一、农业资源监测和利用领域
在农业资源监测和利用领域,利用各种资源卫星收集国土资源情况,利用先进的传感器、信息传输和互联网等综合化信息监测、传输、分析平台实现区域农业的统筹规划和资源监测。如美国加州大学洛杉矶分校建立的林业资源环境监测网络,通过对加州地区的森林资源进行实时监测,为相应部门提供实时的资源利用信息,为统筹管理林业提供支撑。欧洲主要利用资源卫星对土地利用信息进行实时监测,其中,法国利用通信卫星技术对灾害性天气进行预报,对病虫害进行测报。
二、农业生态环境监测领域
在农业生态环境监测领域,农业物联网主要利用高科技手段构建先进农业生态环境监测网络,利用无线传感器技术、信息融合传输技术和智能分析技术感知生态环境变化。如美国加州大学伯克利分校的研究人员通过无线传感器网络对大鸭岛上海燕的栖息情况进行了9个月周期性的环境监测,采用区域化静态MICA传感器节点部署,实现了无人侵、无破坏的对敏感野生动物及其栖息地的监测。美国、法国和日本等一些国家主要综合运用建立覆盖全国的农业信息化平台,实现对农业生态环境的自动监测,保证农业生态环境的可持续发展。
三、农业生产精细管理领域
在农业生产精细管理领域,将光、温、水、气、土、生物等农业物联网传感器布局于大田作物生产、果园种植、畜禽水产养殖等方面,实现不间断化感知、实时化决策、精细化生产。如2002年英特尔公司率先在美国俄勒冈州建立了世界上第一个无线传感器网络葡萄园。通过采用Crossbow公司的Mote系列传感器,每隔一分钟采集一次光照、土壤温湿度等数据,实时监控葡萄生长环境的细微变化,确保葡萄的健康生长;2004年美国佐治亚州的两个农场使用了与无线互联网配套的远距离视频系统和GPS定位技术,分别监控蔬菜的包装和灌溉系统。荷兰VELOS智能化母猪管理系统,能够实现自动供料、自动管理、自动数据传输和自动报警。泰国初步形成了小规模的水产养殖物联网,解决了RFID技术在水产品领域的应用难题。
四、在农产品安全溯源领域
在农产品安全溯源领域,利用条码技术和RFID技术等来跟踪、识别、监测农产品的生产、运输、消费过程,保证农产品的质量安全。例如2001年起,加拿大肉牛使用一维条形码耳标之后又过渡电子耳标;2004年日本基于RFID技术构建了农产品追溯试验系统,利用RFID标签,实现了对农产品流通管理和个体识别。近年来,RFID的应用更加广泛并由此形成了自动识别技术与装备制造产业。据美国市调公司ABIresearch2007年度第一季报告显示,2006年全球RFID市场为3812亿美元,其中亚太地区已跃为全球最大市场,规模为1407亿美元。
农业物联网应用功能主要有一下几个方面:
远程智能农业监控:通过在农业生产现场搭建“物联网” 监控网络,实现对农业生产现场气候环境,土壤状况,作物长势,病虫害情况的实时监测;并根据预设规则,对现场各种农业设施设备进行远程自动化控制,实现农业生产环节的海量数据采集与精准控制执行。
农产品标准化生产:通过自主研发或与第三方合作导入,为农作物品类逐步建立起“气候,土壤,农事,生理”四位一体的农业生产与评估模型,将农业生产从以人为中心的传统模式,变革为以数据为中心的现代模式,通过数据驱动农业生产标准化的真正落地,进而实现农产品定制化生产。
农产品安全追溯及防伪鉴真:通过采集农产品在生产、加工、仓储、物流等环节的相关数据,为农产品建立可视化产品档案,向消费者充分展示产品安全与品质相关信息,实现从农田到餐桌的双向可追溯。同时,通过一物一码技术,帮助农业生产和流通企业实现产品防伪鉴真,并精准获取客户分布数据。
托普云农研发的标准化、个性化物联网解决方案在吉林梨树县、杭州萧山农科所、金华寿仙谷、南充高坪农牧局、湖北金秋农业、宁夏利通区、四川岳池、赣县国家现代农业示范区、广州徐闻县等地得到广泛推广应用,为当地实现节水农业、智慧农业提供着重要的技术支撑!例如耕地质量保护大数据平台,通过搭建“1个中心,1个平台、N个应用”的平台建设模式。建一个耕地质量保护大数据中心,汇聚土、水、肥三大耕地质量数据,为耕地质量保护监测、管理、服务、应用提供数据支撑。利用大数据分析,达到精准管理,科学决策,形成指挥耕地新业态,通过大数据平台服务公共,服务管理,转变耕地保护方式。
托普水肥一体化智能灌溉系统,托普水肥一体化自动控制系统由系统云平台、墒情数据采集终端、视频监控、施肥机、过滤系统、阀门控制器、电磁阀、田间管路等组成。系统可根据监测的土壤水分、作物种类的需肥规律,设置周期性水肥计划实施轮灌。施肥机会按照用户设定的配方、灌溉过程参数自动控制灌溉量、吸肥量、肥液浓度、酸碱度等水肥过程的重要参数,实现对灌溉、施肥的定时、定量控制,充分提高水肥利用率,实现节水、节肥,改善土壤环境,提高作物品质的目的。该系统广泛应用于大田、旱田、温室、果园等种植灌溉作业。2015-04-23 国农互联
各国农业物联网发展概况
美国
推进农业数据标准化。从长期来看,农业物联网需要的是可以相互识别的可 *** 作标准,这样不同设备才能在一起工作,否则不同设备传回的信息格式不能兼容。目前AgGateway和OADA正在研究农业数据标准化的问题。AgGateway是一家非营利性的商业联合组织,致力于推进电子商务在农业领域的发展和推动信息通信技术在农业的使用。OADA是一个帮助农民全面、安全获取数据的开放式项目。美国农业与生化工程师协会(ASABE)也在支持建立农业数据标准的工作。
大农场引领农业物联网应用。就农业物联网技术覆盖主体而言,大农场成为美国农业物联网技术的引领者,在农业物联网技术推广中起着示范作用。美国大农场采用物联网设备的数量相对更多,研究显示,美国大农场对技术的采用率高达80%。而对于小农场而言,由于设备的安装和维护成本高,它们使用物联网设备的数量相对较少,不过在大农场的示范作用带动下,也将会有越来越多的小农场采用物联网技术。
信息化基础设施奠定农业物联网发展基础。从美国农业物联网的发展现状来看,其信息化基础设施完备,为美国农业物联网的发展创造了优越的条件。美国政府每年用于农业信息网络建设方面的投资约为15亿美元,已建成世界最大的农业计算机网络系统AGNET,可以为美国农业物联网的发展提供强大的信息资源。同时,美国建立了农业技术信息数据库,如BISIS(生物科学情报社)、CAB(英联邦农业局)、AGRICOLA(美国国家农业数据库)和AGRIS(FAO农业情报体系)等。
日本
政府大力推动农业物联网发展。农业物联网在2004年被列入日本政府计划。当时日本总务省提出U-Japan计划,其核心是力求实现人与人、物与物、人与物之间的相连,在未来形成一个人或物均可互联、无处不在的网络社会,其中就包括农业物联网技术。目前,日本政府不断加强对智慧农业的扶持补助,通过一系列补助措施,到2020年日本农业信息技术化规模将达到580亿至600亿日元,计划在十年内以农业物联网为信息主体源普及农用机器人,预计2020年市场规模将达到50亿日元。
制造商推广农业物联网技术知识。日本农户在最初引进农业物联网时,由于成本过高、技术较难掌控等原因,物联网设备长时间处于停用状态。后来在制造商与当地农协工作人员的帮助下,逐渐接受并理解了物联网技术,比如在家里看看农作物的照片,并对比一下各类数据便可管理偌大的土地,并可较以前减少一半的工作量。
产、官、学协同研发农业物联网技术。近年来,日本农业物联网技术主要由NEC、富士通、日立等大型公司的IT部门牵头研发,并与三井物产等农用品开发商合作。日本非常注重引进和发展符合日本国情的精确农业。目前,日本产、官、学合作进行的农业物联网技术研究主要集中在两个方面:一是精确农业的基础研究,提供农业生产应用的作物生长模型数据库,可用于农业物联网的农业生产指导信息平台。二是精确农业机械的研究,提供农业物联网的智能化 *** 作终端。
英国
政府考核基于物联网的农业信息化。英国政府通过执行欧盟的单一补贴政策,把农业环境保护、农业产出与效益等很好地纳入补贴政策的考核指标,把农业机械的信息化程度作为重要考核指标予以支持,督促农业生产者广泛利用农业物联网,促进信息技术与生物技术等新技术融合,推动开展农业生产,从而推动农业物联网的发展,提高农业生产的智能化、精确化、高效化和自动化水平,实现环境保护、生产发展、效益提高、收入增加、资源节约等多重目标的均衡发展。
政府引导、多元市场主体拉动农业物联网建设。英国发展农业物联网主要依靠市场机制进行推动,政府主要是制定引导政策,采取扶持措施引导农业生产者,电信运营商、IT公司等农业物联网的主要建设者参与农业物联网建设。以政策为指引,以需求为导向,利用市场机制,按照有偿、自愿、效益的原则,鼓励各类市场主体开展信息技术的研发、推广和应用,大大提高了农业物联网技术的实用性、针对性、可持续性,能够较好地满足农业发展的需要。
注重涉农人员信息化水平的提高。英国政府十分重视涉农人员的信息化技能和知识的培训与教育,从上世纪90年代开始实施农村教育信息化计划。政府制定政策,把信息技术课列为全国中小学必修课程,并拟定了具体考核标准,采取了有效措施加强农村信息技术教师队伍建设,建设了各种网络学校和培训中心,开展了适宜于农村地区的各种网络或者视频远程教育,一些地方政府在教育经费的投入中要求不低于6%用作计算机和网络费用,一些农村制定了学生和计算机、图书馆的具体比例等,这些措施有效促进了信息化知识和技术在农村的普及,涉农人员的知识水平得到很大提高,这对农业物联网的发展至关重要。
以色列
以农业产业化、规模化促进农业物联网发展。农用土地有效集中和生产经营组织化是以色列农业物联网发展的基础。以色列945%的土地为国家所有,私人土地仅占55%。农业生产经营主要采取较为独特的集体农场(基布兹)和农业合作社(莫沙夫)两种形式。应运而生的是由多家集体农场和农业合作社联合组建的区域合作组织,它使整个农业生产经营有了较高的组织化程度,这些农业经营主体更加关心并追求农业生产经营的质量和效益,对应用农业物联网技术的愿望更加强烈,并且可以为应用农业物联网技术提供必要的资金和技术支撑。
农业科技创新服务体系支撑农业物联网发展。高度发达的农业科技和完善的农业服务体系是以色列农业物联网发展不可比拟的优势。以色列农业增产的96%靠科技,其高度发达和集约化的农业是以强大的农业科研、教育和推广体系作为后盾和支柱的。政府每年用于农业科研与技术推广方面的经费高达数亿美元,占GDP的比例位居世界前列。目前,以色列已建立一整套由政府部门、科研机构和农业合作组织紧密配合的农业研究和推广体系。以色列鼓励科研人员和推广人员结合自身的专业特长,开办或联办私人示范农场、科技型开发企业、推广型的培训示范基地等。
滴灌推动物联网技术的应用。滴灌在一般人印象中,就是布设大量打上微小孔洞管线的一种节水浇灌方式,但以色列人运用物联网技术把它做到了极致。以一个深埋地下的简单喷嘴为例,它凝聚了大量的高科技,它由电脑控制,依据传感器传回的土壤数据,决定何时浇水、浇多还是浇少,通过物联网技术,不仅节约了宝贵的水资源,而且节约了人力成本。铺完管线以后,未来大量农田的灌溉将由少数几个农民通过智能设备来控制。
国外农业物联网发展经验对我国的启示
政府力推农业物联网建设
无论是美国这样的农业强国,还是以色列这样的农业资源匮乏的国家,在他们农业物联网的发展过程中,政府都十分重视农业物联网发展的战略规划、农业物联网技术的研发和农业技术信息数据库的建设,并以此加快农业物联网技术的采纳和应用,从而推动农业现代化进程。因此,我国政府应强化农业物联网发展的顶层设计,促进农业物联网技术的研究开发。此外,政府在推动城镇化发展的同时,大力引导农业生产的产业化也是农业物联网推广应用的重要动力。
以农业信息化基础设施建设为基础
农业信息化基础设施是指农业信息的收集、传输、反馈、检测、控制、存储的载体、执行机构、数据库和管理软件等。例如,农业信息化基础设施的完备为美国农业物联网的发展创造了极其优越的条件,因此,大力促进农村宽带网络建设,建设和完善农业信息化专家系统和管理软件,配置性能完善的控制系统、通信传输、电力供给等信息化元器件,这一系列农业信息化基础设施的建设是我国发展农业物联网的重要基础。
以农业产业化、规模化为动力
从美国、以色列等国家农业物联网发展状况来看,农业产业化、规模化为农业物联网的发展注入了强大动力。农业产业化将变革农业组织管理结构,实现农业组织管理的现代化。专业大户、家庭农场、农业经济合作社和龙头企业等新型农业组织会涌现出来,相比传统分散经营的农户而言,这些新型农业经营主体更加关心并追求农业生产经营的质量和效益,对应用信息技术的愿望更加强烈,这些新型农业生产组织必然会推动农业物联网技术的应用。因此,我国应大力推动农业产业化,在农业产业化进程中,龙头企业、专业大户、农业经济合作组织等新型农业组织必将凭借在技术、人才、资金等方面的优势,提高农业物联网的应用水平。
以农业物联网科技创新服务体系建设为保障
日本、以色列等进入农业现代化的国家都拥有高度发达的农业科技创新服务体系。建设农业物联网科技创新服务体系,可以促进农业物联网技术的研发、推广和应用。因此,我国应加大农业物联网科技创新服务体系建设,比如从培养、引进、使用三个环节加强农业物联网人才队伍建设,可以引进海外人才,培养农业物联网研究领域的学科带头人及人才团队,制定高层次创新人才培养计划等。同时,加强农业科技创新与研发平台建设,加快推进以农业物联网研究为立足点的重点实验室等知识创新平台建设; 重点实施科技“110”综合信息服务工程、专家大院工程、企业和农村科技特派员创业工程、科技入户工程四大示范服务与推广工程,强力推进农业物联网技术服务推广体系建设。
加大对涉农人员农业信息科技教育
日本、英国等国家在推进农业物联网发展的过程中,都涉及对相关人员进行农业信息科技方面的教育,这不仅有利于涉农人员事先对农业物联网技术进行评估,提高他们应用先进信息技术的积极性,而且有利于他们在具体应用农业物联网技术时能够得心应手,从而推动农业物联网技术的传播。我国农民数量众多,农村教育水平较低,农民整体文化水平不高,国家即使研发出高科技的农业物联网技术,虽然能够转变农业生产方式,提高农业生产效率,但在落后的农村很难推广应用,我国涉农人员的信息科技水平严重阻碍了农业科技的推广。所以,我国要通过农村信息服务站、“阳光培训”工程、专题培训班、网络学校、远程教育等多种方式,开展多层次、全方位的农民信息化知识和技能培训,提高涉农人员的信息科技水平,为我国农业物联网的发展提供最基本的保障。
本专题我共整理了10篇文章,来自中国农业科学院农业质量标准与检测技术研究所、南京农业大学、英国林肯大学、华南农业大学、江南大学、国家农业智能装备工程技术研究中心、浙江大学、中国科学院、吉林农业大学、西北农林 科技 大学、国家信息农业工程技术中心等单位。
文章包含农产品质量安全纳米传感器、太阳能杀虫灯、分簇路由算法、农田物联网混合多跳路由算法、水产养殖溶解氧传感器研制、土壤养分近场遥测方法、农机远程智能管理平台、水肥浓度智能感知与精准配比、果园多机器人通信等内容,供大家阅读、参考。
专题--农业传感器与物联网
Topic--Agricultural Sensor and Internet of Things
[1]王培龙, 唐智勇 农产品质量安全纳米传感应用研究分析与展望[J] 智慧农业(中英文), 2020, 2(2): 1-10
WANG Peilong , TANG Zhiyong Application analysis and prospect of nanosensor in the quality and safety of agricultural products[J] Smart Agriculture, 2020, 2(2): 1-10
知网阅读
[2]杨星, 舒磊, 黄凯, 李凯亮, 霍志强, 王彦飞, 王心怡, 卢巧玲, 张亚成 太阳能杀虫灯物联网故障诊断特征分析及潜在挑战[J] 智慧农业(中英文), 2020, 2(2): 11-27
YANG Xing, SHU Lei, HUANG Kai, LI Kailiang, HUO Zhiqiang, WANG Yanfei, WANG Xinyi, LU Qiaoling, ZHANG Yacheng Characteristics analysis and challenges for fault diagnosis in solar insecticidal lamps Internet of Things[J] Smart Agriculture, 2020, 2(2): 11-27
摘要: 太阳能杀虫灯物联网(SIL-IoTs)是一种基于农业场景与物联网技术的新型物理农业虫害防治工具,通过无线传输太阳能杀虫灯组件状态数据,用户可后台实时查看太阳能杀虫灯运行状态,具有杀虫计数、虫害区域定位、辅助农情监测等功能。但随着SIL-IoTs快速发展与广泛应用,故障诊断难和维护难等矛盾日益突出。基于此,本研究首先阐述了SIL-IoTs的结构和研究现状,分析了故障诊断的重要性,指出了故障诊断是保障其可靠性的主要手段。接着介绍了目前太阳能杀虫灯节点自身存在的故障及其在无线传感网络(WSNs)中的体现,并进一步对WSNs中的故障进行分类,包括基于行为、基于时间、基于组件以及基于影响区域的故障四类。随后讨论了统计方法、概率方法、层次路由方法、机器学习方法、拓扑控制方法和移动基站方法等目前主要使用的WSNs故障诊断方法。此外,还探讨了SIL-IoTs故障诊断策略,将故障诊断从行为上分为主动型诊断与被动型诊断策略,从监测类型上分为连续诊断、定期诊断、直接诊断与间接诊断策略,从设备上分为集中式、分布式与混合式策略。在以上故障诊断方法与策略的基础上,介绍了后台数据异常、部分节点通信异常、整个网络通信异常和未诊断出异常但实际存在异常四种故障现象下适用的WSNs故障诊断调试工具,如Sympathy、Clairvoyant、SNIF和Dustminer。最后,强调了SIL-IoTs的特性对故障诊断带来的潜在挑战,包括部署环境复杂、节点任务冲突、连续性区域节点无法传输数据和多种故障诊断失效等情形,并针对这些潜在挑战指出了合理的研究方向。由于SIL-IoTs为农业物联网中典型应用,因此本研究可扩展至其它农业物联网中,并为这些农业物联网的故障诊断提供参考。
知网阅读
[3]汪进鸿, 韩宇星 用于作物表型信息边缘计算采集的认知无线传感器网络分簇路由算法[J] 智慧农业(中英文), 2020, 2(2): 28-47
WANG Jinhong, HAN Yuxing Cognitive radio sensor networks clustering routing algorithm for crop phenotypic information edge computing collection[J] Smart Agriculture, 2020, 2(2): 28-47
摘要: 随着无线终端数量的快速增长和多媒体图像等高带宽传输业务需求的增加,农业物联网相关领域可预见地会出现无线频谱资源紧缺问题。针对基于传统物联网的作物表型信息采集系统中存在由于节点密集部署导致数据传输过程容易出现频谱竞争、数据拥堵的现象以及固定电池的网络由于能耗不均衡引起监测周期缩减等诸多问题,本研究建立了一个认知无线传感器网络(CRSN)作物表型信息采集模型,并针对模型提出一种引入边缘计算机制的动态频谱和能耗均衡(DSEB)的事件驱动分簇路由算法。算法包括:(1)动态频谱感知分簇,采用层次聚类算法结合频谱感知获取的可用信道、节点间的距离、剩余能量和邻居节点度为相似度对被监控区域内的节点进行聚类分簇并选取簇头,构建分簇拓扑的过程对各分簇大小的均衡性引入奖励和惩罚因子,提升网络各分簇平均频谱利用率;(2)融入边缘计算的事件触发数据路由,根据构建的分簇拓扑结构,将待检测各区域变化异常表型信息触发事件以簇内汇聚和簇间中继交替迭代方式转发至汇聚节点,簇内汇聚包括直传和簇内中继,簇间中继包括主网关节点和次网关节点-主网关节点两种情况;(3)基于频谱变化和通信服务质量(QoS)的自适应重新分簇:基于主用户行为变化引起的可用信道改变,或分簇效果不佳对通信服务质量产生的干扰,触发CRSN进行自适应重新分簇。此外,本研究还提出了一种新的能耗均衡策略去能量消耗中心化(假设sink为中心),即在网关或簇头节点选取计算式中引入与节点到sink的距离成正比的权重系数。算法仿真结果表明,与采用K-medoid分簇和能量感知的事件驱动分簇(ERP)路由方案相比,在CRSN节点数为定值的前提下,基于DSEB的分簇路由算法在网络生存期与能效等方面均具有一定的改进;在主用户节点数为定值时,所提算法比其它两种算法具有更高频谱利用率。
知网阅读
[4]顾浩, 王志强, 吴昊, 蒋永年, 郭亚 基于荧光法的溶解氧传感器研制及试验[J] 智慧农业(中英文), 2020, 2(2): 48-58
GU Hao, WANG Zhiqiang, WU Hao, JIANG Yongnian, GUO Ya A fluorescence based dissolved oxygen sensor[J] Smart Agriculture, 2020, 2(2): 48-58
摘要:溶解氧含量的测量对水产养殖具有极其重要的意义,但目前中国市面上的溶解氧传感器存在价格昂贵、不能持续在线测量及更新部件维护困难等问题,难以在水产养殖物联网中大规模推广和发挥作用。本研究基于荧光淬灭原理,利用水中溶解氧浓度与荧光信号相位差的关系进行低成本、易维护溶解氧传感器的研发。首先利用自制备溶氧敏感膜,经激发光照射后产生红色荧光,该荧光寿命可由溶解氧浓度调节;然后利用光信号敏感器件设计光电转化电路实现光信号感知;再以STM32F103微处理器作为主控芯片,编写下位机程序实现激发光脉冲产生,利用相敏检波原理以及快速傅里叶变换(FFT)计算激发光与参照光的相位差,进而转化为溶解氧浓度,实现溶解氧的测量。荧光探测部分与系统主控部分采用分离式设计思想,利用屏蔽排线直接插拔连接,便于传感器探测头的拆卸、更换、维护以及实现远距离在线测量。经测试,本溶解氧传感器的测量范围是0~20 mg/L,响应延迟小于2 s,溶氧敏感膜使用寿命约1年,可以实时不间断地对溶解氧浓度进行测量。同时,本传感器具有测量方便、制作成本低、体积小等特点,为中国水产养殖低成本溶解氧传感器的研发与市场化奠定了良好的基础。
知网阅读
[5]矫雷子, 董大明, 赵贤德, 田宏武 基于调制近红外反射光谱的土壤养分近场遥测方法研究[J] 智慧农业(中英文), 2020, 2(2): 59-66
JIAO Leizi, DONG Daming, ZHAO Xiande, TIAN Hongwu Near-field telemetry detection of soil nutrient based on modulated near-infrared reflectance spectrum[J] Smart Agriculture, 2020, 2(2): 59-66
摘要: 土壤养分作为农业生产的重要指标,含量过少会降低农作物产量,过多则会造成环境污染。因此,快速、准确检测土壤养分对于精准施肥和提高作物产量具有重要意义。基于取样和化学分析的传统方法能够全面准确地检测土壤养分,但检测过程中土壤的取样及预处理过程繁琐、 *** 作复杂、费时费力,不能实现土壤养分的原位快速检测。本研究基于调制近红外光谱,提出了一种土壤养分主动式近场遥测方法,可有效避免土壤反射自然光的干扰。该方法使用波长范围1260~1610 nm的8通道窄带激光二极管作为近红外光源,通过测量8通道激光光束的土壤反射率,建立土壤养分中氮(N)关于土壤反射率的计量模型,实现了N的快速检测。在74组已知N含量的土壤样品中,选取54组作为训练集,20组作为预测集。基于一般线性模型,对训练集中土壤N含量与土壤反射率的定量化参数进行训练,筛选显著波段后的计量模型R2达到097。基于建立的计量模型,预测集中土壤N含量预测值与参考值的决定系数R2达到09,结果表明该方法具有土壤养分现场快速检测的能力。
知网阅读
[6]朱登胜, 方慧, 胡韶明, 王文权, 周延锁, 王红艳, 刘飞, 何勇 农机远程智能管理平台研发及其应用[J] 智慧农业(中英文), 2020, 2(2): 67-81
ZHU Dengsheng, FANG Hui, HU Shaoming, WANG Wenquan, ZHOU Yansuo, WANG Hongyan, LIU Fei, HE Yong Development and application of an intelligent remote management platform for agricultural machinery[J] Smart Agriculture, 2020, 2(2): 67-81
摘要: 本研究针对农机管理实时数据少、农机实时作业监管困难、服务信息不对称等问题,首先提出专业化远程管理平台设计时应具有五大原则:专业化、标准化、云平台、模块化以及开放性。基于这些原则,本研究设计了基于大田作业智能传感技术、物联网技术、定位技术、遥感技术和地理信息系统的可定制化的通用农机远程智能管理平台。平台分别为各级政府管理部门、农机合作社、农机手、农户设计并实现了基于WebGIS 的农机信息库及农机位置服务、农机作业实时监测与管理、农田基础信息管理、田间作物基本信息管理、农机调度管理、农机补贴管理、农机作业订单管理等多个实用模块。研究着重分析了在当前的技术背景下,平台部分关键技术的实现方法,包括采用低精度GNSS定位系统前提下的作业面积的计算方法、GNSS定位数据处理过程中的数据问题分析、农机调度算法、作业传感器信息的集成等,并提出了以地块为核心的管理平台建设思路;同时提出农机作业管理平台将逐步从简单作业管理转向大田农机综合管理。本平台对同类型管理平台的研发具有一定的参考与借鉴作用。
知网阅读
[7]金洲, 张俊卿, 郭红燕, 胡宜敏, 陈翔宇, 黄河, 王红艳 水肥浓度智能感知与精准配比系统研制与试验[J] 智慧农业(中英文), 2020, 2(2): 82-93
JIN Zhou, ZHANG Junqing, GUO Hongyan, HU Yimin, CHEN Xiangyu, HUANG He, WANG Hongyan Development and testing of intelligent sensing and precision proportioning system of water and fertilizer concentration[J] Smart Agriculture, 2020, 2(2): 82-93
摘要: 为解决农场当地当时的复合肥料精准化配料问题,本研究将水肥一体化智能灌溉施肥系统作为研究对象,构建了水肥浓度智能感知与精准配比系统。首先提出现场在线水肥溶液智能感知模型的快速建立方法,利用数据分析算法从传感器实时监测的一系列浓度梯度的肥料溶液中挖掘出模型。其次基于上述模型设计水肥浓度智能感知与精准配比系统的框架结构,阐述系统工作原理;并通过三种水体模拟在线配肥验证了该系统原位指导水肥浓度配比的有效性,同时评价了水体电导率对水肥配比浓度的干扰。试验结果表明,正则化条件下二阶的多项式拟合曲线是表达溶液电导率与水肥浓度的变化关系最优的模型,相关系数R2均大于0999,由此模型可得出用户关心的复合肥各指标浓度。三种水体模拟在线配肥结果表明,水体会干扰电导率导致无法准确反演水肥配比的浓度,相对偏差值超过了01。因此,本研究提出的在线水肥智能感知与精准配比系统实现了消除当地水体电导率对水肥配比准确性的干扰,通过模型计算实现复合肥精准化配比,并得出各指标浓度。该系统结构简单,配比精准,易与现有水肥一体机或者人工配肥系统结合使用,可广泛应用于设施农业栽培、果园栽培和大田经济作物栽培等环境下的精准智能施肥。
知网阅读
[8]孙浩然, 孙琳, 毕春光, 于合龙 基于粒子群与模拟退火协同优化的农田物联网混合多跳路由算法[J] 智慧农业(中英文), 2020, 2(3): 98-107
SUN Haoran, SUN Lin, BI Chunguang, YU Helong Hybrid multi-hop routing algorithm for farmland IoT based on particle swarm and simulated annealing collaborative optimization method[J] Smart Agriculture, 2020, 2(3): 98-107
摘要: 农业无线传感器网络对农田土壤、环境和作物生长的多源异构信息的获取起关键作用。针对传感器在农田中非均匀分布且受到能量制约等问题,本研究提出了一种基于粒子群和模拟退火协同优化的农田物联网混合多跳路由算法(PSMR)。首先,通过节点剩余能量和节点度加权选择簇首,采用成簇结构实现异构网络高效动态组网。然后通过簇首间多跳数据结构解决簇首远距离传输能耗过高问题,利用粒子群与模拟退火协同优化方法提高算法收敛速度,实现sink节点加速采集簇首中的聚合数据。对算法的仿真试验结果表明,PSMR算法与基于能量有效负载均衡的多路径路由策略方法(EMR)相比,无线传感器网络生命周期提升了57%;与贪婪外围无状态路由算法(GPSR-A)相比,在相同的网络生命周期内,第1个死亡传感器节点推迟了两轮,剩余能量标准差减少了004 J,具有良好的网络能耗均衡性。本研究提出的PSMR算法通过簇首间多跳降低远端簇首额外能耗,提高了不同距离簇首的能耗均衡性能,为实现大规模农田复杂环境的长时间、高效、稳定地数据采集监测提供了技术基础,可提高农业物联网的资源利用效率。
知网阅读
[9]毛文菊, 刘恒, 王东飞, 杨福增, 刘志杰 面向果园多机器人通信的AODV路由协议改进设计与测试[J] 智慧农业(中英文), 2021, 3(1): 96-108
MAO Wenju, LIU Heng, WANG Dongfei, YANG Fuzeng, LIU Zhijie Improved AODV routing protocol for multi-robot communication in orchard[J] Smart Agriculture, 2021, 3(1): 96-108
摘要: 针对多机器人在果园中作业时的通信需求,本研究基于Wi-Fi信号在桃园内接收强度预测模型,提出了一种引入优先节点和路径信号强度阈值的改进无线自组网按需平面距离向量路由协议(AODV-SP)。对AODV-SP报文进行设计,并利用NS2仿真软件对比了无线自组网按需平面距离向量路由协议(AODV)和AODV-SP在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能。仿真试验结果表明,本研究提出的AODV-SP路由协议在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能均优于AODV协议,其中节点的移动速度为5 m/s时,AODV-SP的路由发起频率和路由开销较AODV分别降低了365%和709%,节点的移动速度为8 m/s时,AODV-SP的分组投递率提高了059%,平均端到端时延降低了1309%。为进一步验证AODV-SP协议的性能,在实验室环境中搭建了基于领航-跟随法的小型多机器人无线通信物理平台并将AODV-SP在此平台应用,并进行了静态丢包率和动态测试。测试结果表明,节点相距25 m时静态丢包率为0,距离100 m时丢包率为2101%;动态行驶时能使机器人维持链状拓扑结构。本研究可为果园多机器人在实际环境中通信系统的搭建提供参考。
知网阅读
[10]黄凯, 舒磊, 李凯亮, 杨星, 朱艳, 汪小旵, 苏勤 太阳能杀虫灯物联网节点的防盗防破坏设计及展望[J] 智慧农业(中英文), 2021, 3(1): 129-143
HUANG Kai, SHU Lei, LI Kailiang, YANG Xing, ZHU Yan, WANG Xiaochan, SU Qin Design and prospect for anti-theft and anti-destruction of nodes in Solar Insecticidal Lamps Internet of Things[J] Smart Agriculture, 2021, 3(1): 129-143
摘要: 太阳能杀虫灯在有效控制虫害的同时,可减少农药施药量。随着其部署数量的增加,被盗被破坏的报道也越来越多,严重影响了虫害防治效果并造成了较大的经济损失。为有效地解决太阳能杀虫灯物联网节点被盗被破坏问题,本研究以太阳能杀虫灯物联网为应用场景,对太阳能杀虫灯硬件进行改造设计以获取更多的传感信息;提出了太阳能杀虫灯辅助设备——无人机杀虫灯,用以被盗被破坏出现后的部署、追踪和巡检等应急应用。通过上述硬件层面的改造设计和增加辅助设备,可以获取更为全面的信息以判断太阳能杀虫灯物联网节点被盗被破坏情况。但考虑到被盗被破坏发生时间短,仅改造硬件层面还不足以实现快速准确判断。因此,本研究进一步从内部硬件、软件算法和外形结构设计三个层面,探讨了设备防盗防破坏的优化设计、设备防盗防破坏判断规则的建立、设备被盗被破坏的快速准确判断、设备被盗被破坏的应急措施、设备被盗被破坏的预测与防控,以及优化计算以降低网络数据传输负荷六个关键研究问题,并对设备防盗防破坏技术在太阳能杀虫灯物联网场景中的应用进行了展望。
知网阅读
微信交流服务群
为方便农业科学领域读者、作者和审稿专家学术交流,促进智慧农业发展,为更好地服务广大读者、作者和审稿人,编辑部建立了微信交流服务群,有关专业领域内的问题讨论、投稿相关的问题均可在群里咨询。
入群方法: 加我微信 331760296 , 备注: 姓名、单位、研究方向 ,我拉您进群,机构营销广告人员勿扰。
信息发布
科研团队介绍及招聘信息、学术会议及相关活动 的宣传推广
由于中国农业物联网才刚起步,所以 目前的农业物联网是层次不齐、鱼龙混杂的。农业物联网包含几个大项:1农业
2畜牧业
3水产等
邦农物联网在这几方面做的都挺不错的,你可以参考下。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)