北斗七星是什么样的?

北斗七星是什么样的?,第1张

每年3~5月为春季,以4月中旬晚上八九点钟看到的星空为例。这时你会看到北斗七星斗柄指向东方。 每年6~8月为夏季,以7月中旬晚上八九点钟看到的星空为例。这时北斗七星的斗柄指向南方每年9~11月为秋季,以10月中旬晚上八九点钟看到的星空为例。这时北斗七星已来到北方低空。一般来说,这时在中国长江流域以南的地区是很不容易见到北斗七星了。不过,请你放心,你要认星仍然有替代北斗七星的“助手”,它就是仙后星座。这时仙后星座正出现在头顶高空。它的主要亮星组成一个W形。通过其中α星和κ星的连线延长出去,也可以找到北极星。每年12月~第二年2月为冬季,以1月中旬晚上八九点钟看到的星空为例。冬季尽管天气寒冷,可冬夜星空中的亮星胜过其它三个季节,显得分外壮丽,这时北斗七星已来到东北方天空,斗柄指向北方。冬夜星空的中心是出现在南方天空的猎户座。古希腊神话故事把猎户座想象成一位勇敢的猎人
这七颗亮星名称是 :天枢、天璇、天玑、天权、玉衡、开阳、摇光。前四颗星叫“斗魁”,又名“璇玑”;后三颗星叫“斗杓”“斗柄”。这七颗星就是大熊座α、β、γ、δ、ε、ζ、η,除天权δ是三等星外,其余六颗都是二等星。联接天璇β和天枢α两星的线延长约5倍处,可寻找到北极星。故β星和α星又名“指极星”。
天枢 星座: 大熊座
西名: Dubhe Bayer letter: alpha Ursae Majoris
星等: 200
位置 (epoch J20000):
赤经: 11h 03m 4370s
赤纬: +61 45' 032"
高度: 54 12' 33"
方位角: 048 49' 51"
U2000: Chart 24, Vol 1
Transit: 04h 33m 11s
天璇
星座: 大熊座
西名: Merak
Bayer letter: beta Ursae Majoris
星等: 240
位置 (epoch J20000):
赤经: 11h 01m 5049s
赤纬: +56 22' 566"
高度: 52 25' 31"
方位角: 057 19' 13"
U2000: Chart 46, Vol 1
Transit: 04h 31m 18s
天帝是最大的,北斗是臣子
北斗七星君:(《狮驼国》中的北天七皇)
北斗第一阳明贪狼星君
北斗第二阴精巨门星君
北斗第三真人禄存星君
北斗第四玄冥文曲星君
北斗第五丹元廉贞星君
北斗第六北极武曲星君
北斗第七天关破军星君
(《狮驼国》中的北斗七星君为北斗星君的另一个称号:天枢、天璇、天玑
、天权、玉衡、开阳、摇光。
\"天枢、天璇、天玑、天权\"合起来又称为\"斗魁\"或\"璇\",后三星组成斗柄,称\"杓\")

问题一:地球上有多少卫星 目前有338颗地球同步卫星正在使用之中,其中有35颗盘旋在韩国和其附近地区的上空。在这35颗同步卫星中,韩国拥有3颗,中国有14颗,日本则有18颗。”
就据我所找到的资料,地球同步轨道卫星的数量在理论上应该是很大的:因为它都是相对于地球静止的天体,在地球赤道上空约三万六千公里的上空,可想而知,那里能容纳多少颗卫星。在理论上其数量是相当巨大的,但由于技术和一些不可避免的因素,使得卫星不能绝对的相对于地球静止,而且还要偏离地球同步轨道,为了防止卫星由于拥挤产生的意外事故(具体的说可能是碰撞,因为它们不是绝对静止的,在一些情况下还可能严重偏离原来的轨道),所以其实际数量就要大大降低了。但其数量还是相当巨大的,在现阶段还是足够人类使用的。

但由于有些国家的某些意图,占用了别的国家的同步卫星轨道空间(因为其国家本身就比较小,能使用的轨道空间也就很小),使得现在有些国家也有争抢同步卫星轨道空间的趋势了。
问题二:地球有几个天然卫星? 地球有三个天然卫星,一个是月球,另外两个是两个星云团,与月球成等三角形围绕地球公转!因为它们是星云团所以反光很小我们看不到,所以就以为只有月球一个卫星!!

问题三:地球有几个卫星 地球只有一颗卫星,就是月亮。
但是人造卫星,就没有办法计算了。
问题四:目前世界上有几大卫星定位系统? 美国的GPS,中国的北斗星,俄罗斯的GLONASS,欧洲的伽利略
很多人都知道美国的全球卫星导航系统“GPS”,却不知道俄罗斯的全球卫星导航系统“格洛纳斯(GLONASS)”,中国的全球卫星导航系统“北斗系统”(严格说,北斗系统还不能称为全球卫星导航系统,只能称卫星定位系统),和欧洲的全球卫星导航系统“伽利略(Galileo)”。在这里给大家做一个简单的介绍和比较,好让大家更好的了解全球卫星导航系统的历史,现状和未来。
历史渊源

GPS:20世纪70年代,随着美苏军备竞赛的升级,美国的军事领域迫切需要能够在世界范围精确定位的系统。美国国防部不惜斥资120亿美元研制军用定位系统。1978年,美国成功发射了第一颗用于GPS系统的卫星,经过20多年的建设,1994年建设完毕。

格洛纳斯:几乎和GPS同时开始同时建成。

北斗系统:上世纪八十年代中期开始,2003年建成。

伽利略:99年提出计划,05年末头一颗卫星升空,预计2008年投入初步使用。

覆盖范围

GPS:全球全天候

格洛纳斯:全球

北斗系统:覆盖我国本土及周边国家。覆盖范围东经约70°一140°,北纬5°一55°

伽利略:全球(未建成)

卫星数量

GPS:24颗

格洛纳斯:24颗(因经费问题,经常运行的数量达不到设计数量,最少时仅仅有6颗在运行,目前有17颗正在运行)

北斗系统:3颗

伽利略:27颗运行卫星和3颗预备卫星(未建成)

定位精度

GPS:定位精度10米

格洛纳斯:定位精度水平方向为16m,垂直方向为25m

北斗系统:三维定位精度约几十米

伽利略:定位误差不超过1米

可容纳用户容量

GPS:GPS 是单向测距系统,用户设备只要接收导航卫星发出的导航电文即可进行测距定位,因此可容纳无限多用户

格洛纳斯:无限多

北斗系统:由于北斗导航系统由于是主动双向测距的询问--应答系统,用户数量不能超过100万

伽利略:无限多(未建成)

用户范围

GPS:军民两用,军用为主

格洛纳斯:军民两用,军用为主

北斗系统:军民两用,民用为主

伽利略:军民两用,民用为主

商业开 况

GPS:较早,非常充分

格洛纳斯:不充分,在中国几乎没有

北斗系统:刚起步,预计到2008年有三十万用户

伽利略:刚开始建设,因合作者众多,前景看好
问题五:地球有几颗非人造卫星??是什么?? Cruithne 应该还没有正式归属于地球的卫星吧好像说的是最近才发现Cruithne是在围绕地球运动的800年一次的说

问题六:世界上有多少国家拥有人造卫星分别是那些国家我们国家的卫星数量和技术在世界能排名第几? 能自主发射卫星的国家有俄、美、法、日、中、
英、印度和以色列。著名的发射基地有:一、肯尼迪航天中心:位于美

国东部佛罗里达州东海岸,是美

国宇航局(NASA)进行载人与不载人

航天器测试、准备和实施发射的

最重要场所。

二、西部航天和导d试验中

心:位于美国西部洛杉矶北面的

西海岸,是美国最重要的军用航

天发射基地,航天发射次数居全

美之首。

三、拜克努尔发射基地:位

于哈萨克斯坦拜克努尔市西南,

是前苏联最大的导d和各种航天

飞行器发射场地,现由俄哈两国

共同使用。

四、普列谢夫茨克基地:位

于俄罗斯白海以南,是世界上发

射卫星最多的发射场,占全世界

总数一半以上。

五、酒泉卫星发射中心:位

于我国甘肃省酒泉以北,是长征

系列、中低轨道的各种试验卫星

和和应用卫星的主要基地。

六、西昌卫星发射中心:位

于我国西昌市西北,专门用于发

射地球静止卫星。

七、种子岛航天中心:位于

日本本土最南部种子岛,主要用

于发射试验卫星和应用卫星。

八、库鲁发射场:位于南美

洲北部法司圭亚中部,是目前法

国唯一的航天试验场所,也是欧

空局(ESA)开展航天活动的主要场

所。

九、圣马科发射场:位于肯

尼亚福莫萨湾海岸,是世界唯一

的海上发射场,曾多次用美国的

“侦察兵”火箭发射小型航天飞

行器。

十、斯里哈里科塔发射场:

位于印度南部东海岸的斯里哈里

科塔岛,是印度的导d试验和卫星发射场。

由于小伙伴们都是生活在北半球,所以就让我们从北天开始来了解星空。

一、我们最先需要确定的是北极星。

北极星 现阶段所指是小熊座α星(中文官方名称:勾陈一),此星位于小熊座小熊的尾巴尖处。北极星距离地球大约434光年。它是夜空中能看到的亮度和位置都比较稳定的恒星,是目前距离北天极最近的亮星,距离极点处不足1°,因此,对于地球上的观测者来说,它好像不参与周日运动,总是位于北天极处,因此被称为北极星。

很多人认为勾陈一很亮,但实际上勾陈一的亮度已经基本到了城市中普通天气夜晚人眼分辨极限,这也是为什么很多人小时候看过科普书籍,知道了北极星,但在北方天空怎么也找不到的原因。除非夜晚天气很晴朗,否则勾陈一很难被直接找出。

拱卫北天的星座

北极星的地平高度角就是观测地的地理纬度。

北极星是一个三合星系统,较远的伴星(Polaris B)使用小型望远镜就可以清楚观测到,而较近的那颗伴星(Polaris)因距离北极星太近(视距离只有02",实际距185 )而且太暗而无法得见。直到2005年8月初才由哈勃望远镜拍到其影像。

二、利用北斗星确定北极星

确定北极星最简单也最实用的方法就是利用北斗星。北斗星(实际上就是北斗七星),是一个由七颗星组成的星座,二者根本不是同一概念。不过,由于北斗七星在夜空中十分容易辨认,且北斗七星“勺口”上的两颗星向勺口外的连线,它延长过去五倍的距离就是北极星。

北斗七星,是大熊座的天枢、天璇、天玑、天权、玉衡、开阳、摇光七星。古代中国人民把这七星联系起来想象成为古代舀酒的斗形。传说北斗七星的每一颗星都有着它们自己的含义,从勺把开始,第一颗是力量之星,第二颗是智慧之星,第三颗是勇气之星,第四颗代表着爱情,第五颗是幸福之星,第六颗则是灾祸之星,第七颗星代表着劫后重生。

小熊座

北斗星在不同的季节和夜晚不同的时间,出现于天空不同的方位,所以古人就根据初昏时斗柄所指的方向来决定季节: 斗柄指东,天下皆春;斗柄指南,天下皆夏;斗柄指西,天下皆秋;斗柄指北,天下皆冬。

三、北天星座

当我们确定了北极星,就可以去寻找围绕着北极星旋转的一些北天星座了。 我们第一个可以找到的就是小熊座(Ursa Minor) ,小熊座标示着北天极的所在,星座中最亮星小熊座α即是目前的北极星。小熊座像一个小号的北斗七星,二者之间的勺子口是相对的。小熊座是距北天极最近的一个北天星座,托勒密星座和现代八十八星座中均包括小熊座。

小熊座头顶这的就是长长的天龙座。 天龙座 (Draco),是北天夜空中一年四季都可以看到的星座,位于 北冕座 以北。天龙座是88个现代星座之一,也是托勒密所定的88个星座之一。看起来它的确像一条蛟龙弯弯曲曲地盘旋在大熊座、小熊座与武仙座之间,所跨越的星空范围很广。高昂的龙头紧靠武仙座,由4颗星组成,构成一个四边形,其中最亮的两颗星表示龙眼。面积为1083平方度,居第八位。最亮星为天龙座γ天棓四(Etamin),视星等223。天龙座是拱极星座,在北半球四季可见,纬度变化在+90°和−15°之间可全见,最佳观测月份为7月。每年5月24日子夜天龙座的中心经过上中天。

冬季北天星图

沿着龙尾巴的两颗星的方向,我们可以找到大熊星座的脖子 ,脖子下面那颗星就是大名鼎鼎 的文曲星,文曲星上面的文昌一和另外两颗星构成了大熊的头部三角形。在地球上不同纬度的地区,所能看到的星座是不一样的。在北纬40°以上的地区,也就是北京以北的地方,一年四季都可以见到大熊座。不过,春天,大熊座正在北天的高空,是四季中观看它全貌的最好时节。

大熊座全天面积为第三,仅次于长蛇座和室女座。由于北斗七星(从大熊座α到大熊座η,除去大熊座δ是三等星外,另外6颗星均是2等以上的亮星)的存在,大熊座可能是全天最著名的星座了。北斗星的头两个星α和β,对于找到北极星具有指示作用,这两星的连线直接指向北天极。

勺柄的第二颗星(大熊座ζ)实际上是聚星,通过肉眼我们就可以看到一个4等的伴星Alcor。通过小型望远镜我们还可以看到靠近大熊座ζ的另外一颗星,它也是4等星。而实际上这3颗星又各是一个双星系统,因此,这是一个六星系统。另一个有趣的是大熊座ξ,这是一个由两个恒星组成的双星系统,彼此间以60年为周期进行运动。该座有两个旋涡星系:8等M81和9等的M101、

仙后座和北极星的相对位置图

当冬季来临的时候,北斗七星大部分时间是在接近地平线的位置,很难找得出。这个时候,我们可以将 仙后座(Cassiopeia,Cas) δ和γ星的连线的垂线延长5倍,那里就是北极星。仙后座在我国农历十一月黄昏上中天,其中有5颗星都是3等星,明亮、容易识别,可以作为入门新手认星的开始。

仙后座也是北天拱极星座之一,是一个可与北斗星媲美的星座。位于仙王座以南,仙女座之北,与大熊座遥遥相对,因为靠近北天极,全年都可看到,尤其是秋天的夜晚特别闪耀。仙后座呈M(或W)形,开口朝向北极星,这是识别仙后座最主要的标志,很容易分辨。

紧挨着仙后座的是仙王座,仙王座是拱极星座之一。 其α星是天钩五。整个星座全年可看见,特别是秋天夜晚更是引人注目。它紧挨北极星,与北斗星遥遥相对。仙王座大部分沉浸在银河之中,形成一个细长而歪斜的五边形。

大熊座、小熊座、仙后座、仙王座位置关系图

仙王座中最美丽的天体是鸢尾花星云,又叫彩虹星云(NGC7023),位于1300光年远的仙王座恒星丰产区,星云物质围绕在一颗大质量、炽热,显然尚处于形成阶段的年轻星球,泄漏机密的红色辉光,在恒星明亮的中心区两侧告诉我们,那里有大量的氢原子被来自于恒星看不见但强烈的紫外光照耀激发。

《上知天文》系列预告:

预告只是一级分类(章),每个一级分类之后还有更细的内容

天文学概述;

星空与星座;

2天文爱好者观星前需要注意的一些事项;

2观星秘诀:从北极星开始寻找拱卫北天的星座(本文)

天球坐标与历法;

观星器材;

地月系;

太阳系;

流星和彗星和极光;

深空探索;

银河系;

宇宙学;

1广义相对论宇宙学简介;

1引力波;

1黑洞;

1外星生命;

1时光隧道;

1简明天文学史;

1中国古代天文学;

1天文摄影。

[ 亿欧导读 ]一场还没有赢家的厮杀。

作者丨曾乐

编辑丨杨雅茹

黑天鹅掠过,“无人车”派上了大用场。

武汉市青山区吉林街上,一辆由京东物流自主研发的无人配送车,以15公里/小时的速度,一路躲避车辆和行人,每天往返于配送点和医院之间,将医疗物资送往武汉第九医院。除京东外,百度、高新兴、驭势科技、智行者等众多企业也参与到了这场助力赛中。疫情之下,无人车价值被不断挖掘。

京东无人配送车/京东微博

近日,发改委、工信部等11个国家部委联合印发的《智能汽车创新发展战略》,也为智能汽车创新发展增添了想象空间。

不过,利好消息之下,仍掩盖不了无人驾驶“捉襟见肘”的发展困境。穿梭于医院的无人车,只适用于限定场景,这与人们期待的开放道路自动驾驶,存有不小差距。

如果说,离完全自动驾驶仍有一段距离,那么,车路协同出现,则为实现自动驾驶提供了更多可能。

一方面,受制于昂贵的单车智能成本,自动驾驶迟迟难以突破。于是人们开始思考,如若用智慧的路代替部分技术,可降低不少车载成本;另一方面,由于单车感知系统存在视角盲区、感知距离技术缺陷,所以出现了类似特斯拉、Uber自动驾驶致死事故。

实际上,关于车路协同的讨论早已展开。早在上个世纪50年代,通用汽车在美国新泽西州打造了一条埋入大量通信设备的概念高速公路,这也被业界视为最早关于车路协同的方案。

通常意义上,车路协同主要涉及车端、路侧端和云端三个端口,通过统筹车、路、人以及实时交通的动态信息,从而实现信息的互联互通。而5G、AI的加持,也让车路协同拥有了更广阔的技术想象空间。

现如今,不仅巨头们纷纷杀入车路协同战事,一批创业公司也在涌入这个市场。而关于国内车路协同的故事,目前又讲到哪儿了?

01 多方入局,还没有赢家

作为一项替代性技术,车路协同价值不断被激发。无论是以华为为代表的ICT企业,还是以德赛西威、均胜电子为代表的汽车供应商,以及星云互联、希迪智驾为代表的车路协同方案解决商,都在积极参与到这一赛道中。

其中,汽车企业往往注重打造“智能汽车”;通信企业将其更多诠释为“智能路网”;互联网科技企业则更多地致力于构建“智能出行”。不过,由于不同参与主体的立场、视角不同,每一主体参与车路协同的具体方式也有所不同。

制表人/亿欧汽车分析员 曾乐

作为场景复杂、产业链冗长、产业关系新鲜的产业,车路协同主要包括感知设备、集成设备、系统集成、车载设备、路侧系统、云管理等链条。这也决定着,车路协同市场,不可能走向一家独大,将软件、硬件、平台、施工全揽下来。这也促成了多条路线切入局面形成。

“车路协同从技术架构上分为车、路、云三个板块,我们均有相关板块的产品及解决方案,从整个产业链角度来说,车路协同涉及整车厂、芯片模组以及终端产品等,我们的落脚点落在终端产品及应用侧。” 星云互联联合创始人兼COO石勇介绍说。依靠车路协同(V2X)关键技术及核心算法起家的星云互联,是一家提供V2X系统解决方案及产品的技术公司。

而华人运通则走了另外一条路。“我们既不造车,也不造路,而是从车出发打通车路城,成为智慧城市、智捷交通,以及智能汽车的系统性产业链的一个中心枢纽。”华人运通方面对亿欧汽车如是说。

在巨头这端,百度希望通过开放平台提供技术框架支持;阿里正对路侧场景展开相关探索;腾讯则希望成为“生态连接器”,正进行道路信息化平台建设。

此外,车企与通信公司正尝试跨界合作发力于此。今年年初,沃尔沃汽车与中国联通表示,双方将基于5G下一代移动网络技术,联手推动V2X(车对外界的信息交换)车路协同技术。沃尔沃近日在接受媒体采访时也表示,公司正考虑放弃实现完全自动驾驶,并重新认识自动驾驶技术。

国内街景/islide

中国关于实现车路协同的规划部署正一步步显现。

除了企业参与方,各地政府也正积极行动。早在2018年6月,湖南省长沙市便发布了国内首条开放道路智慧公交线路。截至目前,中国已建成十多个测试示范区,有20多座城市发放了超300张道路测试牌照。在2020中国电动汽车百人会论坛全体大会上,工业和信息化部部长苗圩表示,“上海、长沙、北京已在开放的道路上批量安装了多模式的路测通信终端和感知设备,并在积极推动载人载物测试和示范应用。”

眼下,多方入局的车路协同正在照进现实,但中国目前实现车路协同仍难快速落地。现在来看,车路协同是一场没有最终赢家的厮杀,它更是一场关于产业关系合纵连横的考验。

02 激战交错,仍存痛点

中国实现车路协同正遭遇着多重阻碍,仍难迈出下一步。

从技术上来讲,由“人-车-路”组成的道路交通是个复杂的系统,要想真正实现车路协同,无法绕开中国复杂的路况。由于国内道路开放性高、道路上车型复杂多样,且存在行人横穿马路、车辆行驶中常常出现变道超车等不文明行为。

去年9月,中国公路学会自动驾驶工作委员会、自动驾驶标准化工作委员会发布了《智能网联道路系统分级定义与解读报告》(征求意见稿)。该报告从交通基础设施系统的信息化、智能化、自动化角度出发,结合应用场景、混合交通、主动安全系统等情况,把交通基础设施系统分为6个级别。这也充分说明了中国道路交通的复杂性。

制表人/亿欧汽车分析员 曾乐

“目前车路协同还处于协同感知阶段,还需要几年的发展进入协同决策和控制阶段,最终实现车路一体化。”今年初,在2020中国电动汽车百人会论坛全体大会上,中国公路学会自动驾驶工作委员会主任冉斌说道。

而软、硬件技术高度整合,也是横亘在车路协同前的又一门槛。数据交互、高精度定位、车载终端、智能路测系统……这些关键技术的出现,需要不同的玩家共同推动,其中便涉及到技术交叉融合。仅关于车载传感器用于出现感知盲区的场景,便足够令人头疼。

技术之外,中国目前还没有敲定关于车路协同的详尽通用标准。“车路协同涉及的行业较多,跨交通、汽车、通信的行业。车路协同相关标准已经在逐步完善并形成国家标准也趋于基本统一,但是车路协同涉及行业较多,跨部门协同的工作特较多来,标准的统一还需要各部门之间相互协调,比如说,一些应用具体应该怎么进行测试等。”石勇表示,关于跨部门协调的最新消息是,11个国家部委联合出台《智能汽车创新发展战略》,车路协同及智能网联将迎来更大发展。

近年来,星云互联也正参与推动国内V2X标准体系建设与应用。2018年年底,星云互联牵头立项《合作式智能运输系统车用通信系统应用层及应用数据交互标准第二阶段》,针对V2X技术演进,包括5G引入、自动驾驶发展过程中的需求和技术等标准进行了编制。石勇透露,第二阶段标准预计最快今年发布。

此外,车路协同需要5G强大的传输速率,以及道路基础设施的智能化改造。不过,美好愿景下,5G目前仍未真正落地,车路协同更缺乏通用标准。另一个比较尴尬的问题是——装车率。“没有一定装车率,在智慧道路的支持下,虽然针对单车的安全类应用能起到效果,但是很多偏向交通效率类应用的效果起不来。”石勇说道。

相对于路端改造,华人运通方面却表示,“大家往往认为路面改造是最大的难题。其实,路的改造不需要动路面,电源也可直接从电线杆获得,而驱动感知系统的耗电量极低。所以,感知模块和计算系统的投入的硬件成本,比较合理,难度较小。”

同时,该负责人表示,“随着大规模落地,这些成本还会下降。其中最关键的是软件和架构开发,一旦开发完成,复制相对容易。”

车辆与道路协同发展,实现深度耦合、提高效率,是车路协同的奥妙所在。多重考验之下,车路协同真的遥不可及吗?

03 蓝海之下,未来多远

步入2020年后,车路协同也被业界寄予了新一轮期望。不少业内人士预测,车路协同将在今年迎来爆发。今年年初,冉斌曾经预言,“现在车路协同自动驾驶已经迎来了朝霞满天,太阳很快升起,今年会是车路协同自动驾驶爆发成长的一年。”

这一观点同样得到了部分业内人士的认可。但是,距离真正实现车路协同,中国还需要多久?

亿欧汽车认为,到2025年,中国车路协同将迎来重大突破。中间不仅需要相关法规制度进一步完善,还需要5G通信标准落地支持,包括软件、硬件设备也需不断突破。

这一预判有据可依。在发改委、工信部等11个国家部委联合印发的《智能汽车创新发展战略》中,该《战略》明确提出,到2025年,中国标准智能汽车的技术创新、产业生态、基础设施、法规标准、产品监管和网络安全体系基本形成。

而在中国智能汽车相关政策中,“2025年”也是被提到的高频时间点。这意味着,车路协同更为完善的产业蓝图即将浮出水面。

制表人/亿欧汽车分析员 何奇

“从今年开始,车路协同正在从‘虚’转向‘实’。过去大部分都是在封闭测试场做测试及验证,逐步从封闭测试场走向开放道路以及特定运营区域,现在是时候面向大众,带来实用价值。”在石勇看来,车路协同今年很有可能迎来爆发。

石勇从车路协同的落地应用角度,将其发展分为4个阶段——2016年,是车路协同发展的第一阶段,入局企业主要在封闭场景进行相关测试及验证;从2017年起,车路协同开始从封闭测试区转向开放道路发展阶段。“从封闭区到开放道路,是点到线的发展过程。”石勇表示,从2019年下半年开始进入第三阶段,车路协同已发展至先导区,交通部也在高速方面做试点规划,这是从线到面的发展过程。再往后的第四阶段,便是车路协同的全面爆发时期。

车路协同,更像是一场技术与规则在时间中的先后较量。技术先行之余,更需要政策的保障与引导,从而规范车路协同市场的良性发展。无论从技术还是政策方面来看,中国车路协同在2025年都将迎来一个新的转机。

在华人运通看来,“车路协同可以分为探索期、实践期和推广期。此前,由于车路协同涉及的各项技术具备极高难度,市面上绝大多数车路协同案例处于理论研究和探索这个阶段。随着智能车载系统、智能路侧系统、通信平台等诸多技术层面的不断完善,特别是5G开始普及,让车路协同进入了实践的阶段。”

“在科技和智能化产业高度发展大环境下,我们认为,在不远的将来,智慧城市、智捷交通、智能汽车产业即将爆发。”上述华人运通相关负责人如是说。

综合多位采访对象观点,随着国家政策方面的推进,车路协同将在近两年进入发展爆发期。但整个产业要想迎来实质阶段,真正实现人、车、路协同,还需要软件技术与硬件设备的融合,以及相关法律法规的健全。

去年10月,国内首次进行了“跨芯片模组、跨终端、跨整车、跨安全平台”的C-V2X应用测试。一汽、上汽、东风、宝马、奥迪等20余家中外整车企业,以及高新兴、华为、中兴、大唐、国汽智联、星云互联等30余家芯片模组厂商、终端设备提供商、安全厂商和位置服务提供商参与其中。由此可见,产业协同发展已在行业达成了初步共识。

于玩家而言,车路协同既是一场关乎产业深度的“洗牌之战”,更是一场考验相互协作的“持久协同战”。

要想实现完全自动驾驶,车路协同无疑是个难以绕开的命题。而要想真正实现车路协同,就必须先解决路况、技术、标准、基础设施智能化改造所存在的痛点。车路协同体系唯有统一标准、连接全局,方可谋求产业价值的最优解。

编辑:杨雅茹

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

1航天的小知识
航空航天技术 为航空航天活动的顺利进行而创立的一系列高级复杂的施工作业程序。它涉及人力资源配置,设备仪器搭配与安装使用等艰深的学术作业。是国家,民族,乃至整个人类发展的高度追求。

航空航天电子技术 航空航天电子技术(electronics for aeronautics and astronautics)

[编辑本段]概述

应用于航空工程和航天工程的电子与电磁波理论和技术。在现代航空和航天工程中电子系统是重要的系统之一。
[编辑本段]组成

它按功能分为通信、导航、雷达、目标识别、遥测、遥控、遥感、火控、制导、电子对抗等系统。各种系统一般包括飞行器上的电子系统和相应的地面电子系统两部分,这两部分通过电磁波传输信号合成为一个系统。和这些电子系统有关的电子理论和技术有通信理论、电磁场理论、电波传播、天线、检测理论和技术、编码理论和技术、信号处理技术等,而微电子技术和电子计算机技术则是提高各种电子系统性能的基础。它们的发展使飞行器上的电子系统进一步小型化和具有实时处理更大量数据的能力,进而使飞机的性能(机动能力、火控能力、全天候飞行、自动着陆等)大为提高,航天器的功能(科学探测、资源勘测、通信广播、侦察预警等)日益扩大。

[编辑本段]特点

一、航空航天飞行器上电子设备的特点是:

①要求体积小、重量轻和功耗小;②能在恶劣的环境条件下工作;③高效率、高可靠和长寿命。在高性能飞机和航天器上,这些要求尤为严格。飞机和航天器的舱室容积、载重和电源受到严格限制。卫星上设备重量每增加1公斤,运载火箭的发射重量就要增加几百公斤或更多。导d和航天器要承受严重的冲击过载、强振动和粒子辐射等。一些航天器的工作时间很长,如静止轨道通信卫星的长达7~10年,而深空探测器的工作时间更长。因此,航空航天用的电子元器件要经过极严格的质量控制和筛选,而电子系统的设计需要充分运用可靠性理论和冗余技术。

二、航空航天电子技术的主要发展方向是:

①充分利用电子计算机和大规模集成电路,提高航空航天电子系统的综合化、自动化和智能化水平;②提高实时信号处理和数据处理的能力和数据传输的速率;③发展高速率和超高速率的大规模集成电路;④发展更高频率波段(毫米波、红外、光频)的电子技术;⑤发展可靠性更高和寿命更长的各种电子元器件。
2航天小知识
呵呵,我也要参加这个比赛。

我查到了,所以。

不告诉你! 算了,还是告诉你吧!1身体健康 每天都要进行高强度的体育锻炼,至少跑步两英里(约32公里),骑自行车15分钟,50米的泳道游五个来回,不间断地举重15分钟。 2团队合作 学会和他人相处。

太空船空间很小,你必须知道怎样和其他机组人员在一起生活。 3外语水平 懂基本的俄语。

但是这并不是那么简单的。曾经在02年花费巨资搭载俄罗斯太空飞船进行太空旅游的南非富翁马克-沙特沃思曾经表示,每天四个小时的俄语课程就像给大脑动手术还不上 。

4身体检查 良好的健康状况是必需的。心脏病人是绝对不允许上天的,但是像轻微的哮喘病等不会有影响。

5心理检查 心理健康也十分重要,尤其是无论在什么情况下都能保持镇静的素质。一名宇航员可能会面临各种各样的危险,而在太空可没有哪里可以逃的。

6超重耐力训练 超重耐力训练要求航天员在承受8倍于自身体重的重力条件下,保持正常的呼吸和思维能力。这种训练通常会在高速旋转的离心室或旋转座椅上完成,训练中最大的压力是承受加速度,航天员的训练则要求超载达到人体自重8倍重力的加速度,持续时间为40至50秒。

在载人航天飞行训练中,超重耐力训练是对航天员自我极限的最大挑战,这是有名的魔鬼训练,很多人为之却步。 7急救训练 基本的急救知识是宇航员的常识,比如骨折后给腿部上夹板,还有给伤口上药等。

8陆地生存训练 模拟航天飞机在俄罗斯的野外意外坠毁,受训者必须接受怎样生火,怎样搭建临时住所,如何求救等基本生存训练。 9海上生存训练 万一发生意外,宇航员还应该做好在紧急降落黑海的准备。

其中一个训练就是宇航员穿着太空服跳入水中,在水中应该学会自己给救生艇充气。 10失重训练 在失重状态下,一切日常任务如吃东西、喝水、上厕所、呕吐等都需要重新学习,否则可能会给你和其他人带来很多麻烦。

美国宇航局的医学专家特意研究出一个名叫“呕吐彗星机”的大型仪器,宇航员只要在上太空前,在这个仪器里“住”上100个小时,那么,他上到太空后,就不会再发生呕吐的现象了。而在这个不断旋转的机器里,宇航员还要学会在30秒内穿好太空服。

11学会驾驶航天飞机 太空旅行什么意外都可能发生,因此如果自动控制系统出现故障导致意外,或其他机组人员全部遇难的话,必须有人能够驾驶航天飞机返回地球。 12钱 最后可能也是最关键的一点,你应该拥有至少2000万美金。

12007年11月24日我国首颗探月卫星发射成功,这颗卫星名称是嫦娥一号。22007年11月24日搭载着我国首颗探月卫星的运载火箭在西昌发射中心点火发射。

3目前我国有三个卫星发射基地,即将在文昌建设第四个发射基地,预计在2010年投入使用。42007年4月14日我国用“长三甲”运载火箭,成功将一颗北斗卫星送入太空,该卫星是我国“北斗计划”中的一颗卫星,请问“北斗计划”的主要目的是定位导航。

5 为纪念400年前伽利略首次用望远镜观测星空这一壮举,2007年3月国际天文学联合会(IAU)确定2009年为国际天文学年,主题定为:“The Universe – yours to discover”。6下列关于行星说法错误的是木星在我国古代被称为‘长庚’,它是太阳系所有行星中质量最大的。

7到目前为止,人类已经发射了大量的探测器去考察太阳系内的其他行星,下列探测器和被探测的行星对应正确的是伽利略号 木星8下面关于太阳系质量最大的前5个大行星,按质量从大到小排序正确的是木星、土星、海王星、天王星、地球9 猎户座大星云的梅西耶编号为 M4210下列关于各节气的含义描述不正确的是冬至那天太阳赤纬为0度,阳光几乎直射南回归线,是北半球一年中白昼最短的一天。11人类已给月球上的许多地方命名了,下列名称不属于月球的是奥林匹斯山12月球的环形山大多数以天文学家的名字来命名的,其中也有我国古代的天文学家,下面人物中那位人名并没有用来命名的是宋应星13关于望远镜表述正确的是相比地平式望远镜,赤道式望远镜的优点是易于跟踪天体的周日视运动14月球绕地球转动的轨道面和月球赤道之间的夹角大小为6度41分,这使得我们能够在地球南北极看到一些月球背面。

15下列关于彗星的说法不正确的是彗星靠近太阳时被加热,彗星的光主要是由炽热的气体发出的。16小行星的发现同提丢斯—波得定则的提出有密切联系,根据该定则,在距太阳距离为28个天文单位处应有一颗行星,随后皮亚奇果真在该处发现了第一颗小行星谷神星17在太阳系内有的行星向外辐射的能量比其接收到的太阳辐射能量还要大,到目前为止,已知这样的行星有木星和土星18土星外围的光环中间有一条黑暗的缝隙把光环分为内外两部分,这条缝隙是以它的发现者的名字命名的,被称为卡西尼环缝19通过对月相的观察我们可以大致的知道当天在该月份中的日期,如当月相为上弦月时,大概为每个月的农历初八左右20在太阳系的八大行星中,有一颗行星的自转方式非常独特,它的赤道面与公转轨道面的夹角为97度55分,几乎是‘横躺’轨道平面上自转,这是哪颗行星? 天王星21下列天体哪个。
3航天科技小知识
一、航空航天飞行器上电子设备的特点是:

①要求体积小、重量轻和功耗小;②能在恶劣的环境条件下工作;③高效率、高可靠和长寿命。在高性能飞机和航天器上,这些要求尤为严格。飞机和航天器的舱室容积、载重和电源受到严格限制。卫星上设备重量每增加1公斤,运载火箭的发射重量就要增加几百公斤或更多。导d和航天器要承受严重的冲击过载、强振动和粒子辐射等。一些航天器的工作时间很长,如静止轨道通信卫星的长达7~10年,而深空探测器的工作时间更长。因此,航空航天用的电子元器件要经过极严格的质量控制和筛选,而电子系统的设计需要充分运用可靠性理论和冗余技术。

二、航空航天电子技术的主要发展方向是:

①充分利用电子计算机和大规模集成电路,提高航空航天电子系统的综合化、自动化和智能化水平;②提高实时信号处理和数据处理的能力和数据传输的速率;③发展高速率和超高速率的大规模集成电路;④发展更高频率波段(毫米波、红外、光频)的电子技术;⑤发展可靠性更高和寿命更长的各种电子元器件。
4航天飞机200字小作文
Hello!大家好,我叫航天飞机。我虽然长得怪怪的,但是我的本领可大了,下面,听我给你讲讲吧!

我,长着一对尖尖的三角形翅膀,尖尖的脑袋和方方的尾巴。我能转眼间飞得无影无踪,我从东海之滨到帕米尔高原只需飞行七分钟。可普通飞机就不一样了,它们得飞行四个多小时呢!我可是比刘翔还要刘翔哦!

我一出马,能把普通飞机吓个半死,因为我飞起来能飞几十万米高,普通飞机就比我差多了,看,我厉害吧!我们航天飞机是一种航天运载工具,可以反复使用。我们通常被设计成火箭推进的飞机,返回地面时能像滑翔飞机那样下滑和着陆。航天飞机为人类自由进出太空提供了很大的便利,是航天史上一个重要的里程碑。

听完了我的介绍,你们认识我了吗?
5关于航天的知识
航天活动包括航天技术(又称空间技术),空间应用和空间科学三大部分。航天技术是指为航天活动提供技术手段和保障条件的综合性工程技术。

空间应用是指利用航天技术及其开发的空间资源在科学研究、国民经济、国防建设、文化教育等领域的各种应用技术的总称。

空间资源系指地球大气层以外的可为人类开发和利用的各种环境、能源与物质资源,入空间高远位置、高真空、超低温、强辐射、微重力环境、太阳能以及地球以外天体的物质资源等。

扩展资料:



太空资源:

太空资源泛指太空中客观存在的、可供人类开发利用的环境和物质。主要包括:相对于地面的高远位置资源,高真空和超洁净环境资源,微重力环境资源,太阳能资源,月球资源,行星资源等。

太空上可利用的资源比地球上可利用的资源要丰富的多。仅从太阳系范围来说,在月球、火星和小行星等天体上,有丰富的矿产资源;在类木行星和彗星上,有丰富的氢能资源;在行星空间和行星际空间,有真空资源、辐射资源、大温差资源,那里的太阳能利用有效率也比地球上高的多。

目前取得了巨大的社会效益。高真空和高洁净是外层空间的显著特征,是进行许多科学实验、发展航天技术、生产电子产品和高级药品的理想环境,尤其它是人类的航天活动的先决条件。

高真空、超洁净环境资源取得了相当大的实际效果,但微重力资源和太阳能资源的利用还处于试验、研究和创造条件的阶段。

家有智能水表,假如发现水表没电了应该怎么办?
一、确定家里停水是否是因为水表没电了。
用IC卡刷智能水表。一般家用的智能水表,都会发一张IC卡,假如家里停水了,要想确定是否是因为水表没电了引起的,最好的办法就是拿上IC卡去水表上刷一下,听听水表的反映。
确定水表没电。假如确实是家里的水表没电了,当你用IC卡刷水表时,水表会没反应,而且也听不到“嘀”的一声。
二、水表没电了怎么办?
1
拨打自来水公司热线电话。确定了家里的水表没电了,第一时间要做的事就是和自来水公司联系,当然最便捷的方式就是拨打热线电话了,一般在家里的水卡上都会有热线电话。
2
去自来水公司现场报修。假如拨打热线电话没人接听,或者是没联系上公司的专业人士,那就建议你直接去公司的办公地去直接报修,把情况说清楚。
3
预约师傅上门维修。一般你报修后,自来水公司会及时派师傅跟你预约上门维修水表的时间。
4
等待师傅上门维修。预约好时间后,你就只需要耐心地等待师傅上门维修了哦。
5
维修完毕,读卡使用。当师傅到达后,通过检查,及时更换水表电池后,用IC卡刷卡试一下,就可以正常使用啦。

1关于太空的科学小知识
1、我们的太阳系的所有行星中,只有金星和水星是没有卫星的。

在我们的太阳系中,一共有176颗已确认的卫星环绕着它们的主行星,而且有一些卫星比水星的个儿头还要大。2、如果一颗恒星太靠近黑洞,会被黑洞撕裂。

在20年的时间中,一支天文学家团队一直在观测银河中央一颗围绕黑洞运行的恒星。目前恒星距离黑洞的位置近的足以出现“引力红移”,也就是说随着黑洞的引力逐渐增强,该恒星的光线会失去能量。

3、太阳系中最热的行星是金星。很多人会觉得应该是水星,因为它距离太阳最近。
但是金星的大气层中大量的气体造成了“温室效应”,导致金星表面的恒定温度高达462摄氏度。4、太阳系有46亿岁了。

准确的来讲,太阳系的岁数是4571亿岁。科学家预测大约50亿年后,我们的太阳会扩张成一个红巨星。

大约75亿年后,其扩大的表面就会吞噬掉地球。5、土星较小的一颗卫星——土卫二反射了90%的太阳光。

由于其表面被冰覆盖,因此很少能吸收阳光,基本上反射走了。土卫二的表面温度可以达到零下201摄氏度。

6、已经发现的最高山峰是火星上的奥林匹斯山。它的顶峰有25公里高,是珠穆朗玛峰的近3倍高。

而且它不仅高,而且面积还有30万平方公里——这跟亚利桑那州一般大了。7、M51涡状星系是我们发现的第一个旋涡状的天体。

涡状星系庞大螺旋的旋臂是由细长排列的恒星和气体构成的,还洒满了大量的宇宙尘埃。这些旋臂的作用就像是制造恒星的工厂,压缩氢气并制造出一群新的恒星。

8、一光年是光在一年中行进的距离。光1秒钟能移动30万公里,因此1光年大约相当于5,903,026,326,255英里(9,460,730,472,581公里)。

9、银河系的宽度达到105700光年。我们乘坐现代太空船需要花费45亿年的时间才能到达银河系的中心。

10、太阳的质量是地球质量的33万倍还多。太阳的直径大约是地球的109倍,填满太阳大约要用到130万个地球。

事实上太阳的质量巨大无比,占了全部太阳系质量的9985%。11、宇航员留在月球表面上的鞋印不会消失,因为月球上没有风。

等等,如果月球上没有风,那旗子是怎么飘起来的?事实上旗子并不是被风吹起来的。你看到的褶皱是因为宇航员费尽力气想把一根难搞的水平伸缩拉杆从旗子的上边缘中 导致的。

12、由于引力较小,在地球上体重220磅的人在火星上只有84磅重。当要把机器人送往火星表面时,科学家就会考虑到这一点,他们会为机器人安装更多的设备并且会用更耐用的材料打造机器人。

13、木星已知的卫星多达79个。木星是太阳系中卫星最多的行星,而且也有着太阳系中最大的卫星。

这颗最大的卫星被称为木卫三(Ganymede),直径5262公里——比水星还要大,而且只用双筒望远镜就能观测到。14、火星的一天有24小时39分35秒长。

因此你可能会觉得火星的一年要比地球短?错!由于火星围绕太阳公转的速度比地球要慢,因此火星上的1年有687天。15、NASA的月球陨坑观测与遥感卫星(LCROSS)发现了月球上存在水的证据。

尽管就目前条件来看,月球的表面不可能存在水,但是科学家相信月球两极寒冷的永不见光的陨坑中存在有水冻结成的冰。
2有关太空的小常识,介绍太空的
地球大气层以外的宇宙空间,大气层空间以外的整个空间。

太空 物理学家将大气分为5层:对流层(海平面至10千米)、平流层(10~40千米)、中间层(40~80千米)、热成层(电离层,80~370千米)和外大气层(电离层,370千米以上)。地球上空的大气约有3/4在对流层内,97%在平流层以下,平流层的外缘是航空器依靠空气支持而飞行的最高限度。

某些高空火箭可进入中间层。人造卫星的最低轨道在热成层内,其空气密度为地球表面的1%。

在16万千米高度空气继续存在,甚至在10万千米高度仍有空气粒子。从严格的科学观点来说,空气空间和外层空间没有明确的界限,而是逐渐融合的。

联合国和平利用外层空间委员会科学和技术小组委员会指出,目前还不可能提出确切和持久的科学标准来划分外层空间和空气空间的界限。近年来,趋向于以人造卫星离地面的最低高度(100~110)千米为外层空间的最低界限。
3关于太空的科学知识
1、太空是指地球大气层以外的宇宙空间,大气层空间以外的整个空间。

物理学家将大气分为5层:对流层(海平面至9千米)、平流层(9~45千米)、中间层(45~80千米)、热成层(电离层,80~400千米)和外大气层(电离层,400千米以上)。 2、地球上空的大气约有3/4在对流层内,97%在平流层以下,平流层的外缘是航空器依靠空气支持而飞行的最高限度。

3、太空站又称为“空间站”、“轨道站”或“航天站”,是可供多名宇航员巡航、长期工作和居住的载人航天器。在太空站运行期间,宇航员的替换和物资设备的补充可以由载人飞船或航天飞机运送,物资设备也可由无人航天器运送。

4、宇宙是有层次结构的、不断膨胀、物质形态多样的、不断运动发展的天体系统。 5、行星、小行星、彗星和流星体都围绕中心天体太阳运转,构成太阳系。

6、太阳系外也存在其他行星系统。约2500亿颗类似太阳的恒星和星际物质构成更巨大的天体系统——银河系。

银河系的直径约10万光年,太阳位于银河系的一个旋臂中,距银心约26万光年。 7、银河系外还有许多类似的天体系统,称为河外星系,常简称星系。

目前观测到1000亿个星系,科学家估计宇宙中至少有2万亿个星系。 8、星系聚集成大大小小的集团,叫星系团。

平均而言,每个星系团约有百余个星系,直径达上千万光年。现已发现上万个星系团。

包括银河系在内约40个星系构成的一个小星系团叫本星系群。 9、若干星系团集聚在一起构成的更高一层次的天体系统叫超星系团。

超星系团往往具有扁长的外形,其长径可达数亿光年。通常超星系团内只含有几个星系团,只有少数超星系团拥有几十个星系团。

扩展资料:

1、外太空最冷之处:回力棒星云或许是宇宙中最寒冷的地方,温度仅有零下272摄氏度。回力棒星云距离地球5000光年。

2、外太空最热的行星:开普勒70b是最热的系外行星,温度可能高达7000摄氏度,其轨道也非常接近其恒星,比水星到太阳之间的距离还短。 3、外太空最冷的行星:OGLE-BLG-390L是迄今发现最寒冷的行星,其质量是地球的5倍,被认为是一颗岩石行星,它也是距离地球最遥远的行星之一,距离地球大约28000光年。

它表面温度仅为零下220℃,低于液氮的沸点,接近于绝对零度(-27315℃)。 4、外太空最大恒星:盾牌座UY是目前已知最大星体,是一颗位于盾牌座的红色特超巨星。

半径是1708倍太阳半径,也就意味着1708个太阳排成一排。它距离地球约9500光年。

5、外太空中旋转最快的恒星:VFTS 102是迄今最快旋转的超大质量恒星,该恒星赤道区域环绕轴心以每秒600公里的速度高速旋转,由于离心力作用,如此之高的自转速率几乎将这颗恒星撕裂。它非常炽热,是一颗高度发光恒星,是太阳亮度的10万倍,位于大麦哲伦星云中的蜘蛛星云。

6、外太空最小的物质尺寸:已知宇宙中最小的粒子是夸克。 7、外太空中最快的信息传递速度:光速,提示爱因斯坦的速度极限理论无懈可击。

量子纠缠技术是安全的传输信息的加密技术,与超光速无关。 参考资料来源:百度百科-太空 参考资料来源:百度百科-宇宙。
4小学生天文科普知识有哪些
小学生天文科普知识有:

一、打雷是怎么回事?

这是阴电和阳电碰到一起发生的自然现象。下雨时,天上的云有的带阳电,有的带阴电,两种云碰到一起时,就会放电,发出很亮很亮的闪电,同时又放出很大的热量,使周围的空气很快受热,膨胀,并且发出很大的声音,这就是雷声。

二、流星雨是怎么回事?

宇宙中有许多小天体按着自己的轨道和速度飞行。有的自己炸碎了,有的和其他天体撞碎了。但它们继续向前飞行。当它们的轨道和地球轨道碰到一起时,像雨点一样落到了地面,这种现象就叫流星雨。

三、蓝天有多高?

“蓝天”其实是地球的大气层。大气层是包围着地球的空气,根据空气密度的不同分为5层,总共有2000-3000公里厚。但绝大部分空气都集中在从地面到15公里高以下的地方,越往高处空气越稀薄。大气层有多厚,蓝天就应该有多高。

四、太阳系里有哪些天体?

太阳系中有9大行星。从离太阳的距离从小到大依次为水星、金星、地球、火星、木星、土星、天王星、海王星。另外,太阳系里还有许多小行星,彗星和流星,已正式编号的小行星有2958颗。最著名的彗星是哈雷彗星。

五、怎样找北极星?

在天空中很容易找到北极星:先找到大熊星,再找到北斗七星。从勺头边上的那两颗指极星引出一条直线,它延长过去正好通过北极星。北极星到勺头的距离,正好是两颗指极星间距离的5倍。也可以通过“仙后座”找北极星。

六、为什么日落时天空是红的?

因为日落时阳光在大气层中走的路程特别远。除了红色光外,其他几种颜色的光传播不了那么远,还没到我们眼睛之前就都散失掉了。只有红色光线跑得最远,能传到我们眼睛里,所以我们看到日落时的天空的颜色就成了红色的。

七、我们能看到多少颗星星?

用我们的肉眼从地球上能看到7000颗星,但是因为地球是圆的,不论我们站在地球上的什么地方,都只能看到半边天空,而且靠近地平线的星星又看不清楚,所以我们用肉眼实际上只能看到大约3000颗星。
5关于太空的科学知识
1、太空是指地球大气层以外的宇宙空间,大气层空间以外的整个空间。物理学家将大气分为5层:对流层(海平面至9千米)、平流层(9~45千米)、中间层(45~80千米)、热成层(电离层,80~400千米)和外大气层(电离层,400千米以上)。

2、地球上空的大气约有3/4在对流层内,97%在平流层以下,平流层的外缘是航空器依靠空气支持而飞行的最高限度。

3、太空站又称为“空间站”、“轨道站”或“航天站”,是可供多名宇航员巡航、长期工作和居住的载人航天器。在太空站运行期间,宇航员的替换和物资设备的补充可以由载人飞船或航天飞机运送,物资设备也可由无人航天器运送。

4、宇宙是有层次结构的、不断膨胀、物质形态多样的、不断运动发展的天体系统。

5、行星、小行星、彗星和流星体都围绕中心天体太阳运转,构成太阳系。

6、太阳系外也存在其他行星系统。约2500亿颗类似太阳的恒星和星际物质构成更巨大的天体系统——银河系。银河系的直径约10万光年,太阳位于银河系的一个旋臂中,距银心约26万光年。

7、银河系外还有许多类似的天体系统,称为河外星系,常简称星系。目前观测到1000亿个星系,科学家估计宇宙中至少有2万亿个星系。

8、星系聚集成大大小小的集团,叫星系团。平均而言,每个星系团约有百余个星系,直径达上千万光年。现已发现上万个星系团。包括银河系在内约40个星系构成的一个小星系团叫本星系群。

9、若干星系团集聚在一起构成的更高一层次的天体系统叫超星系团。超星系团往往具有扁长的外形,其长径可达数亿光年。通常超星系团内只含有几个星系团,只有少数超星系团拥有几十个星系团。

扩展资料:



1、外太空最冷之处:回力棒星云或许是宇宙中最寒冷的地方,温度仅有零下272摄氏度。回力棒星云距离地球5000光年。

2、外太空最热的行星:开普勒70b是最热的系外行星,温度可能高达7000摄氏度,其轨道也非常接近其恒星,比水星到太阳之间的距离还短。

3、外太空最冷的行星:OGLE-BLG-390L是迄今发现最寒冷的行星,其质量是地球的5倍,被认为是一颗岩石行星,它也是距离地球最遥远的行星之一,距离地球大约28000光年。它表面温度仅为零下220℃,低于液氮的沸点,接近于绝对零度(-27315℃)。

4、外太空最大恒星:盾牌座UY是目前已知最大星体,是一颗位于盾牌座的红色特超巨星。半径是1708倍太阳半径,也就意味着1708个太阳排成一排。它距离地球约9500光年。

5、外太空中旋转最快的恒星:VFTS 102是迄今最快旋转的超大质量恒星,该恒星赤道区域环绕轴心以每秒600公里的速度高速旋转,由于离心力作用,如此之高的自转速率几乎将这颗恒星撕裂。它非常炽热,是一颗高度发光恒星,是太阳亮度的10万倍,位于大麦哲伦星云中的蜘蛛星云。

6、外太空最小的物质尺寸:已知宇宙中最小的粒子是夸克。

7、外太空中最快的信息传递速度:光速,提示爱因斯坦的速度极限理论无懈可击。量子纠缠技术是安全的传输信息的加密技术,与超光速无关。

参考资料来源:搜狗百科-太空

参考资料来源:搜狗百科-宇宙
6有趣的天文科学小知识有哪些
有趣的天文科学小知识有光年是距离单位、太阳的颜色、太阳系中表面温度最高的行星、太阳系中表面风速最快的行星、太阳系中度日如年的行星。

1、光年是距离单位

光年是天文大尺度距离单位,并非时间单位。鉴于光速在真空中不受惯性系和参考系限制而恒定不变的性质,人类把光速作为衡量距离的精准单位,还有一种含义,因为“光年”包含“年”这个字,而年通常是时间单位。

一光年就是光运行一年的距离,科学界把这个年定义为儒略年:36525年;这样一光年精确的距离为:9460730472580800m,通俗来讲,一光年大概是:946万亿公里。目前人类最远探测器是于1977年发射的旅行者一号距离地球约216亿公里,也只有一光年的022%。

2、太阳的颜色

太阳真正的颜色是白色。我们之所以把太阳看成,是因为地球的大气层更不容易将高波长的颜色,比如红色、橘色和,散射出去。

因此,这些波长的颜色就是我们看到的,这也就是太阳呈现出的原因。要是离开地球在太空中看太阳的话,就会发现太阳真正的颜色是百色(我也没看过,不知道会不会发现眼睛已经被闪瞎)。

3、太阳系中表面温度最高的行星

太阳系中表面温度最高的行星不是距离太阳最近的水星,而是金星。水星虽然距离太阳最近,但是水星表面温度在白天可以达到427℃,而金星由于有着浓密的二氧化碳气体,导致强烈的温室效应。

其表面温度最高可以达到500℃,就算在金星夜晚也有400多℃,使得金星表面平均温度有400多℃以上。顺便说下,水星因为其夜间温度可以下降至-183℃,使得水星是太阳系中表面温差最大的行星,表面昼夜温差高达600℃。

4、太阳系中表面风速最快的行星

海王星大黑斑是出现在海王星上的暗斑,如同木星的大红斑一样。它在1989年被NASA的航海家2号太空船检测到,虽然他似乎与木星的大红斑一样,但它是个反气旋风暴,它被相信是个相对来说没有云彩的区域。

这个斑点的大小与地球近似,并且非常像木星上的大红斑。起初认为它是与大红斑一样的风暴,但更接近的观察显示它是黑暗的,并且是向海王星内部凹陷的椭圆形。

围绕在大黑斑周围的风速经测量高达每时2400公里(1500英里),是太阳系中最快的风,大黑斑被认为是海王星被甲烷覆盖时产生的一个洞孔,类似于地球上的臭氧洞。

5、太阳系中度日如年的行星

金星的公转周期是2247个地球日,而自转周期是243个地球日,也就是说金星的一天要比一年长18个地球日,在哪里是名副其实的“度日如年”。

至于原因还没有定论,不过有一点需要注意的是,金星是太阳系中唯一一个逆向自转的大行星,自转方向是自东向西,也就是说在金星上看太阳是西升东落。
7宇宙科普知识 宇宙科普知识
围绕一个问题弄得哦,够不? 宇宙知识——宇宙在膨胀吗? 夏日夜空,繁星闪烁,不禁使人陷入对宇宙的遐想之中。

20世纪10~20年代,天文学家发现远星系光谱线的频率随着它离我们距离的远近而有规律地变比,即谱线红移。1929年哈勃总结出谱线红移的规律是:对遥远星系,红移量与星系离我们的距离成正比,比例系数H叫哈勃常数,这红移叫宇宙学红移。

此后,在红外及整个电磁波波段都观测到了这个规律。它被解释为是由星系系统地向远离我们的方向运动时的多普勒效应产主的。

这就像火车远离我们行驶时汽笛的声调(即频率)比静止不动时的声调更低一样,由此得出星系都在做远离我们的运动,离我们越远运动速度越快的结论。这就好像是掺有葡萄干的面包在烤箱中膨胀起来一样。

这个模型叫宇宙膨胀模型或大爆炸模型。近年来在宇宙膨胀的基础上又提出了爆胀宇宙等多种改进模型。

从宇宙膨胀的观点出发,利用哈勃公式反推到过去宇宙中所有天体应该聚集于一点,由于某种原因在它内部产生了"大爆炸"。诞生了现在的宇宙,从而得出了时间是有开端,空间是有限的结论。

宇宙从大爆炸到现在究竟经过了多少时间,即宇宙的年龄是多少,这取决于哈勃常数H的大小。最初哈勃常数仅500(公里/秒/百万秒差距),这样算出的宇宙年龄比地球的45亿年的年龄小很多。

以后改为50~100之间。若取100,宇宙的年龄只有100亿年,而银河系的球状星团的年龄是150亿年,矛盾很大。

若取50,宇宙年龄为200亿年,矛盾不那么明显,因此被大爆炸宇宙论者所赞同,但在观测上,这个数值有些勉强。究竟是多少,一直没有定论。

近年来用哈勃太空望远镜观测的结果倾向于取80。这样算出的年龄为120亿年,矛盾还很明显。

宇宙将来是一直膨胀下去还是又收缩回来,这要取决于宇宙的平均密度。而宇宙平均密度究竟是多少目前还不能确定,因为观测的距离越远,平均密度越小,下限有没有还不能确定。

1965年发现了宇宙空间的27K微波背景辐射,被大爆炸论者解释为大爆炸时期的光经过上百亿年后的遗迹,是大爆炸宇宙的一大证据,但这种解释并不是唯一的,因为宇宙空间中充满介质,27K微波背景辐射具有黑体辐射的性质,可以解释为宇宙空间中介质发出的温度是27K的热辐射。 仔细分析起来,问题可能出在将光谱线的红移都解释为星系运动的多普勒效应上。

过去,人们曾用多普勒效应解释了银河系内恒星的光谱线移动,从而成功地确定了星系内存在自转现象。但现在天文观测中却发现一些红移现象,若用运动的多普勒效应解释就存在许多困难,这促使人们考虑到必然还有其他机制能产生红移,这里列举几种观测结果。

①多普勒效应对同一个天体,其红移量与光谱线的频率无关,因此观测每个星系中不同谱线的红移量,比较它们是否一致,就是鉴别红移是否由多普勒效应产生的一种依据。如果一致,就表示有可能是由多普勒效应产生的;如果不一致,就肯定它至少不完全是由多普勒效应产生的。

1949年威尔逊对星系NGC4151的观测结果表明,虽然不同频率的红移量差别不大,但也超出了观测的误差范围,频率越高,红移量越小。这样至少可以认为宇宙红移不完全是由多普勒效应产生的。

②从太阳中心到边缘各点发出的同一种谱线,在扣除了各种已知的运动效应后,越靠近边缘的地方红移量越大,在太阳半径90%左右的地方,红移量急剧增加。这意味着太阳上还有某种未知的因素在产生红移。

③先驱6号宇宙飞船发射的遥测信号中心频率为2292兆赫,当飞船绕到太阳背面经过太阳边缘时观测到异常红移现象。 ④类星体红移量一般都很大,如果把这都归结为多普勒效应,算出的距离一般在100百万秒差距以上。

由此推算出它发出的总光能力为银河系的100倍;射电能为银河系的10万倍。 而由光变周期算出它的直径只有一光年左右,这意味着类星体的辐射密度非常高,但目前一直找不到产生这样高辐射密度的物理机制。

有些天文学家认为,类星体的红移中至少有一部分不是由多普勒效应产生的,因而类星体离我们的距离较现在推算的要近得多。 ⑤星系、类星体相互之间都有成协的现象,即这些天体两两或更多相距较近并有物理联系。

观测表明,有些成协天体间红移值相差较大,有些类星体光谱中的吸收线与发射线互不相同,而且不同的吸收线有各不相同的红移值,称为多重红移。 既然这些红移不能用多普勒效应解释,那么它产生的原因究竟是什么呢。

光在发射时固然有许多因素影响它的频率,但宇宙中这么多天体都如此有规律地只随着远离我们的距离而变化,就难以理解了。光在它漫长的传播路径上经历了几亿至上百亿年的岁月,这期间必然比它在发射的一瞬间有更多的因素影响着它的频率。

现在人们了解到,在星系际空间中存在着星系际介质,它的密度在10E-29克/立方厘米以下。成分与银河系的大致相同。

除了有能对星光产生可见效应的星系际气体、尘埃和固态物质、低光度星体外,还有大量的基本粒子。 据估计,星系间基本粒子的质量占了整个宇宙总质量的绝大部分,它们是看不见的。

光与介质的相互作用是复杂的,介质不仅能吸收光,还能。
8宇航员上太空要穿太空服的科学小知识
太空是高寒的环境,平均温度为零下2703℃。

在太空中,各种天体也向外辐射电磁波,许多天体还向外辐射高能粒子,形成宇宙射线。如太阳有太阳电磁辐射,太阳宇宙线辐射和太阳风,太阳宇宙线辐射是太阳在发生耀斑爆发时向外发射的高能粒子,而太阳风则是由日冕吹出的高能等离子体流。

许多天体都有磁场,磁场俘获上述高能带电粒子,形成辐射很强的辐射带,如在地球的上空,就有内外两个辐射带。由此可见,太空还是一个强辐射环境。

太空还是一个高真空,微重力环境。重力仅为百分之一到十万分之一g (g-重力加速度) ,而人在地面上感受到的重力是1g。

所以 太空服人类无法在太空生存

弥漫星云没有明显的边界,呈现为不规则的形状,犹如天空中的云彩,但是都能观测到。它的直径在几十光年左右,密度平均为每立方厘米10个至100个原子。主要分布在银道面附近,比较著名的有猎户座大星云、马头星云等。

呈圆形、扁圆形或环形,有些与大行星很相像,因而得名,但和行星没有任何联系。它的样子有点像烟圈,中心是空的。有一颗很亮的恒星在行星状星云的中央,称为行星状星云的中央星,是正在演化成白矮星的恒星。行星状星云的生命十分短暂,通常这些气壳在数万年之内便会逐渐消失。

超新星爆发时﹐恒星的外层向周围空间迅猛地抛出大量物质,这些物质在膨胀过程中和星际物质互相作用﹐形成丝状气体云和气壳遗留在空间﹐成为非热射电源﹐这就是超新星遗迹。

超新星遗迹是一类与弥漫星云性质完全不同的星云,它们是超新星爆发后抛出的气体形成的。

与行星状星云一样,这类星云的体积也在膨胀之中,最后也趋于消散。最有名的超新星遗迹是金星座中的蟹状星云,它是由一颗在1054年爆发的银河系内的超新星留下的遗迹。

旋涡星云离地球最近的行星状星云,位于宝瓶座南部。这个星云虽然十分漂亮,但是在城市秋季的夜空中,就是用小型望远镜也无法找到。这是因为它离地球太近了,导致光源分散,必须要通过广视野中型望远镜在较黑暗的夜空才能看清。倘若在农村,用强力双筒镜就有可能看到。

在1747年由法国天文学家勒让蒂尔首先发现。这个星云上有3条非常明显的黑纹,它的形状就好像是3片发亮的树叶紧密而和谐地凑在一起,因此被称作三叶星云。由于星云上面那格外醒目的3条黑纹,也有天文学家将它叫作三裂星云。三叶星云位于人马座,使用大型天文望远镜可以拍摄三叶星云的彩色照片。在三叶星云的中心有一个包含有炽热年轻恒星的疏散星团。这些恒星发出强烈的辐射轰击周围星云中的氢原子,使它们失去了电子,当电子与质子再次组合时,它便发射出奇特的光——其中之一就是在星云中所能见到的红色光。

有的星云是恒星的出生地,星云尘埃在引力作用下渐渐收缩成为新的恒星,如猎户座的M42星云。M42星云是位于猎户座的发射和反射星云,也是著名的猎户座大星云,属弥漫星团。也有的是老恒星爆炸后的残骸,如天鹅座的网状星云。网状星云是星核喷出的高能量物质火焰造成的。

弥漫星云


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13242630.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-25
下一篇 2023-06-25

发表评论

登录后才能评论

评论列表(0条)

保存