2002年推出重钢监控等业务,开始物联网探索;
2003~2005年推出自动售货机等应用;在福彩投注机、水务等项目提供通道型业务;
2006年中国移动在重庆成立M2M业务运营支撑中心,推出车辆管理业务,启动建设全国M2M平台;
2007年重庆公司参与制定M2M业务规范,建设全国M2M平台;推出市政监控等应用,开展全网终端测试工作
2008年重庆移动成立独立的二级部门——M2M运营中心,应用逐渐丰富,重点打造车务通、电梯卫士、爱贝通等拳头产品。全国M2M平台接入10省终端,接入终端量持续增长。
2009年初步形成5大类18项移动物联网产品,业务量超过20万;中标出租车项目,规模达8000台,探索出新的商务模式;完成M2M全网平台和辽宁平台的连接;支撑北京铁路局列车监控、林业局森林防火、农业局动物溯源等全网项目;
2009年4月,中国移动手机支付业务全国密钥管理中心正式授牌启用;同年11月,按照集团统一部署,中国移动一卡通业务平台正式建成投入使用;
2010年中国移动在重庆设立物联网基地,重点打造物联网城市,逐步形成了9大类37项移动物联网产品;业务开始规模化起步;
2012年9月29日,中移物联网有限公司在重庆市渝州宾馆揭牌。物联网基地转型为有限公司,标志着中国移动在物联网领域专业化运营翻开了新的篇章,将进一步推进中国物联网产业的快速发展。中移物联网有限公司是由中国移动出资成立,按照市场化机制设立、独立运作的专业子公司,运营物联网专用网络,研发、设计、生产物联网专用芯片和模组,开发宜居通、车联网、二维码等特色产品,打造物联网云服务开发平台,致力于推动各行业物联网应用推广。
作为经济学概念的数字经济是人类通过大数据(数字化的知识与信息)的识别—选择—过滤—存储—使用,引导、实现资源的快速优化配置与再生、实现经济高质量发展的经济形态。
数字经济的三要素包括数据、信息、产业:
一、数据成为新的关键生产要素。在数字经济时代下,万物互联,各行各业的一切活动和行为都将数据化。
二、信息通信技术为创新提供动力。以信息技术为基础的数字经济,正在打破传统的供需模式和已有的经济学定论,催生出更加普惠性、共享性和开源性的经济生态,并推动高质量的发展,例如基于物联网技术诞生出诸如智慧路灯、智慧电梯、智慧物流、智能家居等丰富多彩的应用,为经济生活注入了极大的创新动力。
三、数字经济推动产业融合。数字经济并不是独立于传统产业而存在,它更加强调的是融合与共赢,与传统产业的融合中实现价值增量。数字经济对传统产业融合主要体现在生产方式融合、产品融合、服务融合、竞争规则融合以及产业融合。数字经济与各行各业的融合渗透发展将带动新型经济范式加速构建,改变实体经济结构和提升生产效率。
数字经济受梅特卡夫法则、摩尔定律、达维多定律三大定律支配,具有快捷性、高渗透性、自我膨胀性、边际效益递增性、外部经济性、可持续性、直接性等产业特征。
2数字化转型和数字化创新有什么不一样?
(1) 数字化转型
主要指企业在经营发展过程中,重视数据的价值和影响,以数据作为重要的生产要素进行资源整合与业务优化。数字化转型是一个中长期的概念,涉及到企业多个维度的业务环节;
(2)数字化创新
数字化创新就是指用数据作为业务资源,进行新的业务场景、服务场景、技术产品的设计和开发。数字化创新是一个中短期的概念,企业在数字化转型的成果,是以许许多多优秀、成功的数字化创新的案例所体现出来的。
(3)二者的相互关系
很多企业在数字化转型工作中,先要进行业务现状梳理、 数据综合治理、 数据平台系统建设、 企业级信息架构设计等很多重要的基础准备工作,在这些充分的准备工作基础之上,企业可以更有效地数字化创新的过程。
3数字化、信息化、智能化有什么不一样?
数字化、信息化、智能化,三者概念相似,广义的数字化包括信息化和智能化的含义。从技术特点来说,企业使用现代信息技术提升业务能力的有从信息化,到数字化,最后再到智能化的总体发展趋势。三者主要特点如下:
信息化:
关注连接,支持业务实体进行更高效的信息交互和事务处理。
数字化:
关注分析,支持从数据中分析挖掘出有价值的业务知识和商业洞察,指导业务决策。
智能化:
关注自动,支持使用数据模型代替人的工作,降低人工负担,让人关注更加重要的创新性工作。
4数字化转型一定要自建系统吗?
数字化转型经常会被和系统建设联系起来,但是系统建设并非数字化转型的必选项,甚至对于大多数企业来说,重要的是搞清楚怎么用系统,而不是怎么建系统。
企业的数字化创新依赖于信息系统能力,需要把业务和系统相结合,对业务改造、升级、赋能。当企业的数字化对信息技术的个性需求不强时(往往是浅层的数字化转型),仅仅采用购买整套的ERP系统或者租用/订阅SaaS服务的方式就能解决问题,也就是不用自建,直接用就好了。
而当数字化越来越深入,随着企业的个性化业务需求越来越多,就要进行系统的定制开发。很多企业有自己的专业开发团队,但是对于没有专业开发团队的企业,则需要找第三方的ISV厂商。ISV厂商有多重的外包服务模式,比如负责开发、负责咨询方案、负责方案+开发,负责方案+开发+培训等。
由于数字化转型的本质是系统加业务的组合,因此除代码落地以外,ISV厂商如果还能主动挖掘企业数字化业务的需求,并提出基于系统的全套解决方案,才能构成真正的核心竞争力。
5数据科学家的工作职责到底是什么?
商业逻辑与思考
将实际应用中的业务问题转化为数据需求,进行数字化场景的设计,生成数据建模或数据分析问题。
2 数据检查与清洗
为数据问题寻找合适的、高质量、可靠的数据源,对数据源进行筛选和预处理,统一数据格式。
3 特征工程
选择用于建模或分析的数据特征,特征工程的工作体现数据科学家对业务的深刻、准确理解。
4 数据建模
尽管在技术维度,数据建模看起来有一定门槛,实际上在一些成熟的算法框架、大数据框架下,但是该环节很可能是花费时间最少的。
5 沟通和优化
数据科学家构建数据模型的最终目的是为了对业务进行有效支撑,因此数据模型在正式上线应用之前,需要进行多方验证,数据科学家需要与业务人员以及管理人员进行模型的效果确认,汲取业务端的反馈,并对模型进行及时的调整和优化。
6 撰写文档
将数据模型成果进行文档撰写,说明模型的使用场景、规范、以及调用方式等,汇报技术工作成果。
6不同规模企业对SaaS系统的使用情况如何?
(1)小型企业:
多为首次接触,尝试使用SaaS。
大多使用规模小、功能简单的产品。
SaaS的灵活性可以满足企业快速扩张带来的变化,同时减轻资金方面的压力。
(2)中型企业:
企业信息化转型增加了SaaS的需求。
SaaS能缩小中型企业于大型企业的技术差距,缓解IT用人压力。
(3)大型企业:
对SaaS的需求在于核心业务衍生的、方便跨部门协作、决策辅助型产品。如数据分析、视频会议等。
多为传统软件转SaaS,对产品定制和私有部署需求高。
7数字化系统应该“定制”还是“订阅”?
数字化系统在开发实施的阶段,按照数字化系统的定制化要求不断增加的顺序,有几种具体的情况:一是直接买现成的SaaS系统或服务,二是基于已有的模板进行微调适配,三是完全定制开发。
对数字化系统的定制化要求越高,系统的研发成本也就越高,系统研发的周期也更久,系统实施的风险也越大。不同业务活动对数字化系统的定制化要求不一样,一般来说:
与日常生产运营相关的业务活动(在线环境)对系统的定制化要求更高,通常涉及到针对企业的现有系统集群进行信息系统的增值改造和功能集成的需求,需要与在线业务系统和硬件设备进行数据同步;
与企业管理决策相关的业务活动(离线环境)对系统的定制化要求较低,如财务系统、 人力系统、 供应链系统、 库存系统、 OA办公系统、 项目管理系统、 文件管理系统等,这些功能通常可以直接采购现成的ERP或订阅SaaS服务快速实现数字能力的升级赋能。
8数字化在智能制造有哪些典型应用?
智能在线检测:
应用融合数字传感、AI的智能检测装备;接触或非接触式在线采集生产数据;自主判断、识别和定位相关缺陷问题。
2 离散型工艺数字化设计:
将先进制造、知识图谱等技术与CAD、CAE等系统结合;
应用三维模型结构化表达工序流程、制造信息和资源要素;
开展加工、装配、生产等环节设计与虚拟验证。
3 智能仓储
AI、射频识别、智能传感与仓储设备、仓储管控系统融合;
物料自动出入库和信息自动记录;
仓储过程可视化管理和自适应优化。
4 车间智能排产
依托调度排程系统,应用融合智能算法的调度模型;
实时预测车间产能,响应动态扰动;
进行交期、产能和库存等多约束条件下的车间排程优化。
5 精益生产管理
建立车间管控系统,进行人、机、料等全要素实时感知;
应用六希格玛、6s和TPM等先进精益管理方法,实现基于数据扰动的全流程精益生产管理。
6 生产计划优化
打通ERP系统与采购、库存、生产、销售等过程;
应用约束理论、寻优算法和大数据分析等技术,结合需求预测和产能评估制定生产计划。
9数字化在智慧城市有哪些典型应用?
智能移动和交通
随着城市过度拥挤,交通将在缓解未来智能城市的拥堵方面发挥关键作用。智能交通大数据技术对大量摄像头、传感器、GPS等设备采集的大量图像信息、车辆运动信息、道路信息、GIS信息、气象环境信息进行综合处理和挖掘,对交通流量、出行规律等统计和预测数据进行分析和预测,并通过可视化手段展示,可以提高交通主管部门的管理效率和突发事件的相应速度,缓解城市拥堵程度,降低事故率。提供行驶方向、车辆数量、交通拥堵、停车位信息、出行计划等。将有效提高市民的出行效率,快速缓解城市普遍存在的“开车难、停车难”问题。
智慧能源
如今,将大数据技术与智慧能源相结合的大数据智慧能源管理系统,为社会发展提供了新的模式。通过大数据智慧能源管理系统的部署,可以保证智慧能源在配送过程中降低消耗成本,突破传统单一能源的控制,实现各种能源之间的最优生产,从而提高生产效率。
以大数据为核心的智能能源管理系统能够更好地把握用户需求,根据用户需求进行能源分配和整合,实现用户间的优势互补,并通过客户反馈智能调节能源分配机制,以适应市场的发展。
智慧医疗
医疗的发展需要大量的技术和实施成本,主要体现在精准医疗和大数据的结合,可以实现个性化医疗。这将大大减少过度医疗造成的医疗资源浪费,同时降低医疗成本。是面向未来的创新医疗资源,将打破传统医疗模式。
医疗仪器在临床辅助诊疗和健康管理中非常重要,所以推动医疗大数据的应用是一个特别重要的技术点,这也是医疗大数据价值的体现。精准医疗和大数据的结合,可以利用人类对疾病的感受和医生的治疗经验,形成一个非常庞大的数据库,让医生通过大数据信息系统对患者进行诊疗,再也不用排队等一个专家号了。
智慧也会需要一个非常强大的数据服务平台来承载医疗大数据,包括影像数据、电子病历数据等。有了这些载体,它的价值就可以通过各种信息处理和人工智能技术得到更好的体现。
智慧政务
电子政务搭建电子政务云平台,提供对政务信息、互联网信息、舆情等综合信息的筛选和挖掘能力。快速直观地展示科学分析和预测的结果,提高政府决策的科学性和准确性,提高政府在社会管理、宏观调控和社会服务中的预测/预警能力、应对能力和服务水平,降低决策成本。在电子政务中运用大数据技术,逐步实现立体化、多层次、全方位的电子政务公共服务平台和数据交换中心,推进信息公开,推进一站式、全天候、部门协同办理、网上统一查询反馈等网上服务功能,降低企业和公众的服务成本。
安全方面
在信息安全方面,智慧城市中的政府信息、城市运行数据、企业数据、客户数据及其资料都是宝贵的数据财富,需要加以保护。由于大量数据的集中,很容易引起非法用户的注意。另一方面,用户信息的意外泄露也是导致安全风险的重要因素。大数据贯穿智慧城市的不同层面,其安全需要从技术、管理、法律等方面入手。
公共安全方面,公共安全大数据不仅仅是遍布城市的摄像头和监控设备,还有网络、媒体、短信等多媒体的全方位舆情监控。更重要的是,通过对海量数据的分析和挖掘,及时发现安全隐患、人为事件或自然灾害,提供跨部门、跨区域、高效的综合应急能力、安全防范能力、打击犯罪能力。
10大数据分析与传统数据分析究竟有何差别?
(1)传统数据分析
数据规模不大,但是数据质量比较高,数据分析的目的是,从典型样本数据中,发现数据背后的知识或规律,解决实际问题。
(2)大数据分析
不强调数据的质量,只要数据规模足够大,哪怕数据看起来杂、乱,也能从中挖掘出非常有价值的信息。大数据分析没有“数据样本”的概念,做的是全数据、全维度分析的事情,因此通常可以挖掘到更多、更全面的知识规律。大数据分析有一套特殊的技术框架,专门用来解决数据量大(分布式技术)、数据格式不统一(非结构化存储)等技术问题。
11数据治理和数据管理是一回事吗?
(1)数据治理
是企业的战略层活动,是定目标、定方向的总体性工作,对数据管理工作进行监督和管控,数据治理的基本职能是指导具体的数据管理工作,聚焦于如何对数据管理活动进行有效的决策。数据治理是抽象程度更高的数据业务活动,强调建立成熟的数据获取、管理、与应用的综合能力体系。数据治理工作是项目制的,企业中启动数据治理工作一般有具体的业务变革契机来驱动。
(2)数据管理
数据管理是制度层的数据活动活动,是指对数据对象在具体层面实施管理职能,包括对数据的全类型、全生命周期的业务活动进行管理,并制定相应的标准、方法,以及规范。典型的数据管理工作包括数据库管理、数据类目管理、主数据管理、数据安全管理,以及数据质量管理等诸多方面内容。
12到底什么是元数据?
数据是用来描述企业中各种业务对象的,由于数据本身也是企业中业务对象的一种关键类型,因此也需要对数据进行描述。而元数据,就是描述数据的数据。
对于企业的数字化转型来说,数据将贯穿在越来越多的业务活动中,因此就务必要对数据进行系统管理,元数据在数据管理工作中具有十分重要的意义。如果没有元数据,就没有办法理解数据,也没有办法使用数据以及对数据内容进行管理。
13元数据有哪些信息来源?
(1)应用程序中的元数据存储库
存储元数据的物理表
(2)业务术语表
业务概念、术语、定义、以及术语之间的关系
(3)商务智能工具
(4)配置管理工具
(5)数据字典
(6)数据集成工具
(7)数据库管理和系统目录
(8)数据映射管理工具
映射管理工具用于项目的分析和设计阶段,它将需求转换为映射规范,然后由数据集成工具直接使用或由开发人员用来生成数据集成代码
(9)数据质量工具
(10)字典和目录
(11)事件消息工具
(12)建模工具和存储库
(13)参考数据库
(14)服务注册(定义、接口、 *** 作、输入、输出参数、制度、版本和示例使用场景)
(15)事件注册表、源列表或接口、代码集、词典、时空模式、空间参考、业务规则等
14如何区分参考数据和主数据?
参考数据和主数据都为交易数据的创建和使用提供重要的上下文信息,以便用户理解数据的含义,两者在数据管理工作中,都需要尽可能地保证一致和统一,以实现数据的集中管理和维护。
从所描述的对象来说,主数据通常指业务中重要的概念实体,如供应商、客户、产品等,参考数据通常指描述业务属性的重要业务标签,即规定某些分类属性的值域范围。
与主数据相比,参考数据不易变化,它的数据集通常比交易数据集或主数据集小,复杂程度低,参考数据不用考虑主数据中的实体解析、实体对齐的业务挑战。
参考数据和主数据的管理侧重点不同:
对于参考数据管理(Reference Data Management,RDM),需要对定义的阈值进行控制规范,保证业务系统访问的参考数据标准是最新的。
对于主数据管理(Master Data Management,MDM),需要对主数据的值和标识符进行控制,以便能够跨系统一致地使用核心业务实体中最准确的数据清单。
15数据中台应当具备哪些技术能力?
一、面向数据生产过程的能力:
(1)对企业中不同系统渠道、不同业务线条、不同管理部门、不同内容格式的数据资源进行整合,提供实时接入、离线同步、异构数据源、可视化配置等功能。
(2)对数据进行清洗和标准化,持续优化数据资源质量,提供数据格式转化、 数据去重、 删除异常值 、数据一致性检验、 数据属性自动补全等功能;
(3)提供数据资产开发相关的技术功能模块,提供数据(标签)自动标注、 数据建模分析、 数据特征挖掘、 数据主题联接等功能;
二、面向数据消费过程的能力:
(1)以元数据为中心,提供数据资产的管理能力,包括元数据管理、 数据血缘分析、 数据生命周期管理、 数据资产目录维护等功能。
(2)将数据资产封装成数据服务进行维护和数字化能力输出,对外提供数据应用所调用的API或具有丰富可视化组件的OLAP分析功能。
16数据可视化究竟解决了什么问题?
数据可视化的本质意义就是增强了信息的表现能力,其作用主要有两方面:
一、发现问题:
通过数据可视化可以更加直观地呈现数据的分布、规律、变化规律,以及数据“点”彼此之间的复杂联系,从而更容易地挖掘出有趣的分析结论,毕竟人们对图形的观察能力相比对“抽象”的数字来说,更加擅长。
二、说服别人:
通过数据可视化,可以更好地传达“我”的分析观点,在很多数据分析报告中,通过有效的画图,能够很好地“讲故事”,说服领导、投资人、以及客户;即便是同样的数据,如果选择不同的图形方式来展示,甚至可以传达出完全不同的信息和观点。
17数据架构和数据模型有什么不一样?
数据架构是企业级的数据框架,包括:企业级数据模型和企业级数据流程图。
一般场合下所讲的数据模型是指项目级的数据模型,项目级的数据模型的作用是定义数字化解决方案中的数据需求,成为业务人员和技术人员之间进行数据逻辑沟通的重要载体。在定义项目级数据模型时,需要与企业级的数据模型保持一致,是企业级数据模型在某种具体业务场景的具体实现。
18中小企业的转型困难是什么?
(1)新技术引入业务复杂性,企业运营能力跟不上
(2)业务人员对新技术接受能力滞后,适应期和效果期过长
(3)对于技术 的追求“形式大于内容”,不解决实际问题
(4)核心业务仍挣扎在边缘线,没有足够的精力和资金顾及当下对数字化转型工作的投入。
19大型企业的转型困难是什么?
(1)没有构建起统一可量化的业务标准;
(2)很难清晰看到数字化带来经济效益的明确发展路径;
(3)企业业务逻辑复杂,缺少有效的行业参照物;
(4)缺少数据积累以及必要的能够自动积累数据的信息化系统;
(5)缺少能够熟练 *** 作数据、管理数据、分析数据的必要人才;
(6)业务惯性较大,转型工作牵扯业务线条和利益关系复杂;
(7)组织架构复杂,依赖于强大的组织资源推动力;
(10)企业存量积累的数据问题多,前期数据治理工作阻力更大;
(11)企业壮大的历史成功经验容易让管理者“忽视”数字化的意义和价值;
(12)容易追求“短、平、快”的表面工程,缺少长期规划。
20数字化时代的组织管理有什么特点?
1)扁平化
组织结构更加扁平,信息在组织内部传播速度更快,管理者能够更加准确地了解具体业务情况,能够及时发现业务问题并纠偏,扁平化的组织更加灵活、柔性,同时也减少了不必要的“过度管理”。
2)平台化
打造平台型组织,在提供必要的技术支持、组织支持、供应链支持、数据支持、渠道支持的基础之上,最大化地连接组织外部的人力资源,一方面可以弥补组织内部人力不足的问题,同时为人才提供足够的“创新空间”和“创新动能”。
3)价值驱动
数字化技术为组织提供强大的管理工具,可以极大降低组织管理活动的复杂性,企业的经营理念从管理驱动逐渐转化为价值驱动,企业中的人员以价值创造为目标开展业务活动。
4)协作共创
组织中的管理层级关系不断弱化,管理决策方案并非以“自上而下”的方式产生并下达执行,不在强调某个管理者个体的观点偏好。组织中更多的活动将以“松耦合”的方式展开,在明确任务和产出的基础之上,项目全员共同参与、共同创新、共同创造,协作推进。
5)持续成长
组织与人的关系应该是共同成长的关系,只有人与组织的成长结构互相匹配,才能长久协作,从而保持组织结构的稳定。因此在数字化时代,组织更加关注基于数字化的平台能力,为个体的持续学习、持续成长进行长期赋能。
从总体的转型长远效果来看:
大型企业在数字化转型之后,掌握数据的一方将成为组织中新的“权利中心”,从而更好地协调组织资源,推动组织战略规划的执行落地。
原先对于非数字化企业,业务碎片化明显,组织资源难以统一协调,各业务部门(分公司)之间彼此斗争激烈,部门墙的现象比较严重。
而随着企业数字化程度的提高,企业中集团层的管理部门能够更好地掌握组织运营的全局发展情况,以数据作为抓手,更有效地进行资源的整合与组织的集中管理。
需要注意的是,这里的集中管理并不是指集中化的大家长式管理方法,而是强调提升了决策者对企业整体的组织协调能力;数字化能力可有效地打破业务部门之间以及职能部门之间的障碍,实现组织内部不同人员、 团队的广泛连接与合作,实现资源的优化配置。
数字化的本质是提供了一套流程化、 标准化的数据价值发现与应用的流程,让组织内部更加开放,实现产业价值的共创。
可参考下图填写高中生研究性学习与创新成果:
研究性学习代表成果
研究课题:“物联网时代”的特点及其在日常生活中的体现
成果简介:
本文首先介绍了“物联网”的概念及其在国内外的发展,并指出“物联网”概念已经是一个“中国制造”的概念,已被贴上“中国式”标签。伴随云计算日益普及以及人工智能(AI)技术日益成熟,物联网时代已经从 10 时代悄然迈入 20 时代。
物联网时代具有显著的特点,一是“物联网即服务”走向落地,二是物联网呈现局域化、功能化、行业化互联化,三是物联网技术设备升级,四是物联网的安全性引起重视。
随着物联网技术的不断发展,它已悄无声息地融入到人们的日常生活,并简单介绍了物联网 20 在物流、交通、家居、安防、医疗、建筑、零售等日常生活中的应用场景,展望了物联网的发展趋势。
“ 物联网时代 ” 的特点及其在日常生活中的体现
摘要 通过对“物联网”的概念介绍,引出物联网时代 20 的基本内涵,总结出物联网 20 时代的基本特点,并简单介绍了物联网 20 在物流、交通、家居、安防、医疗、建筑、零售等日常生活中的应用场景,并展望了物联网的发展趋势。
关键词 物联网 人工智能 云计算
物联网是继计算机、互联网与移动通信网之后的又一次信息产业浪潮,能够使我们的社会更加自动化,能够让我们的生活更加便利,能够整体提高社会的信息化程度,将在提升信息传送效率、改善民生、提高生产率、降低管理成本等社会各方面发挥重要作用。
本文系统介绍了物联网的起源、概念及其发展,阐述物联网时代 20 的一些特点,并简要叙述了物联网在交通、医疗、建筑等日常生活中的应用情况。
一、 “ 物联网时代 ” 基本内涵
1 11 物联网
1999 年,美国麻省理工大学教授凯文·阿什顿(Kevin Ashton)最早提出了物联网(IoT)的概念。阿什顿认为,计算机最终能够自主产生及收集数据而无需人工干预,因此将推动物联网的诞生。简单来说,物联网的理念在于物体之间的通信,以及相互之间的在线互动。
2005 年,在突尼斯举行的信息社会世界峰会上,国际电信联盟发布了《ITU 互联网报告 2005:物联网》,正式提出了“物联网”的概念,将物联网定义为通过各种信息传感设备。
如传感器、射频识别(RFID)技术、全球定位系统、红外线感应器、激光扫描器、气体感应器等各种装置与技术,实时采集任何需要监控、连接、互动的物体或过程,采集其声、光、热、电、力学、化学、生物、位置等各种需要的信息。
与互联网结合形成的一个巨大网络,其目的是实现物与物、物与人、所有的物品与网络的连接,方便识别、管理和控制。
中国物联网校企联盟将物联网定义为当下几乎所有技术与计算机、互联网技术的结合,实现物体与物体之间:环境以及状态信息实时的共享以及智能化的收集、传递、处理、执行。广义上说,当下涉及到信息技术的应用,都可以纳入物联网的范畴。
物联网的概念已经是一个“中国制造”的概念,它的覆盖范围与时俱进,已经超越了 1999 年 Ashton教授和 2005 年 ITU 报告所指的范围,物联网已被贴上“中国式”标签。
2 12 物联网时代
伴随云计算日益普及,以及人工智能(AI)技术日益成熟,推动信息科技向物联网时代转变,特别在IoT+AI 融合下,使得万物具有感知能力,物理设备不再冷冰冰,而是具有生命力,让物理世界和数字世界深度融合,继此行业边界越来越模糊,人类进入全新的智能社会。
物联网时代是通过射频识别、红外感应器、全球定位系统、激光扫描器、气体感应器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络时代。
物联网是互联网的应用拓展,与其说物联网是网络,不如说物联网是业务和应用。因此,应用创新是物联网发展的核心,以用户体验为核心的创新是物联网发展的灵魂。
随着“物联网”的概念从提出到发展,从实践到创新,物联网时代已经从 10 时代悄然迈入 20 时代。物联网 20 可以理解为 IoE(Internet of Everything),而物联网 10 是 IoT(Internet of Things),前者范围比后者更大,囊括的范围也更加广泛。
IoE 强调的万物互联概念是任何设备、事物都能通过网络连接起来,并在网络中彼此之间进行通讯。“万物互联”(IoE)的时代,所有的物(Everything)将会获得语境感知、增强的处理能力和更好的感应能力。
二、 “ 物联网时代 ” 的特点
与互联网时代相比,物联网时代具有显著的特点:
1、“物联网即服务”走向落地
既然叫做物联网 20 时代,当然是和物联网 10 时代有较明显的进步的。所以,物联网 20 时代的一个明显特征就是邬贺铨院士曾提到的“物联网即服务”走向落地。
2、物联网呈现局域化、功能化、行业化互联化
物联网既然要通过服务的方式落地,那么如何落地?此时承担落地职责的便是真正的物联网企业——物联网平台企业。物联网的人连物、物连物具有局域化、功能化、行业化互联化,各个行业应用在应用中形成对网络层的具体需求,并逐渐行业标准化。
3、物联网技术设备升级
上层应用逐渐与物联网网络层剥离开来,物联网网络支撑技术(NB-IoT、Lora 等)充分发展、百花齐放。在感知层将传感器升级为“传感器+执行器”,使“眼手”能够协调一致,发挥其更大的功能和作用。
4、物联网的安全性引起重视
物联网的安全性自这个概念提出以来,一直备受人们关注,今后,物联网的安全性将做为一个相对独立的研究领域,得到足够的重视与发展。
未来的物联网 20 应该通过人工智能、大数据、云计算、5G 等技术的完善,不断提升人工智能的水平,完善语言助手技术,加强物联网的安全性与信任感,外在体现就是 *** 控方式的迭代升级。
也就是说,未来的物联网设备不再单纯依靠语音控制来进行 *** 作,而是整合并运用人工智能、大数据、云计算、5G 等技术,这样即便我们的一个动作、一个眼神、一个想法,甚至即使我们面无表情,物联网也可以了解我们的想法。
三、 “ 物联网时代 ” 在日常生活中的体现
近些年,随着物联网技术的不断发展,它已悄无声息地融入到我们的生活中,小至路由器、智能音箱、冰箱,大到汽车、工业设备,越来越多的物品都接入了物联网。
31 智慧物流
智慧物流指的是以物联网、大数据、人工智能等信息技术为支撑,在物流的运输、仓储、运输、配送等各个环节实现系统感知、全面分析及处理等功能。当前,应用于物联网领域主要体现在三个方面:仓储、运输监测以及快递终端。
通过物联网技术实现对货物的监测以及运输车辆的监测,包括货物车辆位置、状态以及货物温湿度、油耗、车速等。物联网技术的使用能提高运输效率,提升整个物流行业的智能化水平。
2 32 智能交通
智能交通是物联网的一种重要体现形式,利用信息技术将人、车和路紧密的结合起来,改善交通运输环境、保障交通安全以及提高资源利用率。运用物联网技术具体的应用领域,包括智能公交车、共享单车、车联网、充电桩监测、智能红绿灯以及智慧停车等领域。
3 33 智能安防
安防是物联网的一大应用市场,因为安全永远都是人们的一个基本需求。传统安防对人员的依赖性比较大,非常耗费人力,而智能安防能够通过设备实现智能判断。
目前,智能安防最核心的部分在于智能安防系统,该系统是对拍摄的图像进行传输与存储,并对其分析与处理。一个完整的智能安防系统主要包括
三大部分:门禁、报警和监控,行业中主要以视频监控为主。
4 34 智慧能源环保
智慧能源环保属于智慧城市的一个部分,其物联网应用主要集中在水能、电能、燃气、路灯等能源以及井盖、垃圾桶等环保装置。
如智慧井盖监测水位以及其状态、智能水电表实现远程抄表、智能垃圾桶自动感应等。将物联网技术应用于传统的水、电、光能设备进行联网,通过监测,提升利用效率,减少能源损耗。
5 35 智能医疗
在智能医疗领域,新技术的应用必须以人为中心。而物联网技术是数据获取的主要途径,能有效地帮助医院实现对人的智能化管理和对物的智能化管理。
对人的智能化管理指的是通过传感器对人的生理状态(如心跳频率、体力消耗、血压高低等)进行监测,主要指的是医疗可穿戴设备,将获取的数据记录到电子健康文件中,方便个人或医生查阅。
除此之外,通过 RFID 技术还能对医疗设备、物品进行监控与管理,实现医疗设备、用品可视化,主要表现为数字化医院。
6 36 智慧建筑
建筑是城市的基石,技术的进步促进了建筑的智能化发展,以物联网等新技术为主的智慧建筑越来越受到人们的关注。当前的智慧建筑主要体现在节能方面,将设备进行感知、传输并实现远程监控,不仅能够节约能源同时也能减少楼宇人员的运维。
目前,智慧建筑主要体现在用电照明、消防监测、智慧电梯、楼宇监测以及运用于古建筑领域的白蚁监测。
7 37 智能制造
智能制造细分概念范围很广,涉及很多行业。制造领域的市场体量巨大,是物联网的一个重要应用领域,主要体现在数字化以及智能化的工厂改造上,包括工厂机械设备监控和工厂的环境监控。
通过在设备上加装相应的传感器,使设备厂商可以远程随时随地对设备进行监控、升级和维护等 *** 作,更好的了解产品的使用状况,完成产品全生命周期的信息收集,指导产品设计和售后服务。厂房的环境主要是采集温湿度、烟感等信息。
8 38 智能家居
智能家居指的是使用不同的方法和设备,来提高人们的生活能力,使家庭变得更舒适、安全和高效。物联网应用于智能家居领域,能够对家居类产品的位置、状态、变化进行监测,分析其变化特征,同时根据人的需要,在一定的程度上进行反馈。
9 39 智能零售
行业内将零售按照距离,分为了三种不同的形式:远场零售、中场零售、近场零售,三者分别以电商、商场/超市和便利店/自动售货机为代表。物联网技术可以用于近场和中场零售,且主要应用于近场零售,即无人便利店和自动(无人)售货机。
智能零售通过将传统的售货机和便利店进行数字化升级、改造,打造无人零售模式。通过数据分析,并充分运用门店内的客流和活动,为用户提供更好的服务,给商家提供更高的经营效率。
0 310 智慧农业
智慧农业指的是利用物联网、人工智能、大数据等现代信息技术与农业进行深度融合,实现农业生产全过程的信息感知、精准管理和智能控制的一种全新的农业生产方式,可实现农业可视化诊断、远程控制以及灾害预警等功能。
物联网应用于农业主要体现在两个方面,即农业种植和畜牧养殖。农业种植通过传感器、摄像头和卫星等收集数据,实现农作物数字化和机械装备数字化(主要指的是农机车联网)发展。
畜牧养殖指的是利用传统的耳标、可穿戴设备以及摄像头等收集畜禽产品的数据,通过对收集到的数据进行分析,运用算法判断畜禽产品健康状况、喂养情况、位置信息以及发情期预测等,对其进行精准管理。
四、物联网未来的发展趋势
物联网是继计算机、互联网和移动通信之后的又一次信息产业的革命性发展,已被正式列为国家重点发展的战略性新兴产业之一。
从智能安防到智能电网,从二维码普及到“智慧城市”落地,作为被寄予厚望的新兴产业,物联网正四处开花,在许多行业和领域得到应用,并悄然影响着人们的生活。
伴随着技术的进步和相关配套的完善,在未来几年,技术与标准国产化、运营与管理体系化、产业草根化将成为我国物联网发展的三大趋势。
以上内容参考 百度百科——探究性学习
物联网是新一代信息技术的重要组成部分。其英文名称是“The Internet of things”。由此,顾名思义,“物联网就是物物相连的互联网”。
这有两层意思:
第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;
第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。因此,物联网的定义是通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现对物品的智能化识别、定位、跟踪、监控和管理的一种网络。
首先,它是各种感知技术的广泛应用。物联网上部署了海量的多种类型传感器,每个传感器都是一个信息源,不同类别的传感器所捕获的信息内容和信息格式不同。传感器获得的数据具有实时性,按一定的频率周期性的采集环境信息,不断更新数据。
其次,它是一种建立在互联网上的泛在网络。物联网技术的重要基础和核心仍旧是互联网,通过各种有线和无线网络与互联网融合,将物体的信息实时准确地传递出去。在物联网上的传感器定时采集的信息需要通过网络传输,由于其数量极其庞大,形成了海量信息,在传输过程中,为了保障数据的正确性和及时性,必须适应各种异构网络和协议。
还有,物联网不仅仅提供了传感器的连接,其本身也具有智能处理的能力,能够对物体实施智能控制。物联网将传感器和智能处理相结合,利用云计算、模式识别等各种智能技术,扩充其应用领域。从传感器获得的海量信息中分析、加工和处理出有意义的数据,以适应不同用户的不同需求,发现新的应用领域和应用模式。
wg585西门子转MQTT协议网关即wtblnet iot Gateway,是一款支持单网口/两网口/五网口,支持4G/3G/WIFI/PPPOE/WAN有线网络,内嵌工业控制协议,支持远程自定义配置、远程部署、网关状态监控等技术于一体的内嵌网络 *** 作系统的工业级智能网关。它适合作为大规模的分布式设备的接入节点,内嵌协议分析器可以通过协议分析把现场设备的数据先收集到网关节点计算分析,然后再通过MQTT物联网协议传送到客户自定义的MQTT云平台,方便用户利用先进的物联网技术和两化融合技术快速构建一套高效、高并发的工业互联网系统及工业40服务平台。WG585西门子转MQTT协议网关广泛应用于智能工厂、智能电网、智慧水利、环境监测、污水处理、电梯监控、包装机械、印染机械、工程机械、纺织机械、供水设备、热力锅炉等工业领域。多种网络接入、丰富的协议库、稳定可靠的接入、完善的网关管理及应用功能协助工业客户构建工业40服务系统。 目前涉及物联网运营的关键技术是终端接入和平台服务。终端是直接与用户接触的使用界面,而平台则是承载服务的核心系统。终端接入和平台服务保障了物联网应用端到端的服务质量,是可运营、可管理的物联网涉及网络层面的两大关键技术。终端接入技术
物联网终端的种类非常多,包括物联网网关、通信模块以及大量的行业终端,其中尤以行业终端的种类最为丰富。从终端接入的角度来看,物联网网关、通信模块和智能终端是目前关注的重点。
物联网网关:它是连接传感网与通信网络的关键设备,其主要功能有数据汇聚、数据传输、协议适配、节点管理等。物联网环境下,物联网网关是一个标准的网元设备,它一方面汇聚各种采用不同技术的异构传感网,将传感网的数据通过通信网络远程传输;另一方面,物联网网关与远程运营平台对接,为用户提供可管理、有保障的服务。
通信模块:它是安装在终端内的独立组件,用来进行信息的远距离传输,是终端进行数据通信的独立功能块。通信模块是物联网应用终端的基础。物联网的行业终端种类繁多,体积、处理能力、对外接口等各不相同,通信模块将成为物联网智能服务通道的统一承载体,嵌入各种行业终端,为各行各业提供物联网的智能通道服务。
智能终端:它满足了物联网的各类智能化应用需求,具备一定数据处理能力的终端节点,除数据采集外,还具有一定运算、处理与执行能力。智能终端与应用需求紧密相关,比如在电梯监控领域应用的智能监控终端,除具备电梯运行参数采集功能外,还具备实时分析预警功能,智能监控终端能在电梯运行过程中对电梯状况进行实时分析,在电梯故障发生前将警报信息发送到远程管理员手中,起到远程智能管理的作用。
平台服务技术
一个理想的物联网应用体系架构,应当有一套共性能力平台,共同为各行各业提供通用的服务能力,如数据集中管理、通信管理、基本能力调用(如定位等)、业务流程定制、设备维护服务等。
M2M平台:它是提供对终端进行管理和监控,并为行业应用系统提供行业应用数据转发等功能的中间平台。平台将实现终端接入控制、终端监测控制、终端私有协议适配、行业应用系统接入、行业应用私有协议适配、行业应用数据转发、应用生成环境、应用运行环境、业务运营管理等功能。M2M平台是为机器对机器通信提供智能管道的运营平台,能够控制终端合理使用网络,监控终端流量和分布预警,提供辅助快速定位故障,提供方便的终端远程维护 *** 作工具。
云服务平台:以云计算技术为基础,搭建物联网云服务平台,为各种不同的物联网应用提供统一的服务交付平台,提供海量的计算和存储资源,提供统一的数据存储格式和数据处理及分析手段,大大简化应用的交付过程,降低交付成本。随着云计算与物联网的融合,将会使物联网呈现出多样化的数据采集端、无处不在的传输网络、智能的后台处理的特征。智慧城区(社区)方案是指充分借助互联网、物联网,涉及到智能楼宇、智能家居、路网监控、智能医院、城市生命线管理、食品药品管理、票证管理、家庭护理、个人健康与数字生活等诸多领域,把握新一轮科技创 新革命和信息产业浪潮的重大机遇,充分发挥信息通信(ICT)产业发达、RFID 相关技术领 先、电信业务及信息化基础设施优良等优势, 通过建设 ICT 基础设施、认证、安全等平台和示范工程,加快产业关键技术攻关,构建城区 (社区)发展的智慧环境,形成基于海量信息和智能过滤处理的新的生活、产业发展、社会管理等模式,面向未来构建全新的城区(社区)形态。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)