
9 农业机器人
10 农产品追溯系统
这些智慧农业项目都是利用现代科技手段,如物联网、大数据、人工智能等技术,来提高农业生产效率、降低生产成本、增加产品质量,实现农业可持续发展的目标,具有很大的发展潜力和社会意义。

古语有云,民以食为天。

在国家大力推广“农业+互联网”及 大数据、物联网、人工智能等新兴科技不断发展的时代背景下,智慧农业应运而生。

什么是智慧农业?

“智慧农业”是集互联网、移动互联网、云计算和物联网技术为一体的农业生产方式,它与科学的管理制度相结合,让多种信息技术在农业中实现综合、全面的应用,使传统农业更具有“智慧”。从广泛意义上讲,智慧农业还包括农业电子商务、食品溯源防伪、农业休闲旅游、农业信息服务等方面的内容。
乡村互联网创业,未来已来

前瞻产业研究院数据显示:到2025年我国农业规模占全球比重将超过1/5,AI赋能农业,加快推进农业信息化进程,促进信息化和现代化融合已成为必然趋势。

《中国智慧农业行业市场深度调研及2017~2021年投资商机研究报告》中数据显示,早在2013年,我国智慧农业的产业规模已达到4000亿元,仅以应用(硬件和网络平台以及服务)为基础的智慧农业市场就有望在2022年达到1845亿美元的规模,年均复合增长率138%。

在这一大好趋势及盈利蓝海下,国内巨头正在尝试用科技改变传统农业:阿里在今年云栖大会上推出的阿里云ET农业大脑,主打农业资料数据化、农产品生命周期管理、智慧农事系统和全链路溯源管理;京东以无人机农林植保服务为切入点,成立智慧农业共同体,上线京东农服APP。近日又学阿里用AI技术养猪;百度用无人驾驶技术赋能农机,提升机械化水平等等。

创业者该以怎样的方式切入智慧农业?

1农业+AI技术

人工智能是农业发展的一个新引擎,在AI技术的加持下,可以实现智能农场、智能化植物工厂、智能牧场、智能渔场、智能果园、农产品加工智能车间、农产品绿色智能供应链等概念农业。

2农业数据信息服务

智慧农业的前提是农业生产信息化,农业生产管理领域的信息化仍都大有可为。其中以农业大数据公司更优,其次为综合型农业SaaS平台。

3低成本智慧农业设备

技术的发展给可以为农业提供诸多先进的设备以供农民选择。但对农民来说,购买一套农业设备的成本是比较高昂的,有的甚至要几十万或者上百万,对收入微薄的普通农民来说是难以承受的,因此,低成本的智慧农业设备相对来说会有很大的市场。

4智慧农业营销

互联网营销是解决农产品“卖难”“价低”的有效途径。通过物联网硬件、遥感技术等收集的数据,可以帮助农民销售农产品。近年来各地兴起农业休闲旅游、农家乐热潮,旨在通过网站、线上宣传等渠道推广、销售休闲旅游产品,并为旅客提供个性化旅游服务,成为农民增收新途径和农村经济新业态。利用农业数据以销定采,科学种植、销售,也是创业公司的机会。

智慧农业是农业未来的发展趋势,目前国内智慧农业才刚起步,发展潜力巨大,但想要入局的创业者最好在农业或技术层面有一定积累。

以上信息由挚梦科技建站整理提供,有遇到类似问题的站长朋友可以以

此作为参考,虽然不够全面,但是也可以作为一个思路进行补救。
@�ʣ�+

本专题我共整理了10篇文章,来自中国农业科学院农业质量标准与检测技术研究所、南京农业大学、英国林肯大学、华南农业大学、江南大学、国家农业智能装备工程技术研究中心、浙江大学、中国科学院、吉林农业大学、西北农林 科技 大学、国家信息农业工程技术中心等单位。

文章包含农产品质量安全纳米传感器、太阳能杀虫灯、分簇路由算法、农田物联网混合多跳路由算法、水产养殖溶解氧传感器研制、土壤养分近场遥测方法、农机远程智能管理平台、水肥浓度智能感知与精准配比、果园多机器人通信等内容,供大家阅读、参考。

专题--农业传感器与物联网

Topic--Agricultural Sensor and Internet of Things

[1]王培龙, 唐智勇 农产品质量安全纳米传感应用研究分析与展望[J] 智慧农业(中英文), 2020, 2(2): 1-10

WANG Peilong , TANG Zhiyong Application analysis and prospect of nanosensor in the quality and safety of agricultural products[J] Smart Agriculture, 2020, 2(2): 1-10

知网阅读

[2]杨星, 舒磊, 黄凯, 李凯亮, 霍志强, 王彦飞, 王心怡, 卢巧玲, 张亚成 太阳能杀虫灯物联网故障诊断特征分析及潜在挑战[J] 智慧农业(中英文), 2020, 2(2): 11-27

YANG Xing, SHU Lei, HUANG Kai, LI Kailiang, HUO Zhiqiang, WANG Yanfei, WANG Xinyi, LU Qiaoling, ZHANG Yacheng Characteristics analysis and challenges for fault diagnosis in solar insecticidal lamps Internet of Things[J] Smart Agriculture, 2020, 2(2): 11-27

摘要: 太阳能杀虫灯物联网(SIL-IoTs)是一种基于农业场景与物联网技术的新型物理农业虫害防治工具,通过无线传输太阳能杀虫灯组件状态数据,用户可后台实时查看太阳能杀虫灯运行状态,具有杀虫计数、虫害区域定位、辅助农情监测等功能。但随着SIL-IoTs快速发展与广泛应用,故障诊断难和维护难等矛盾日益突出。基于此,本研究首先阐述了SIL-IoTs的结构和研究现状,分析了故障诊断的重要性,指出了故障诊断是保障其可靠性的主要手段。接着介绍了目前太阳能杀虫灯节点自身存在的故障及其在无线传感网络(WSNs)中的体现,并进一步对WSNs中的故障进行分类,包括基于行为、基于时间、基于组件以及基于影响区域的故障四类。随后讨论了统计方法、概率方法、层次路由方法、机器学习方法、拓扑控制方法和移动基站方法等目前主要使用的WSNs故障诊断方法。此外,还探讨了SIL-IoTs故障诊断策略,将故障诊断从行为上分为主动型诊断与被动型诊断策略,从监测类型上分为连续诊断、定期诊断、直接诊断与间接诊断策略,从设备上分为集中式、分布式与混合式策略。在以上故障诊断方法与策略的基础上,介绍了后台数据异常、部分节点通信异常、整个网络通信异常和未诊断出异常但实际存在异常四种故障现象下适用的WSNs故障诊断调试工具,如Sympathy、Clairvoyant、SNIF和Dustminer。最后,强调了SIL-IoTs的特性对故障诊断带来的潜在挑战,包括部署环境复杂、节点任务冲突、连续性区域节点无法传输数据和多种故障诊断失效等情形,并针对这些潜在挑战指出了合理的研究方向。由于SIL-IoTs为农业物联网中典型应用,因此本研究可扩展至其它农业物联网中,并为这些农业物联网的故障诊断提供参考。

知网阅读

[3]汪进鸿, 韩宇星 用于作物表型信息边缘计算采集的认知无线传感器网络分簇路由算法[J] 智慧农业(中英文), 2020, 2(2): 28-47

WANG Jinhong, HAN Yuxing Cognitive radio sensor networks clustering routing algorithm for crop phenotypic information edge computing collection[J] Smart Agriculture, 2020, 2(2): 28-47

摘要: 随着无线终端数量的快速增长和多媒体图像等高带宽传输业务需求的增加,农业物联网相关领域可预见地会出现无线频谱资源紧缺问题。针对基于传统物联网的作物表型信息采集系统中存在由于节点密集部署导致数据传输过程容易出现频谱竞争、数据拥堵的现象以及固定电池的网络由于能耗不均衡引起监测周期缩减等诸多问题,本研究建立了一个认知无线传感器网络(CRSN)作物表型信息采集模型,并针对模型提出一种引入边缘计算机制的动态频谱和能耗均衡(DSEB)的事件驱动分簇路由算法。算法包括:(1)动态频谱感知分簇,采用层次聚类算法结合频谱感知获取的可用信道、节点间的距离、剩余能量和邻居节点度为相似度对被监控区域内的节点进行聚类分簇并选取簇头,构建分簇拓扑的过程对各分簇大小的均衡性引入奖励和惩罚因子,提升网络各分簇平均频谱利用率;(2)融入边缘计算的事件触发数据路由,根据构建的分簇拓扑结构,将待检测各区域变化异常表型信息触发事件以簇内汇聚和簇间中继交替迭代方式转发至汇聚节点,簇内汇聚包括直传和簇内中继,簇间中继包括主网关节点和次网关节点-主网关节点两种情况;(3)基于频谱变化和通信服务质量(QoS)的自适应重新分簇:基于主用户行为变化引起的可用信道改变,或分簇效果不佳对通信服务质量产生的干扰,触发CRSN进行自适应重新分簇。此外,本研究还提出了一种新的能耗均衡策略去能量消耗中心化(假设sink为中心),即在网关或簇头节点选取计算式中引入与节点到sink的距离成正比的权重系数。算法仿真结果表明,与采用K-medoid分簇和能量感知的事件驱动分簇(ERP)路由方案相比,在CRSN节点数为定值的前提下,基于DSEB的分簇路由算法在网络生存期与能效等方面均具有一定的改进;在主用户节点数为定值时,所提算法比其它两种算法具有更高频谱利用率。

知网阅读

[4]顾浩, 王志强, 吴昊, 蒋永年, 郭亚 基于荧光法的溶解氧传感器研制及试验[J] 智慧农业(中英文), 2020, 2(2): 48-58

GU Hao, WANG Zhiqiang, WU Hao, JIANG Yongnian, GUO Ya A fluorescence based dissolved oxygen sensor[J] Smart Agriculture, 2020, 2(2): 48-58

摘要:溶解氧含量的测量对水产养殖具有极其重要的意义,但目前中国市面上的溶解氧传感器存在价格昂贵、不能持续在线测量及更新部件维护困难等问题,难以在水产养殖物联网中大规模推广和发挥作用。本研究基于荧光淬灭原理,利用水中溶解氧浓度与荧光信号相位差的关系进行低成本、易维护溶解氧传感器的研发。首先利用自制备溶氧敏感膜,经激发光照射后产生红色荧光,该荧光寿命可由溶解氧浓度调节;然后利用光信号敏感器件设计光电转化电路实现光信号感知;再以STM32F103微处理器作为主控芯片,编写下位机程序实现激发光脉冲产生,利用相敏检波原理以及快速傅里叶变换(FFT)计算激发光与参照光的相位差,进而转化为溶解氧浓度,实现溶解氧的测量。荧光探测部分与系统主控部分采用分离式设计思想,利用屏蔽排线直接插拔连接,便于传感器探测头的拆卸、更换、维护以及实现远距离在线测量。经测试,本溶解氧传感器的测量范围是0~20 mg/L,响应延迟小于2 s,溶氧敏感膜使用寿命约1年,可以实时不间断地对溶解氧浓度进行测量。同时,本传感器具有测量方便、制作成本低、体积小等特点,为中国水产养殖低成本溶解氧传感器的研发与市场化奠定了良好的基础。

知网阅读

[5]矫雷子, 董大明, 赵贤德, 田宏武 基于调制近红外反射光谱的土壤养分近场遥测方法研究[J] 智慧农业(中英文), 2020, 2(2): 59-66

JIAO Leizi, DONG Daming, ZHAO Xiande, TIAN Hongwu Near-field telemetry detection of soil nutrient based on modulated near-infrared reflectance spectrum[J] Smart Agriculture, 2020, 2(2): 59-66

摘要: 土壤养分作为农业生产的重要指标,含量过少会降低农作物产量,过多则会造成环境污染。因此,快速、准确检测土壤养分对于精准施肥和提高作物产量具有重要意义。基于取样和化学分析的传统方法能够全面准确地检测土壤养分,但检测过程中土壤的取样及预处理过程繁琐、 *** 作复杂、费时费力,不能实现土壤养分的原位快速检测。本研究基于调制近红外光谱,提出了一种土壤养分主动式近场遥测方法,可有效避免土壤反射自然光的干扰。该方法使用波长范围1260~1610 nm的8通道窄带激光二极管作为近红外光源,通过测量8通道激光光束的土壤反射率,建立土壤养分中氮(N)关于土壤反射率的计量模型,实现了N的快速检测。在74组已知N含量的土壤样品中,选取54组作为训练集,20组作为预测集。基于一般线性模型,对训练集中土壤N含量与土壤反射率的定量化参数进行训练,筛选显著波段后的计量模型R2达到097。基于建立的计量模型,预测集中土壤N含量预测值与参考值的决定系数R2达到09,结果表明该方法具有土壤养分现场快速检测的能力。

知网阅读

[6]朱登胜, 方慧, 胡韶明, 王文权, 周延锁, 王红艳, 刘飞, 何勇 农机远程智能管理平台研发及其应用[J] 智慧农业(中英文), 2020, 2(2): 67-81

ZHU Dengsheng, FANG Hui, HU Shaoming, WANG Wenquan, ZHOU Yansuo, WANG Hongyan, LIU Fei, HE Yong Development and application of an intelligent remote management platform for agricultural machinery[J] Smart Agriculture, 2020, 2(2): 67-81

摘要: 本研究针对农机管理实时数据少、农机实时作业监管困难、服务信息不对称等问题,首先提出专业化远程管理平台设计时应具有五大原则:专业化、标准化、云平台、模块化以及开放性。基于这些原则,本研究设计了基于大田作业智能传感技术、物联网技术、定位技术、遥感技术和地理信息系统的可定制化的通用农机远程智能管理平台。平台分别为各级政府管理部门、农机合作社、农机手、农户设计并实现了基于WebGIS 的农机信息库及农机位置服务、农机作业实时监测与管理、农田基础信息管理、田间作物基本信息管理、农机调度管理、农机补贴管理、农机作业订单管理等多个实用模块。研究着重分析了在当前的技术背景下,平台部分关键技术的实现方法,包括采用低精度GNSS定位系统前提下的作业面积的计算方法、GNSS定位数据处理过程中的数据问题分析、农机调度算法、作业传感器信息的集成等,并提出了以地块为核心的管理平台建设思路;同时提出农机作业管理平台将逐步从简单作业管理转向大田农机综合管理。本平台对同类型管理平台的研发具有一定的参考与借鉴作用。

知网阅读

[7]金洲, 张俊卿, 郭红燕, 胡宜敏, 陈翔宇, 黄河, 王红艳 水肥浓度智能感知与精准配比系统研制与试验[J] 智慧农业(中英文), 2020, 2(2): 82-93

JIN Zhou, ZHANG Junqing, GUO Hongyan, HU Yimin, CHEN Xiangyu, HUANG He, WANG Hongyan Development and testing of intelligent sensing and precision proportioning system of water and fertilizer concentration[J] Smart Agriculture, 2020, 2(2): 82-93

摘要: 为解决农场当地当时的复合肥料精准化配料问题,本研究将水肥一体化智能灌溉施肥系统作为研究对象,构建了水肥浓度智能感知与精准配比系统。首先提出现场在线水肥溶液智能感知模型的快速建立方法,利用数据分析算法从传感器实时监测的一系列浓度梯度的肥料溶液中挖掘出模型。其次基于上述模型设计水肥浓度智能感知与精准配比系统的框架结构,阐述系统工作原理;并通过三种水体模拟在线配肥验证了该系统原位指导水肥浓度配比的有效性,同时评价了水体电导率对水肥配比浓度的干扰。试验结果表明,正则化条件下二阶的多项式拟合曲线是表达溶液电导率与水肥浓度的变化关系最优的模型,相关系数R2均大于0999,由此模型可得出用户关心的复合肥各指标浓度。三种水体模拟在线配肥结果表明,水体会干扰电导率导致无法准确反演水肥配比的浓度,相对偏差值超过了01。因此,本研究提出的在线水肥智能感知与精准配比系统实现了消除当地水体电导率对水肥配比准确性的干扰,通过模型计算实现复合肥精准化配比,并得出各指标浓度。该系统结构简单,配比精准,易与现有水肥一体机或者人工配肥系统结合使用,可广泛应用于设施农业栽培、果园栽培和大田经济作物栽培等环境下的精准智能施肥。

知网阅读

[8]孙浩然, 孙琳, 毕春光, 于合龙 基于粒子群与模拟退火协同优化的农田物联网混合多跳路由算法[J] 智慧农业(中英文), 2020, 2(3): 98-107

SUN Haoran, SUN Lin, BI Chunguang, YU Helong Hybrid multi-hop routing algorithm for farmland IoT based on particle swarm and simulated annealing collaborative optimization method[J] Smart Agriculture, 2020, 2(3): 98-107

摘要: 农业无线传感器网络对农田土壤、环境和作物生长的多源异构信息的获取起关键作用。针对传感器在农田中非均匀分布且受到能量制约等问题,本研究提出了一种基于粒子群和模拟退火协同优化的农田物联网混合多跳路由算法(PSMR)。首先,通过节点剩余能量和节点度加权选择簇首,采用成簇结构实现异构网络高效动态组网。然后通过簇首间多跳数据结构解决簇首远距离传输能耗过高问题,利用粒子群与模拟退火协同优化方法提高算法收敛速度,实现sink节点加速采集簇首中的聚合数据。对算法的仿真试验结果表明,PSMR算法与基于能量有效负载均衡的多路径路由策略方法(EMR)相比,无线传感器网络生命周期提升了57%;与贪婪外围无状态路由算法(GPSR-A)相比,在相同的网络生命周期内,第1个死亡传感器节点推迟了两轮,剩余能量标准差减少了004 J,具有良好的网络能耗均衡性。本研究提出的PSMR算法通过簇首间多跳降低远端簇首额外能耗,提高了不同距离簇首的能耗均衡性能,为实现大规模农田复杂环境的长时间、高效、稳定地数据采集监测提供了技术基础,可提高农业物联网的资源利用效率。

知网阅读

[9]毛文菊, 刘恒, 王东飞, 杨福增, 刘志杰 面向果园多机器人通信的AODV路由协议改进设计与测试[J] 智慧农业(中英文), 2021, 3(1): 96-108

MAO Wenju, LIU Heng, WANG Dongfei, YANG Fuzeng, LIU Zhijie Improved AODV routing protocol for multi-robot communication in orchard[J] Smart Agriculture, 2021, 3(1): 96-108

摘要: 针对多机器人在果园中作业时的通信需求,本研究基于Wi-Fi信号在桃园内接收强度预测模型,提出了一种引入优先节点和路径信号强度阈值的改进无线自组网按需平面距离向量路由协议(AODV-SP)。对AODV-SP报文进行设计,并利用NS2仿真软件对比了无线自组网按需平面距离向量路由协议(AODV)和AODV-SP在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能。仿真试验结果表明,本研究提出的AODV-SP路由协议在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能均优于AODV协议,其中节点的移动速度为5 m/s时,AODV-SP的路由发起频率和路由开销较AODV分别降低了365%和709%,节点的移动速度为8 m/s时,AODV-SP的分组投递率提高了059%,平均端到端时延降低了1309%。为进一步验证AODV-SP协议的性能,在实验室环境中搭建了基于领航-跟随法的小型多机器人无线通信物理平台并将AODV-SP在此平台应用,并进行了静态丢包率和动态测试。测试结果表明,节点相距25 m时静态丢包率为0,距离100 m时丢包率为2101%;动态行驶时能使机器人维持链状拓扑结构。本研究可为果园多机器人在实际环境中通信系统的搭建提供参考。

知网阅读

[10]黄凯, 舒磊, 李凯亮, 杨星, 朱艳, 汪小旵, 苏勤 太阳能杀虫灯物联网节点的防盗防破坏设计及展望[J] 智慧农业(中英文), 2021, 3(1): 129-143

HUANG Kai, SHU Lei, LI Kailiang, YANG Xing, ZHU Yan, WANG Xiaochan, SU Qin Design and prospect for anti-theft and anti-destruction of nodes in Solar Insecticidal Lamps Internet of Things[J] Smart Agriculture, 2021, 3(1): 129-143

摘要: 太阳能杀虫灯在有效控制虫害的同时,可减少农药施药量。随着其部署数量的增加,被盗被破坏的报道也越来越多,严重影响了虫害防治效果并造成了较大的经济损失。为有效地解决太阳能杀虫灯物联网节点被盗被破坏问题,本研究以太阳能杀虫灯物联网为应用场景,对太阳能杀虫灯硬件进行改造设计以获取更多的传感信息;提出了太阳能杀虫灯辅助设备——无人机杀虫灯,用以被盗被破坏出现后的部署、追踪和巡检等应急应用。通过上述硬件层面的改造设计和增加辅助设备,可以获取更为全面的信息以判断太阳能杀虫灯物联网节点被盗被破坏情况。但考虑到被盗被破坏发生时间短,仅改造硬件层面还不足以实现快速准确判断。因此,本研究进一步从内部硬件、软件算法和外形结构设计三个层面,探讨了设备防盗防破坏的优化设计、设备防盗防破坏判断规则的建立、设备被盗被破坏的快速准确判断、设备被盗被破坏的应急措施、设备被盗被破坏的预测与防控,以及优化计算以降低网络数据传输负荷六个关键研究问题,并对设备防盗防破坏技术在太阳能杀虫灯物联网场景中的应用进行了展望。

知网阅读

微信交流服务群

为方便农业科学领域读者、作者和审稿专家学术交流,促进智慧农业发展,为更好地服务广大读者、作者和审稿人,编辑部建立了微信交流服务群,有关专业领域内的问题讨论、投稿相关的问题均可在群里咨询。

入群方法: 加我微信 331760296 备注: 姓名、单位、研究方向 ,我拉您进群,机构营销广告人员勿扰。

信息发布

科研团队介绍及招聘信息、学术会议及相关活动 的宣传推广

智能大棚:温室大棚可在不适宜作物生长的季节,为作物打造适宜的生长环境,多用于对生长环境要求精细的作物,如低温季节喜温蔬菜、花卉、林木等植物栽培或育苗等。传统温室大棚的生产管理主要依赖人工:人感觉冷了就增温,观察土壤觉得干了就浇水,通风、补光等 *** 作均依赖人工 *** 作,没有精准的数据支撑。农业进入信息化时代后,物联网、大数据等技术更多地引入到农业生产中,慧云信息根据用户生产需求,为用户搭建专业农业生产大棚,并将智能化控制系统应用到大棚中,实现大棚智能化种植与精准化管理。

农业物联网的应用主要集中在农业资源监测和利用、农业生态环境监测、农业生产精细管理和农产品安全溯源等方面。
一、农业资源监测和利用领域
在农业资源监测和利用领域,利用各种资源卫星收集国土资源情况,利用先进的传感器、信息传输和互联网等综合化信息监测、传输、分析平台实现区域农业的统筹规划和资源监测。如美国加州大学洛杉矶分校建立的林业资源环境监测网络,通过对加州地区的森林资源进行实时监测,为相应部门提供实时的资源利用信息,为统筹管理林业提供支撑。欧洲主要利用资源卫星对土地利用信息进行实时监测,其中,法国利用通信卫星技术对灾害性天气进行预报,对病虫害进行测报。
二、农业生态环境监测领域
在农业生态环境监测领域,农业物联网主要利用高科技手段构建先进农业生态环境监测网络,利用无线传感器技术、信息融合传输技术和智能分析技术感知生态环境变化。如美国加州大学伯克利分校的研究人员通过无线传感器网络对大鸭岛上海燕的栖息情况进行了9个月周期性的环境监测,采用区域化静态MICA传感器节点部署,实现了无人侵、无破坏的对敏感野生动物及其栖息地的监测。美国、法国和日本等一些国家主要综合运用建立覆盖全国的农业信息化平台,实现对农业生态环境的自动监测,保证农业生态环境的可持续发展。
三、农业生产精细管理领域
在农业生产精细管理领域,将光、温、水、气、土、生物等农业物联网传感器布局于大田作物生产、果园种植、畜禽水产养殖等方面,实现不间断化感知、实时化决策、精细化生产。如2002年英特尔公司率先在美国俄勒冈州建立了世界上第一个无线传感器网络葡萄园。通过采用Crossbow公司的Mote系列传感器,每隔一分钟采集一次光照、土壤温湿度等数据,实时监控葡萄生长环境的细微变化,确保葡萄的健康生长;2004年美国佐治亚州的两个农场使用了与无线互联网配套的远距离视频系统和GPS定位技术,分别监控蔬菜的包装和灌溉系统。荷兰VELOS智能化母猪管理系统,能够实现自动供料、自动管理、自动数据传输和自动报警。泰国初步形成了小规模的水产养殖物联网,解决了RFID技术在水产品领域的应用难题。
四、在农产品安全溯源领域
在农产品安全溯源领域,利用条码技术和RFID技术等来跟踪、识别、监测农产品的生产、运输、消费过程,保证农产品的质量安全。例如2001年起,加拿大肉牛使用一维条形码耳标之后又过渡电子耳标;2004年日本基于RFID技术构建了农产品追溯试验系统,利用RFID标签,实现了对农产品流通管理和个体识别。近年来,RFID的应用更加广泛并由此形成了自动识别技术与装备制造产业。据美国市调公司ABIresearch2007年度第一季报告显示,2006年全球RFID市场为3812亿美元,其中亚太地区已跃为全球最大市场,规模为1407亿美元。

人工智能是相对于人类智能而言的。它是指用机械和电子装置来模拟和代替人类的某些智能。人工智能也称“机器智能”或“智能模拟”。当今人工智能主要是利用电子技术成果和仿生学方法,从大脑的结构方面模拟人脑的活动,即结构模拟。人脑是智能活动的物质基础,是由上百亿个神经元组成的复杂系统。结构模拟是从单个神经元入手的,先用电子元件制成神经元模型,然后把神经元模型连接成神经网络(脑模型),以完成某种功能,模拟人的某些智能。如1957年美国康乃尔大学罗森布莱特等人设计的“感知机”;1975年日本的福岛设计的“认知机”(自组织多层神经网络)。电子计算机是智能模拟的物质技术工具。它是一种自动、高速处理信息的电子机器。它采用五个与大脑功能相似的部件组成了电脑,来模拟人脑的相应功能。这五个部件是:
(1)输入设备,模拟人的感受器(眼、耳、鼻等),用以接受外来的信息。人通过输入设备将需要计算机完成的任务、课题、运算步骤和原始数据采用机器所能接受的形式告诉计算机,并经输入设备把这些存放到存贮器中。
(2)存贮器,模拟人脑的记忆功能,将输入的信息存储起来,供随时提取使用,是电子计算机的记忆装置。
(3)运算器,模拟人脑的计算、判断和选择功能,能进行加减乘除等算术运算和逻辑运算。
(4)控制器,人脑的分析综合活动以及通过思维活动对各个协调工作的控制功能,根据存贮器内的程序,控制计算机的各个部分协调工作。它是电脑的神经中枢。
(5)输出设备,模拟人脑的思维结果和对外界刺激的反映,把计算的结果报告给 *** 作人员或与外部设备联系,指挥别的机器动作。以上五部分组成的电脑是电子模拟计算机的基本部分,称为硬件。只有硬件还不能有效地模拟和代替人脑的某些功能,还必须有相应的软件或软设备。所谓软件就是一套又一套事先编好的程序系统。人工智能的产生是人类科学技术进步的结果,是机器进化的结果。人类的发展史是人们利用各种生产工具有目的地改造第一自然(自然造成的环境,如江河湖海、山脉森林等),创造第二自然(即人化自然,如人造房屋、车辆机器等)的历史。人类为了解决生理机能与劳动对象之间的矛盾,生产更多的财富,就要使其生产工具不断向前发展。人工智能,是随着科学技术的发展,在人们创造了各种复杂的机器设备,大大延伸了自己的手脚功能之后,为了解决迫切要延伸思维器官和放大智力功能的要求而产生和发展起来的。从哲学上看,物质世界不仅在本原上是统一的,而且在规律上也是相通的。不论是机器、动物和人,都存在着共同的信息与控制规律,都是信息转换系统,其活动都表现为一定信息输入与信息输出。人们认识世界与在实践中获取和处理信息的过程相联系,改造世界与依据已有的信息对外界对象进行控制的过程相联系。总之,一切系统都能通过信息交换与反馈进行自我调节,以抵抗干扰和保持自身的稳定。因此,可以由电子计算机运用信息与控制原理来模拟人的某些智能活动。从其它科学上来说,控制论与信息论就是运用系统方法,从功能上揭示了机器、动物、人等不同系统所具有的共同规律。以此把实际的描述形式化,即为现象和行为建立一个数学模型;把求解问题的方式机械化,即根据数学模型,制定某种算法和规则,以便机械地执行;把解决问题的过程自动化,即用符号语言把算法和规则编成程序,交给知识智能机器执行某种任务,使电子计算机模拟人的某些思维活动。所以,控制论、信息论是"智能模拟"的科学依据,“智能模拟”是控制论、信息论在实践中的最重要的实践结果。人工智能是人类智能的必要补充,但是人工智能与人类智能仍存在着本质的区别:1、人工智能是机械的物理过程,不是生物过程。它不具备世界观、人生观、情感、意志、兴趣、爱好等心理活动所构成的主观世界。而人类智能则是在人脑生理活动基础上产生的心理活动,使人形成一个主观世界。因此,电脑与人脑虽然在信息的输入和输出的行为和功能上有共同之处,但在这方面两者的差别是十分明显的。从信息的输入看,同一件事,对于两个智能机具有相同的信息量,而对于两个不同的人从中获取的信息量却大不相同。“行家看门道,外行看热闹”就是这个道理。从信息的输出方面看,两台机器输出的同一信息,其信息量相等。而同一句话,对于饱于风霜的老人和天真幼稚的儿童,所说的意义却大不相同。3、电脑必须接受人脑的指令,按预定的程序进行工作。它不能输出末经输入的任何东西。所谓结论,只不过是输入程序和输入数据的逻辑结果。它不能自主地提出问题,创造性地解决问题,在遇到没有列入程序的“意外”情况时,就束手无策或中断工作。人工智能没有创造性。而人脑功能则能在反映规律的基础上,提出新概念,作出新判断,创造新表象,具有丰富的想象力和创造性。4、人工机器没有社会性。作为社会存在物的人,其脑功能是适应社会生活的需要而产生和发展的。人们的社会需要远远超出了直接生理需要的有限目的,是由社会的物质文明与精神文明的发展程序所决定的。因此,作为人脑功能的思维能力,是通过社会的教育和训练,通过对历史上积累下来的文化的吸收逐渐形成的。人的内心世界所以丰富多采,是由于人的社会联系是丰富的和多方面的,人类智能具有社会性。所以要把人脑功能全面模拟下来,就需要再现人的思想发展的整个历史逻辑。这是无论多么“聪明”的电脑都做不到的。随着科学技术的发展,思维模拟范围的不断扩大,电脑在功能上会不断向人脑接近。但从本质上看,它们之间只能是一条渐近线,它们之间的界限是不会清除的。模拟是近似而不能是等同。人工智能与人脑在功能上是局部超过,整体上不及。由于人工智能是由人造机器而产生的,因此,人工智能永远也不会赶上和超过人类智能。所谓“机器人将超过人奴役人”、“人将成为计算机思想家的玩物或害虫,……保存在将来的动物园”的“预言”是不能成立的。因为,它抹煞了人与机器的本质差别与根本界限。人工智能充实和演化了辩证唯物主义的意识论。它进一步表明了意识是人脑的机能,物质的属性。电脑对人脑的功能的模拟,表明了意识并不是神秘的不可捉摸的东西,不是游离于肉体内外脱离人脑的灵魂,也不是人脑分泌出来的特殊物质形态,而是人脑的机能属性。这就进一步证明了意识本质的原理。人工智能的出现深化了意识对物质的反作用的原理。人工智能是人类意识自我认识的产物。电脑的出现,意昧着人类意识已能部分地从人脑中分化出来,物化为物质的机械运动。这不仅延长了意识的器官,也说明意识能反过来创造"人脑"。这是意识对人脑的巨大的反作用。从意识与人脑的相互关系中进一步深化了意识对物质形态进步的反作用,意识作为最高的物质属性对于物质运动发展的反作用。人工智能引起了意识结构的变化,扩大了意识论的研究领域。电脑作为一种新形态的机器而进入了意识器官的行列。它不仅能完成人脑的一部分意识活动,而且在某种功能上还优于人脑。如人脑处理信息和采取行动的速度不如电脑,记忆和动作的准确性不如电脑。因此,在现代科学认识活动中,没有人工智能,就不会有人类认识能力的突破性发展和认识范围的不断扩大。电脑不仅依赖于人,人也依赖于电脑。这就使得在意识论结构上增加了对人工智能的探讨以及对人机互补的关系的探讨。同时思维模拟,也把思维形式在思维中的作用问题突出出来,为意识论的研究提出了一个重要课题。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13222433.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-22
下一篇 2023-06-22

发表评论

登录后才能评论

评论列表(0条)

保存