物联网 *** 作系统与传统的个人计算机 *** 作系统和智能手机类 *** 作系统不同,它具备物联网应用领域内的一些独特特点,现说明如下。
物联网 *** 作系统内核的特点
1、内核尺寸伸缩性强,能够适应不同配置的硬件平台。比如,一个极端的情况下,内核尺寸必须维持在10K以内,以支撑内存和CPU性能都很受限的传感器,这时候内核具备基本的任务调度和通信功能即可。在另外一个极端的情况下,内核必须具备完善的线程调度、内存管理、本地存储、复杂的网络协议、图形用户界面等功能,以满足高配置的智能物联网终端的要求。这时候的内核尺寸,不可避免的会大大增加,可以达到几百K,甚至M级。这种内核尺寸的伸缩性,可以通过两个层面的措施来实现:重新编译和二进制模块选择加载。重新编译措施很简单,只需要根据不同的应用目标,选择所需的功能模块,然后对内核进行重新编译即可。这个措施应用于内核定制非常深入的情况下,比如要求内核的尺寸达到10K以下的场合。而二进制模块选择加载,则用在对内核定制不是很深入的情况。这时候维持一个 *** 作系统配置文件,文件里列举了 *** 作系统需要加载的所有二进制模块。在内核初始化完成后,会根据配置文件,加载所需的二进制模块。这需要终端设备要有外部存储器(比如硬盘、Flash等),以存储要加载的二进制模块;
2、内核的实时性必须足够强,以满足关键应用的需要。大多数的物联网设备,要求 *** 作系统内核要具备实时性,因为很多的关键性动作,必须在有限的时间内完成,否则将失去意义。内核的实时性包涵很多层面的意思,首先是中断响应的实时性,一旦外部中断发生, *** 作系统必须在足够短的时间内响应中断并做出处理。其次是线程或任务调度的实时性,一旦任务或线程所需的资源或进一步运行的条件准备就绪,必须能够马上得到调度。显然,基于非抢占式调度方式的内核很难满足这些实时性要求;
3、内核架构可扩展性强。物联网 *** 作系统的内核,应该设计成一个框架,这个框架定义了一些接口和规范,只要遵循这些接口和规范,就可以很容易的在 *** 作系统内核上增加新的功能的新的硬件支持。因为物联网的应用环境具备广谱特性,要求 *** 作系统必须能够扩展以适应新的应用环境。内核应该有一个基于总线或树结构的设备管理机制,可以动态加载设备驱动程序或其它核心模块。同时内核应该具备外部二进制模块或应用程序的动态加载功能,这些应用程序存储在外部介质上,这样就无需修改内核,只需要开发新的应用程序,就可满足特定的行业需求;
4、内核应足够安全和可靠。可靠性就不用说了,物联网应用环境具备自动化程度高、人为干预少的特点,这要求内核必须足够可靠,以支撑长时间的独立运行。安全对物联网来说更加关键,甚至关系到国家命脉。比如一个不安全的内核被应用到国家电网控制当中,一旦被外部侵入,造成的影响将无法估量。为了加强安全性,内核应支持内存保护(VMM等机制)、异常管理等机制,以在必要时隔离错误的代码。另外一个安全策略,就是不开放源代码,或者不开放关键部分的内核源代码。不公开源代码只是一种安全策略,并不代表不能免费适用内核;
5、节能省电,以支持足够的电源续航能力。 *** 作系统内核应该在CPU空闲的时候,降低CPU运行频率,或干脆关闭 CPU。对于周边设备,也应该实时判断其运行状态,一旦进入空闲状态,则切换到省电模式。同时, *** 作系统内核应最大程度的降低中断发生频率,比如在不影响实时性的情况下,把系统的时钟频率调到最低,以最大可能的节约电源。
物联网 *** 作系外围模块的特点
外围模块指为了适应物联网的应用特点, *** 作系统应该具备的一些功能特征,比如远程维护和升级等。同时也指为了扩展物联网 *** 作系统内核的功能范围,而开发的一些功能模块,比如文件系统、网络协议栈等。物联网 *** 作系统的外围模块(或外围功能)应该至少具备下列这些:
1、支持 *** 作系统核心、设备驱动程序或应用程序等的远程升级。远程升级是物联网 *** 作系统的最基本特征,这个特性可大大降低维护成本。远程升级完成后,原有的设备配置和数据能够得以继续使用。即使在升级失败的情况下, *** 作系统也应该能够恢复原有的运行状态。远程升级和维护是支持物联网 *** 作系统大规模部署的主要措施之一;
2、支持常用的文件系统和外部存储。比如支持FAT32/NTFS/DCFS等文件系统,支持硬盘、USB stick、Flash、ROM等常用存储设备。在网络连接中断的情况下,外部存储功能会发挥重要作用。比如可以临时存储采集到的数据,再网络恢复后再上传到数据中心。但文件系统和存储驱动的代码,要与 *** 作系统核心代码有效分离,能够做到非常容易的裁剪;
3、支持远程配置、远程诊断、远程管理等维护功能。这里不仅仅包涵常见的远程 *** 作特性,比如远程修改设备参数、远程查看运行信息等。还应该包涵更深层面的远程 *** 作,比如可以远程查看 *** 作系统内核的状态,远程调试线程或任务,异常时的远程dump内核状态等功能。这些功能不仅仅需要外围应用的支持,更需要内核的天然支持;
4、 支持完善的网络功能。物联网 *** 作系统必须支持完善的TCP/IP协议栈,包括对IPv4和IPv6的同时支持。这个协议栈要具备灵活的伸缩性,以适应裁剪需要。比如可以通过裁剪,使得协议栈只支持IP/UDP等协议功能,以降低代码尺寸。同时也支持丰富的IP协议族,比如Telnet/FTP/IPSec/SCTP等协议,以适用智能终端和高安全可靠的应用场合;
5、对物联网常用的无线通信功能要内置支持。比如支持GPRS/3G/HSPA/4G等公共网络的无线通信功能,同时要支持Zigbee/NFC/RFID等近场通信功能,支持WLAN/Ethernet等桌面网络接口功能。这些不同的协议之间,要能够相互转换,能够把从一种协议获取到的数据报文,转换成为另外一种协议的报文发送出去。除此之外,还应支持短信息的接收和发送、语音通信、视频通信等功能;
6、内置支持XML文件解析功能。物联网时代,不同行业之间,甚至相同行业的不同领域之间,会存在严重的信息共享壁垒。而XML格式的数据共享可以打破这个壁垒,因此XML标准在物联网领域会得到更广泛的应用。物联网 *** 作系统要内置对XML解析的支持,所有 *** 作系统的配置数据,统一用XML格式进行存储。同时也可对行业自行定义的XML格式进行解析,以完成行业转换功能;
7、支持完善的GUI功能。图形用户界面一般应用于物联网的智能终端中,完成用户和设备的交互。GUI应该定义一个完整的框架,以方便图形功能的扩展。同时应该实现常用的用户界面元素,比如文本框、按钮、列表等。另外,GUI模块应该与 *** 作系统核心分离,最好支持二进制的动态加载功能,即 *** 作系统核心根据应用程序需要,动态加载或卸载GUI模块。GUI模块的效率要足够高,从用户输入确认,到具体的动作开始执行之间的时间(可以叫做click-launch时间)要足够短,不能出现用户点击了确定、但任务的执行却等待很长时间的情况;
8、支持从外部存储介质中动态加载应用程序。物联网 *** 作系统应提供一组API,供不同应用程序调用,而且这一组 API应该根据 *** 作系统所加载的外围模块实时变化。比如在加载了GUI模块的情况下,需要提供GUI *** 作的系统调用,但是在没有GUI模块的情况下,就不应该提供GUI功能调用。同时 *** 作系统、GUI等外围模块、应用程序模块应该二进制分离, *** 作系统能够动态的从外部存储介质上按需加载应用程序。这样的一种结构,就使得整个 *** 作系统具备强大的扩展能力。 *** 作系统内核和外围模块(GUI、网络等)提供基础支持,而各种各样的行业应用,通过应用程序来实现。最后在软件发布的时候,只发布 *** 作系统内核、所需的外围模块、应用程序模块即可。
物联网 *** 作系统集成开发环境的特点
集成开发环境是构筑行业应用的关键工具,物联网 *** 作系统必须提供方便灵活的开发工具,以开发出适合行业应用的应用程序。开发环境必须足够成熟并得到广泛适用,以降低应用程序的上市时间(GTMT)。集成开发环境必须具备如下特点:
1、 物联网 *** 作系统要提供丰富灵活的API,供程序员调用,这组API应该能够支持多种语言,比如既支持C/C++,也支持Java、Basic等程序设计语言;
2、 最好充分利用已有的集成开发环境。比如可以利用Eclipse、Visual Studio等集成开发环境,这些集成开发工具具备广泛的应用基础,可以在Internet上直接获得良好的技术支持;
3、 除配套的集成开发环境外,还应定义和实现一种紧凑的应用程序格式(类似Windows的PE格式),以适用物联网的特殊需要。通过对集成开发环境进行定制,使得集成开发环境生成的代码,可以遵循这种格式;
4、 要提供一组工具,方便应用程序的开发和调试。比如提供应用程序下载工具、远程调试工具等,支撑整个开发过程。
可以看出,上述物联网 *** 作系统内核、外围模块、应用开发环境等,都是支撑平台,支撑更上一层的行业应用。行业应用才是最终产生生产力的软件,但是物联网 *** 作系统是行业应用得以茁壮生长和长期有效生存的基础,只有具备了强大灵活的物联网 *** 作系统,物联网这棵大树才能结出丰硕的果实。提到 *** 作系统,大多人第一印象是电脑端的Windows、Linux系统和手机端的安卓和iOS系统。这些程序直接运行在“裸机”设备的最低层,搭建起其他软件、应用运行的环境与基础。得益于 *** 作系统的兴起、完善,才促成了软件与应用的兴起,铸就了辉煌的PC时代与移动互联网时代。
物联网的 *** 作系统调度“物体”本身,因此它很可能将融合人类 *** 作系统与PC时代 *** 作系统的两种形态,物联网 *** 作系统对“物体”的调度过程通过层层分发、层层下达,通过调度云、边、端,不同层级中不同设备的计算资源而实现。
因此,物联网中的 *** 作系统涉及到芯片层、终端层、边缘层、云端层等多个层面。单一层次的物联网 *** 作系统与安卓在移动互联网领域的地位和作用类似,实现了应用软件与智能终端硬件的解耦。就像在安卓的生态环境中,开发者基本不用考虑智能终端的物理硬件配置,只需根据安卓的编程接口编写应用程序,就可以运行在所有基于安卓的智能终端上一样,物联网 *** 作系统的作用也是如此。
在物联网 *** 作系统开发企业中,由爱投斯开发的物联网 *** 作系统具备得天独厚的优势。
IOTOS®物联网 *** 作系统定位可以类比成Windows *** 作系统。Windows *** 作系统是对单一设备进行硬件集成,比如显卡、声卡、屏幕、网卡等,提供驱动开发、应用开发套件和系统自带应用。
IOTOS®物联中台则是面向项目级的 *** 作系统对智慧项目涉及的传感器、设备以及业务子系统,进行采集、集成、融合打通,向下提供设备接入SDK,向上提供应用开发API,同时提供场景通用的内置应用,以此引领智慧项目实现标准化。
因此在物联网的环境下,尤其需要 *** 作系统来屏蔽物联网底层硬件碎片化差异,提供统一的编程接口,降低物联网应用开发的门槛、成本和时间。
为了应对严重的碎片化现状,采用IOTOS®物联网 *** 作系统,该 *** 作系统主要是对设备进行抽象,快速集成、采集,提供统一的设备和数据管理服务,以及统一的上层应用接口,对应用层屏蔽接入设备或系统的差异,极大降低物联网项目应用成本。
中山大学计算机学院,全名中山大学数据科学与计算机学院。
2015年6月,中山大学整合移动信息工程学院、信息科学与技术学院计算机科学系、软件学院(国家示范性软件学院之一,招生计划单列)、超级计算学院以及数学与计算科学学院计算数学方向(部分人员)等计算机相关专业的优势资源,组建数据科学与计算机学院。学院主体位于中山大学东校区(广州大学城校区)。
“互联网+”的概念正渗透社会经济的各个层面,与之相伴的是大数据、云服务(计算与存储)、物联网等相关技术的涌现。这些新兴技术既是“大众创业、万众创新”的原材料,也是催化剂,必将影响我们未来的生活方式。
学院愿景是面向国家重大需求,以服务社会经济为己任,致力于培养具有国际视野的应用型、复合型、创新型的高素质计算机人才。学院专业方向布局既整合了计算机科学与技术、计算科学等多个学科,又能借力国家超级计算广州中心的超级计算机“天河二号”,是培育优秀计算机人才的高地。
软件工程专业人才培养以软件核心知识为基础,以强化外语(英语)能力为重点,以实际软件开发能力培养为特色,培养具有实战能力的国际化工程型软件人才。
该专业目前设有通信软件、计算机应用软件、数字媒体技术、嵌入式软件与系统、电子政务等方向,并且根据发展的需求可以灵活调整和增加新的专业方向。所有方向第一和第二学年的专业基础课基本相同;第二学年结束前,根据个人兴趣和成绩分流到相关方向;第三学年按相关专业方向进行培养。在高年级阶段将针对各方向的需要和特点开设相应的专业课程,从而使得学生毕业时具备“厚基础、一专多能”等优势,增强就业竞争力。
物联网的体系结构可以分为感知层,网络层和应用层三个层次。
感知层。是物联网发展和应用的基础,包括传感器或读卡器等数据采集设备、数据接入到网关之前的传感器网络。感知层以RFID、传感与控制、短距离无线通信等为主要技术,其任务是识别物体和采集系统中的相关信息,从而实现对“物”的认识与感知。
网络层。是建立在现有通信网络和互联网基础之上的融合网络,网络层通过各种接入设备与移动通信网和互联网相连,其主要任务是通过现有的互联网、广电网络、通信网络等实现信息的传输、初步处理、分类、聚合等,用于沟通感知层和应用层。目前国内通信设备和运营商实力较强,是我国互联网技术领域最成熟的部分。
应用层。是将物联网技术与专业技术相互融合,利用分析处理的感知数据为用户提供丰富的特定服务。应用层是物联网发展的目的。物联网的应用可分为控制型、查询型、管理型和扫描型等,可通过现有的手机、电脑等终端实现广泛的智能化应用解决方案。
资料拓展:
物联网的整个结构可分为射频识别系统和信息网络系统两部分。射频识别系统主要由标签和读写器组成,两者通过RFID空中接口通信。读写器获取产品标识后,通过internet或其他通讯方式将产品标识上传至信息网络系统的中间件,然后通过ONS解析获取产品的对象名称,继而通过EPC信息服务的各种接口获得产品信息的各种相关服务。整个信息系统的运行都会借助internet的网络系统,利用在internet基础上的发展出的通信协议和描述语言。
因此我们可以说物联网是架构在internet基础上的关于各种物理产品信息服务的总和。从应用角度来看,物联网中三个层次值得关注,也即是说,物联网由三部分组成:一是传感网络,即以二维码、RFID、传感器为主,实现对“物”的识别。二是传输网络,即通过现有的互联网、广电网络、通信网络等实现数据的传输与计算。三是应用网络,即输入输出控制终端。
物联网架构由设备、网关、网络基础设施、管理软件四个部分组成。设备主要是指传感器,它们通过网络进行通信,无需人工干预。
网关,充当设备和云之间的中介,以提供所需的网络连接、安全性和可管理性。
网络基础设施,一般是由我们常见的如:由路由器、交换机、网关、中继器和其他控制数据流的设备组成。
管理软件:负责分析从传感器收集数据并作出指令并提供可视化数据与交互给 *** 作用。
中山大学是中央直管副部级。
中山大学由中华人民共和国教育部直属,中央直管副部级建制,是教育部、国家国防科技工业局和广东省共建的全国重点大学。有院士(含双聘)20人,国家“千人计划”专家119人、“长江学者”特聘教授46人、“长江学者”青年学者14人、国家杰出青年科学基金获得者81人。
“百千万人才工程” 国家级人选28人,教育部新世纪优秀人才支持计划170人,历次主持“973”项目和重大科学研究项目的首席科学家20人次。拥有10个国家级人才培养基地,经济管理等多个本科专业通过了国内、国际认证。
学校现由广州校区、珠海校区、深圳校区三个校区、五个校园及十家附属医院组成。
扩展资料:
中山大学国家级科研机构有:光电材料与技术国家重点实验室、有害生物控制与资源利用国家重点实验室、眼科学国家重点实验室、华南肿瘤学国家重点实验室、南海海洋生物技术国家工程研究中心、数字家庭国家工程技术研究中心。
国家新药(抗肿瘤药物)临床试验研究中心、AMOLED工艺技术国家工程实验室(共建)、数字家庭互动应用国家地方联合工程实验室、河口水利技术国家地方联合工程实验室、半导体照明材料及器件国家地方联合工程实验室。
物联网芯片与系统应用技术国家地方联合工程实验室、临床医学分子诊断国家地方联合工程实验室、血管疾病诊治技术国家地方联合工程实验室、新药成药性评估与评价国家地方联合工程实验室、RFID与物联网芯片技术国家地方联合工程技术研究中心。
参考资料:
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)