系统采用传感器测量影响植物生长的光照强度、温湿度、土壤墒情、二氧化碳浓等环境参数,通过物联网将所测量参数传送到管理中心,实现对农作物生长环境实时监测;管理中心对测量数据进行综合分析,按照规则给出控制决策,通过物联网将控制指令下发,由现场控制器实现对各类设施的智能控制,保障农作物的生长环境,降低成本,促进增产增收。管理中心软件可根据农作物种类设置生长环境参数范围和控制决策规则,并对所有测量数据进行存储,可依据条件对历史数据进行管理和查询。系统的构成:智能农田种植环境监测物联网系统,主要由下位机采集系统、上位机软件应用平台及辅助扩展部分组成。下位机信息采集系统中包含土壤墒情监测系统、水肥一体化系统、田间气候观测站、视频图像采集终端等,上位机软件部分又包含电脑显示控制、手机显示控制、LCD显示屏等,辅助扩展部分根据客户需要,可加入农田病虫害防治、农业专家在线指导、农产品质量追溯、线上交易云平台等一系列农业物联网所包含的系统设备。农业大田的各参数传感器,对农田整体环境进行多点实时动态采集,显示装置实时显示农田的温湿度、光照度等数值,能够更加一目了然地展示整个大田的数据全貌。
传感器是系统整个检测环节的重要组成部分,用于将农田环境因子等非电学物理量转变为控制系统可识别的电信号,为系统管理控制提供判断和处理的依据。传感器的主要技术指标有:线性度、灵敏度、迟滞、重复性、分辨率、漂移、精度等。常用传感器主要有温度传感器、湿度传感器、光照传感器、CO2(二氧化碳)传感器、土壤水分传感器、土壤温度传感器以及营养液的盐分(EC)和酸度(PH)传感器等。
最近网络上流传着一个问题:“2G时代看文字,3G时代看,4G时代看视频,5G时代能做什么?”其实回顾这些年「移动通信技术」的发展,不难看出2G→3G→4G→5G,真正进步的只有信息传输的速度。
2G时代可以看,只不过很卡。3G时代也可以看视频,只不过也很卡(当然那个时候的流量费也很贵,这是另一个问题)。所以「通信网络」的核心,就是通过信息传输速度变得越来越快这个优势,延伸出更多的使用场景和使用方法。
你现在每天拿手机刷抖音觉得不以为然,其实你手向下滑那一瞬间的数据传输速度,在2G时代简直是不敢想象的。如果我们想知道5G可以带来什么,我们现在不妨想一想:以今天的数据传输速度,我们还做不到什么?
很巧,车联网系统就是其中之一。
这个时候肯定会有很多朋友问了:“汽车不是早就能实现联网了吗?4G时代就可以啊,怎么能说做不到呢?”
用车里面的屏幕上个网页,看部《飞驰人生》就叫车联网了吗?其实真不是,现在所谓的车联网我认为只能叫「车内上网」。只要设备拥有SIM卡槽和相对完善的移动端系统,上网就是打开个流量开关的事儿。换句话说,能上网的车不过就是一台可以移动载人的超大号ipad。
我所讲的车联网,是指「车与云端」「车与车」「车与路」「车与人」「车内设备」这五个方面同时连接网络,再相互之间协调,最终通过互联网真正解决人车内人员的便利性需求。这才是真正的「车联网」。
其实车联网的概念来源于「物联网」,或者说「万物互联」。但由于汽车交通工具的特殊属性,它的联网难度自然要比常见的「家庭设备互联」(比如空调、电视、台灯之间的网络连接)高的多。这也是为什么4G时代不好实现车联网的原因。
而随着5G时代的到来,超过4G数十倍的数据传输速度给车联网提供了可能性。因此,我也尽可能打开脑洞,按照刚才咱们说的五个方面,分别聊一聊未来的车联网能给我们提供什么便利。
1 车与云端:聪明的大脑中枢
其实不仅仅是车联网,未来任何物品的联网,我认为最重要的一定是云端。
云端的优势在于,可以通过数据上传解放设备的存储系统。也可以通过扫描上传的数据,为用户提供便利。比如云端扫描了你的一张老照片,AI识别了照片中的建筑,车内的地图显示出这个建筑在哪、怎么去等等。
在车联网到来的时代,车与任何物品的网络连接都会留下大量数据,这些数据光用车内的硬盘存储显然有点困难。一来是硬盘不会设计的那么大,二来也会影响运行速度,所以这些数据放在云端是最好的选择。简单来说,云端是「万物互联」的基础条件。
此时一定会有敏感的用户说:它窃取我的隐私了!
是的,没错。用户在车内上传数据时,云端一定会查看到你隐私(否则大家百度云里不可描述的是怎么被封的呢)。但这不是窃取,是你主动上传的,隐私和便利共存本来就是个悖论。
举个例子:一哥们儿想去银行但不想被任何人看见,那他必须得各种绕路躲避才行。另一个哥们儿直接打车去银行了,你说他俩谁快?
我觉得大家完全没必要面对「隐私」这种话题就如临大敌,大数据时代本来就没有隐私可言。咱们每天都在用的指纹识别、人脸识别,就是通过手机把资料传到一个「安全区域」,而至于这个区域是不是真的安全,我们也不知道,我们只能选择相信它。(不过好像好莱坞女星们就是太相信icloud才导致艳照泄露的,emmm…)
2 车与车:缓解拥堵
既然是「车」联网,那车与车之间的信息共享和数据交换也是十分重要的。别以为车与车之间只有交通事故,如果能够做到信息共享,那很多交通事故都是可以避免的。
我们现在的自动刹车、并线辅助等功能,利用的是车上的传感器。而车联网的主动安全,可以通过车与车之间的信息共享再配合传感器达到更好的效果。
如果把传感器比喻为眼睛的话,那车与车之间的联网相当于给这双眼睛增加了一个大脑。到那个时候,传感器灵敏度过高、过低的现象就都不会出现了。
除了安全之外,车与车之间联网还能缓解一个现在令人崩溃的现象:堵车。
可以说,堵车一定是因为某个驾驶员没按照法律法规行驶而引起的。这样的人多了,就会形成堵车。车与车联网之后,可以检测哪辆车是堵车的根源,它现在应该怎么 *** 作,如果顺利的话多久可以解决拥堵等等。
这样一来,就避免了大家都往前抢,越抢越堵,越堵越抢的现象。
3 车与路:实时路况更准确
车与路的联网看起来不可思议,其实我认为简单的很。因为网络并不是被铺在地上,而是建立新的通信设备实现车与道路之间的信息交流。
如果道路上建立类似设备的话,它可以直接和每辆车进行网络连接。然后告诉你什么时候该并线到哪条路,哪里有拥堵有什么最快的方法可以躲避。
虽然听起来现在很多手机导航也可以实现,但导航的问题在于它是GPS传输,手机稍微差一些或者网不好就GG了。而通信设备完全可以避免没信号的地方(远郊、桥下、山里等)就没法导航这种尴尬的情况,这一切都得基于5G的高速传输才能实现。
另外,车与路之间的网络连接也可以将通行效率最大化。手机导航经常出现「导航显示堵3分钟,其实赌了3个小时」这种事情,一切的锅还是卫星的传输速度和运算速度不够快。
如果5G时代能建立起通信设备,它就可以把真实的堵车情况一五一十的告诉你。然后你再通过车与车之间的协调,想办法解决拥堵,实现真正的「网联」。
4 车与人:远程 *** 控
在车联网这五个项目中,只有「车与人」是仅通过4G网络也能实现不错效果的,5G对它来说更多的是锦上添花。
其实仔细回想,我们会发现所有的主机厂都在往这个方向努力。从最早的通用安吉星,再到丰田的G-BOOK,都是在解决人与车之间的网络连接。
而随着科技发展,现在很多车已经可以实现手机互联了。比如从手机上打开车门、关闭车门、点火、开空调等等,日常需求已经被满足。那5G时代能在哪些地方做得更好呢?
不夸张的说,也许有一天人类真的能实现远程 *** 控汽车。
其实现在这项技术已经实现了,但仅仅处于「炫技」阶段,并不具备真正使用的可用性。等未来的数据传输速度上来,我们完全可以通过远程设备 *** 控汽车的行驶(相比技术,这个项目更难的地方在法律法规)。
总而言之,汽车与人之间的网络连接一定是这些项目中发展最快的,同时也是效果最好的。在汽车科技越来越被重视的今天,实现科幻中关于汽车的场景,恐怕已经不是天方夜谭了。
5 车内设备:贴心的智能服务
还记得开篇说过的「万物互联」吗?车内设备的网络连接,基本就相当于小型的万物互联盛宴。
想象一个场景,你对着车说:“空调你赶紧给我调到最低,热死我了。还有你天窗,把盖板盖上,太晒了。遮阳帘你也别闲着啊,赶紧升上来。嘿,你个座椅通风,一点眼力见儿没有呢,赶紧开到最低啊,没看我屁股都出汗了吗?”
如果它对你说:“好的,先生,我这就办。”那说明是现在这个时代的汽车。
如果它对你说:“你这么吹不怕着凉吗?”那说明车内的网联系统已经变成「贾维斯」了。
没错,未来车内的设备互联一定会通过某个终端AI执行。现在有的叫“斑马”,有的叫“NOMI”,反正名字不一的同时,它们都有一个特点:极其难用。
5G时代一定会加快它们的运行速度,但我更希望的是能通过软件算法让这些AI终端变得好用起来了。哪怕它不会说话,起码要做到能听得懂我说话的水平。像“NOMI”这种平时没用,想起来就逗一下的AI,真的能给你提供便利吗?
写在最后
说真的,即便5G时代到来,我心理也很清楚上述说的很多场景都无法实现。这不仅仅是技术问题,更关系法律法规,交互逻辑,甚至是模拟人性。
这别说5G时代,就是再过几十年,都不一定能实现。
现在5G概念炒的火热,每个人都提出了很多美好的未来。我也深刻的感受到科技的发展会给汽车行业带来多大的影响,所以我不认为脑洞大开是件坏事,毕竟我一直坚信:天马行空的想法从来不是失败的主要原因,懒才是。
来源网络,侵删。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
与LoRa相比,在同样灵敏度的情况下,采用该技术的ZETA模组通信速率可达LoRa的3倍,而在同样的速率下,极限接收灵敏度还比LoRa优53dB。也就是说,同样条件下,ZETA传感器可以听到比LoRa低 53分贝的声音,而如同在相同声音条件下,可以达到3倍的传输带宽。在该技术的应用之下,ZETA在低于120km/h时速的移动场景里也可以应用,典型传输距离可达3-5km。一次电池物联网设备
许多小型IoT器件要求用一次电池长期工作。
因此,在为传感器、MCU、无线通信各功能供应超低消耗工作且高效电源的同时,电池控制、监视也变得重要。在此,将示例一种解决方案,其添加了一般且适合电池长期工作的电源配置及切断运输和不使用时的电源消耗的功能。
备注:关于锂一次电池
30V是二氧化锰型 / 36V是亚硫酰氯型
解决方案概要
关于升压IC
电路框图(a)是可将MCU直接连接到电池的情况。简单的IoT/安全/可穿戴/医疗的小型器件多为这种结构。
近年来,在18V~38V的大范围内工作的MCU越来越多,这种情况下,无需使用电源IC,即可直接连接到电池使用。对此,RF和传感器需要33V的固定电压,即使工作电压宽也为了要满足规格,大多需要一定电压以上的电压,即需要升压IC。RF和传感器不会一直工作,有时RF也会每天通信一次,而且是几秒钟。
此外,即使看起来像一直在工作,其实有很多情况是通过细致地ON/OFF控制降低消耗电流,使电池耐用。为实现上述工作,在需要时,MCU将对RF和传感器的工作进行ON/OFF控制。此外停止时,不仅会停止RF和传感器的功能,还会使升压IC及稳压器停止工作,可长时间使用电池。要抑制工作时的纹波,使其噪声频率恒定,PWM固定型适合。
如果轻载的工作状态存在,则使用PWM/PFM转换(自动切换工作模式)型。此外,要抑制EMI,并使其小型化,线圈一体型适合。升压 DC/DC
XCL102: PWM, 线圈一体型XCL103: PWM/PFM, 线圈一体型XC9141: PWM, 外置线圈XC9142: PWM/PFM, 外置线圈关于LDO
为了使RF和传感器的电源噪声更低,有时会在升压IC的后级使用稳压器。具有高纹波抑制比/低噪声并且良好的负载瞬态响应特性的高速LDO最适合于消耗电流的陡峭变化的RF部位此外,传感器用途中100kHz以上的噪声重要的情况下,也有高频噪声低的低消耗型比高速型更适合的情况。稳压器XC6233: 高速
XC6215: 低消耗
关于RESET IC
监视电池电压,电压下降时,向MCU发送信号。使用超低消耗型,抑制对电池的负担。
关于改善电池的耐久性的解决方案 / Push Button Load SW
电路框图(b)是一种通过添加Push Button负载开关,功能追加和大幅度改善电池的耐久性的解决方案。为了共享MCU控制和按钮控制需要开关引脚右侧的SBD和MCU的VDD的上拉电阻是需要的。
Push Button 负载开关XC6194: 1A SW内置XC6193: 支持外置Pch驱动大电流本解决方案具有以下很大的优点。
1、防止从产品出货到开始使用的电池放电
被称为“Storage模式”、“Ship模式”。最适合不能拆卸电池的设备。此时的消耗电流几乎为0。通过按下按钮,即可开始使用。当然,可与此IC共享MCU控制用的按钮。
2、可用作主电源ON-OFF开关
可用按钮代替机械开关进行ON-OFF。例如,最适合防水设备。MCU可向SHDN引脚发送信号,并关闭Push Button负载开关。此外,我们还准备了可通过长按按钮关闭Push Button负载开关的类型。
3、解除死机
设备死机等异常时,可有效利用长按按钮的OFF功能。选择长达5秒或10秒的类型误 *** 作而关闭的可能性会降低,适用于死机对策。关闭后,再次按下按钮即可使之正常启动。并且Push Button负载开关作为对电池有益的功能,具有以下特点。
通过冲击电流防止功能,抑制启动时的冲击电流
启动完成后有PG引脚输出可起动使下一级电源IC和MCU工作。
如上所述,即使是以直接连接到电池工作的MCU为核心的简单的IoT器件,稍微花点功夫就可进一步改善电池的耐久性和容易满足小型高灵敏度要求。
Li-ion Polymer互联网设备
虽然是电池工作,但传感器和通信的频率高且功能复杂的IoT器件大多使用Li-ion/Polymer二次电池。对一次电池的充电控制和配合电源电压的超低消耗降压DCDC的追加是有代表性的电源解决方案。
解决方案概要
关于CHARGER IC
使用Li-ion/Polymer的IoT器件需要充电用电池充电IC和将电压降至MCU的电源电压范围内的降压DC/DC或稳压器。首先,我将说明电池充电IC的用法。充电电压(CV : Charge Voltage)和充电电流(CC : Charge Current)是基本选择。根据所需的充电电流,选择充电IC和电阻RISET。
电池充电ICXC6808: 5mA ~ 40mAXC6803: 40mA ~ 280mAXC6804: 200 mA ~ 800 mA本电路框的Li-ion/Polymer电池是内置NTC,外置PCM(电池保护电路)的情况。无论内置/外置都需要PCM。关于NTC,如果没有内置在电池中,请注意放置场所并将其外置。如果不需要NTC,请通过电池充电IC指定的方法处理NTC连接引脚。这里显示充电状态的CSO引脚已用于向MCU发送充电情况。CSO引脚为N沟开漏输出,已通过电阻上拉到MCU的电源,以使信号的“H”电平与MCU的I/O电压范围相匹配。
如果用LED显示充电状态,则通过限制电流用电阻驱动LED,使该电源从VIN获得。这是为了避免用充电IC供应的充电电流驱动LED。VIN中放置了浪涌保护用TVS。因为是外部引脚,可能会有ESD等浪涌、及劣质USB适配器在无负载时也可能会产生相当高的电压,要用TVS和齐纳二极管采取对策。
此外,在充电的同时使用负载电流的情况、或一直供电5V,将Li-ion/Polymer电池用于备用时,可使用具有从VIN或电池两者输出提供适当电流的Current Path功能的高功能充电IC。带Current Path和Shutdown 电池充电ICXC6806关于MCU专用降压DC/DC及LDO
Li-ion/Polymer电池高达CV = 42V或435V,一般来说,最大38V左右的MCU需要降压DC/DC或稳压器。在IoT设备中,MCU许多期间在Sleep状态下工作,因此IOUT从μA级(Sleep时)到100mA以上(工作峰值时)必须高效。通过将在超低消耗的同时搭载输出电压切换(VSET)功能的降压DC/DC用于此用途,可进一步改善电池的耐久性。如果使用输出电压切换功能,即使使用电流相同也能降低工作电压,可大大降低功耗。一般来说,MCU因内置的RF、模数和高速运算等,所以在工作时需要较高的电源电压,但可在Sleep时以最小电压工作。例如,Sleep时通过将VOUT从30V降至18V,可减少MCU的功耗,大幅改善电池的耐久性。降圧DC/DCXC9276: Iq = 200nA, 输出电压切换功能XCL210: 线圈一体型 Iq = 05μA (无输出电压切换功能)如果要廉价配置解决方案,稳压器适合。
此外在可充电的应用程序中,即使是效率低下的稳压器,有时也会被判断没有问题而使用。稳压器XC6504: Iq = 06μA, 无需输出电容
关于RF/Sensor专用降压DC/DC及LDO
RF和传感器也因电池电压高而需要降压DC/DC和稳压器。
仅在需要MCU时,设CE=“H”,工作降压DC/DC,向RF和传感器供应电压使之工作。停止时,不仅会停止RF和传感器的功能,也会停止降压DC/DC的工作,可使电池长时间使用。要抑制工作时的纹波,使其噪声频率恒定,PWM固定型适合。如果有轻载的工作状态,则使用PWM/PFM转换(自动切换工作模式)型。如果要使用稳压器,高纹波抑制/低噪声且像RF一样的消耗电流变化陡峭的负载瞬态响应出色的高速LDO最适合。此外,传感器用途中100kHz以上的噪声重要的情况下,会有高频噪声低的低消耗型比高速型更适合的情况。稳压器XC6233: 高速XC6215: 低消耗
关于RESET IC
使用超低消耗电压检测器可监视电池电压。MCU的电源电压与检测的电池电压不同,因此要使用N沟开漏型,通过电阻上拉到MCU的电源电压,并将信号传递给MCU。如果想降低检测后的上拉电阻消耗电流,将监测(VSEN)引脚从电源(VIN)引脚中分离,并使用CMOS输出型。通过从MCU的电源电压获得电源,可使用CMOS输出型。电压检测器XC6136 N型: Iq~100nA (N型 : N沟开漏输出)XC6135 C型: Iq~100nA,传感引脚分离型 (C型 : CMOS输出)关于Push Button重启控制器
关于作为死机对策而附加的Push Button重启控制器。
Push Button重启控制器XC6190Li-ion/Polymer的IoT设备一般不能拆卸电池,所以需要在死机等设备异常时进行复位并使之重新启动的功能。本例中有两个MCU控制用按钮,Push Button重启控制器与其共同使用。死机时,同时持续按下两个开关,规定的时间过去后,RSTB下降到“L”,可复位MCU。RSTB为N沟开漏输出,因此将上拉到MCU的电源电压。这里是向MCU发送了RESETB信号,另外也有例如控制驱动MCU电源的降压DC/DC的CE,通过长按RESET关闭DC/DC来强制重新启动的方法。如上所述,通过配置最合适功能的IC,可实现简单而工业设备所需的低噪声、长寿命的高性能IoT设备。
想购买元器件可以去唯样商城哦~~~
对于物联网传感器的作用,咻享智能是这么认为的:1、预测性维护预测性维护
预测性维护预测性维护一直是工业物联网最显著的作用之一,用过传感器对机器各部分温度、振动、耗电量等数据的监测,用户可以随时发现设备的异常,提前停产时间维护,避免意外停机影响生产。甚至用户可以通过模拟场景功能,通过易云系统内置或自行上传,搭建出相应的场景,将采集到的各类数据展示在场景中的相应位置,通过场景中数据和的变化,来随时监测设备状况。
2、自动控制一般传感器采集到的数据
自动控制一般传感器采集到的数据,往往需要在电脑或人机界面展示,工作人员观察数据状况后手工控制设备启停或升降功率。通过易云系统自带的逻辑控制功能,可以直接在设备和需要控制的设备之间架设逻辑,通过PLC、或其他控制方式,根据数据变化,自动调整设备运转状态,减少时间浪费。
3、挖掘数据内涵
挖掘数据内涵。传感器采集到的数据、设备反馈之后的数据最终都是要经过分析研究,成为对企业有利的信息,为企业提供决策支持。如对产品端的监测数据分析,找到机械的弱点或故障发生规律,在改进工艺时针对性加强,提升产品质量和竞争力等。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)