A
聚合(Aggregation) – 搜索、合并、显示数据的过程
算法(Algorithms) – 可以完成某种数据分析的数学公式
分析法(Analytics) – 用于发现数据的内在涵义
异常检测(Anomaly detection) –
在数据集中搜索与预期模式或行为不匹配的数据项。除了“Anomalies”,用来表示异常的词有以下几种:outliers, exceptions,
surprises, contaminants他们通常可提供关键的可执行信息
匿名化(Anonymization) – 使数据匿名,即移除所有与个人隐私相关的数据
应用(Application) – 实现某种特定功能的计算机软件
人工智能(Artificial Intelligence) –
研发智能机器和智能软件,这些智能设备能够感知周遭的环境,并根据要求作出相应的反应,甚至能自我学习
B
行为分析法(Behavioural Analytics) –
这种分析法是根据用户的行为如“怎么做”,“为什么这么做”,以及“做了什么”来得出结论,而不是仅仅针对人物和时间的一门分析学科,它着眼于数据中的人性化模式
大数据科学家(Big Data Scientist) – 能够设计大数据算法使得大数据变得有用的人
大数据创业公司(Big data startup) – 指研发最新大数据技术的新兴公司
生物测定术(Biometrics) – 根据个人的特征进行身份识别
B字节 (BB: Brontobytes) – 约等于1000 YB(Yottabytes),相当于未来数字化宇宙的大小。1
B字节包含了27个0!
商业智能(Business Intelligence) – 是一系列理论、方法学和过程,使得数据更容易被理解
C
分类分析(Classification analysis) – 从数据中获得重要的相关性信息的系统化过程; 这类数据也被称为元数据(meta
data),是描述数据的数据
云计算(Cloud computing) – 构建在网络上的分布式计算系统,数据是存储于机房外的(即云端)
聚类分析(Clustering analysis) –
它是将相似的对象聚合在一起,每类相似的对象组合成一个聚类(也叫作簇)的过程。这种分析方法的目的在于分析数据间的差异和相似性
冷数据存储(Cold data storage) – 在低功耗服务器上存储那些几乎不被使用的旧数据。但这些数据检索起来将会很耗时
对比分析(Comparative analysis) – 在非常大的数据集中进行模式匹配时,进行一步步的对比和计算过程得到分析结果
复杂结构的数据(Complex structured data) –
由两个或多个复杂而相互关联部分组成的数据,这类数据不能简单地由结构化查询语言或工具(SQL)解析
计算机产生的数据(Computer generated data) – 如日志文件这类由计算机生成的数据
并发(Concurrency) – 同时执行多个任务或运行多个进程
相关性分析(Correlation analysis) – 是一种数据分析方法,用于分析变量之间是否存在正相关,或者负相关
客户关系管理(CRM: Customer Relationship Management) –
用于管理销售、业务过程的一种技术,大数据将影响公司的客户关系管理的策略
D
仪表板(Dashboard) – 使用算法分析数据,并将结果用图表方式显示于仪表板中
数据聚合工具(Data aggregation tools) – 将分散于众多数据源的数据转化成一个全新数据源的过程
数据分析师(Data analyst) – 从事数据分析、建模、清理、处理的专业人员
数据库(Database) – 一个以某种特定的技术来存储数据集合的仓库
数据库即服务(Database-as-a-Service) – 部署在云端的数据库,即用即付,例如亚马逊云服务(AWS: Amazon Web
Services)
数据库管理系统(DBMS: Database Management System) – 收集、存储数据,并提供数据的访问
数据中心(Data centre) – 一个实体地点,放置了用来存储数据的服务器
数据清洗(Data cleansing) – 对数据进行重新审查和校验的过程,目的在于删除重复信息、纠正存在的错误,并提供数据一致性
数据管理员(Data custodian) – 负责维护数据存储所需技术环境的专业技术人员
数据道德准则(Data ethical guidelines) – 这些准则有助于组织机构使其数据透明化,保证数据的简洁、安全及隐私
数据订阅(Data feed) – 一种数据流,例如Twitter订阅和RSS
数据集市(Data marketplace) – 进行数据集买卖的在线交易场所
数据挖掘(Data mining) – 从数据集中发掘特定模式或信息的过程
数据建模(Data modelling) – 使用数据建模技术来分析数据对象,以此洞悉数据的内在涵义
数据集(Data set) – 大量数据的集合
数据虚拟化(Data virtualization) –
数据整合的过程,以此获得更多的数据信息,这个过程通常会引入其他技术,例如数据库,应用程序,文件系统,网页技术,大数据技术等等
去身份识别(De-identification) – 也称为匿名化(anonymization),确保个人不会通过数据被识别
判别分析(Discriminant analysis) –
将数据分类;按不同的分类方式,可将数据分配到不同的群组,类别或者目录。是一种统计分析法,可以对数据中某些群组或集群的已知信息进行分析,并从中获取分类规则。
分布式文件系统(Distributed File System) – 提供简化的,高可用的方式来存储、分析、处理数据的系统
文件存贮数据库(Document Store Databases) – 又称为文档数据库(document-oriented database),
为存储、管理、恢复文档数据而专门设计的数据库,这类文档数据也称为半结构化数据
E
探索性分析(Exploratory analysis) –
在没有标准的流程或方法的情况下从数据中发掘模式。是一种发掘数据和数据集主要特性的一种方法
E字节(EB: Exabytes) – 约等于1000 PB(petabytes), 约等于1百万 GB。如今全球每天所制造的新信息量大约为1
EB
提取-转换-加载(ETL: Extract, Transform and Load) –
是一种用于数据库或者数据仓库的处理过程。即从各种不同的数据源提取(E)数据,并转换(T)成能满足业务需要的数据,最后将其加载(L)到数据库
F
故障切换(Failover) – 当系统中某个服务器发生故障时,能自动地将运行任务切换到另一个可用服务器或节点上
容错设计(Fault-tolerant design) – 一个支持容错设计的系统应该能够做到当某一部分出现故障也能继续运行
G
游戏化(Gamification) –
在其他非游戏领域中运用游戏的思维和机制,这种方法可以以一种十分友好的方式进行数据的创建和侦测,非常有效。
图形数据库(Graph Databases) –
运用图形结构(例如,一组有限的有序对,或者某种实体)来存储数据,这种图形存储结构包括边缘、属性和节点。它提供了相邻节点间的自由索引功能,也就是说,数据库中每个元素间都与其他相邻元素直接关联。
网格计算(Grid computing) – 将许多分布在不同地点的计算机连接在一起,用以处理某个特定问题,通常是通过云将计算机相连在一起。
H
Hadoop – 一个开源的分布式系统基础框架,可用于开发分布式程序,进行大数据的运算与存储。
Hadoop数据库(HBase) – 一个开源的、非关系型、分布式数据库,与Hadoop框架共同使用
HDFS – Hadoop分布式文件系统(Hadoop Distributed File
System);是一个被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统
高性能计算(HPC: High-Performance-Computing) – 使用超级计算机来解决极其复杂的计算问题
I
内存数据库(IMDB: In-memory) –
一种数据库管理系统,与普通数据库管理系统不同之处在于,它用主存来存储数据,而非硬盘。其特点在于能高速地进行数据的处理和存取。
物联网(Internet of Things) – 在普通的设备中装上传感器,使这些设备能够在任何时间任何地点与网络相连。
J
法律上的数据一致性(Juridical data compliance) –
当你使用的云计算解决方案,将你的数据存储于不同的国家或不同的大陆时,就会与这个概念扯上关系了。你需要留意这些存储在不同国家的数据是否符合当地的法律。
K
键值数据库(KeyValue Databases) –
数据的存储方式是使用一个特定的键,指向一个特定的数据记录,这种方式使得数据的查找更加方便快捷。键值数据库中所存的数据通常为编程语言中基本数据类型的数据。
L
延迟(Latency) – 表示系统时间的延迟
遗留系统(Legacy system) – 是一种旧的应用程序,或是旧的技术,或是旧的计算系统,现在已经不再支持了。
负载均衡(Load balancing) – 将工作量分配到多台电脑或服务器上,以获得最优结果和最大的系统利用率。
位置信息(Location data) – GPS信息,即地理位置信息。
日志文件(Log file) – 由计算机系统自动生成的文件,记录系统的运行过程。
M
M2M数据(Machine2Machine data) – 两台或多台机器间交流与传输的内容
机器数据(Machine data) – 由传感器或算法在机器上产生的数据
机器学习(Machine learning) –
人工智能的一部分,指的是机器能够从它们所完成的任务中进行自我学习,通过长期的累积实现自我改进。
MapReduce – 是处理大规模数据的一种软件框架(Map: 映射,Reduce: 归纳)。
大规模并行处理(MPP: Massively Parallel Processing) –
同时使用多个处理器(或多台计算机)处理同一个计算任务。
元数据(Metadata) – 被称为描述数据的数据,即描述数据数据属性(数据是什么)的信息。
MongoDB – 一种开源的非关系型数据库(NoSQL database)
多维数据库(Multi-Dimensional Databases) – 用于优化数据联机分析处理(OLAP)程序,优化数据仓库的一种数据库。
多值数据库(MultiValue Databases) – 是一种非关系型数据库(NoSQL),
一种特殊的多维数据库:能处理3个维度的数据。主要针对非常长的字符串,能够完美地处理HTML和XML中的字串。
N
自然语言处理(Natural Language Processing) –
是计算机科学的一个分支领域,它研究如何实现计算机与人类语言之间的交互。
网络分析(Network analysis) – 分析网络或图论中节点间的关系,即分析网络中节点间的连接和强度关系。
NewSQL – 一个优雅的、定义良好的数据库系统,比SQL更易学习和使用,比NoSQL更晚提出的新型数据库
NoSQL –
顾名思义,就是“不使用SQL”的数据库。这类数据库泛指传统关系型数据库以外的其他类型的数据库。这类数据库有更强的一致性,能处理超大规模和高并发的数据。
O
对象数据库(Object Databases) –
(也称为面象对象数据库)以对象的形式存储数据,用于面向对象编程。它不同于关系型数据库和图形数据库,大部分对象数据库都提供一种查询语言,允许使用声明式编程(declarative
programming)访问对象
基于对象图像分析(Object-based Image Analysis) –
数字图像分析方法是对每一个像素的数据进行分析,而基于对象的图像分析方法则只分析相关像素的数据,这些相关像素被称为对象或图像对象。
*** 作型数据库(Operational Databases) –
这类数据库可以完成一个组织机构的常规 *** 作,对商业运营非常重要,一般使用在线事务处理,允许用户访问 、收集、检索公司内部的具体信息。
优化分析(Optimization analysis) –
在产品设计周期依靠算法来实现的优化过程,在这一过程中,公司可以设计各种各样的产品并测试这些产品是否满足预设值。
本体论(Ontology) – 表示知识本体,用于定义一个领域中的概念集及概念之间的关系的一种哲学思想。(译者注:
数据被提高到哲学的高度,被赋予了世界本体的意义,成为一个独立的客观数据世界)
异常值检测(Outlier detection) –
异常值是指严重偏离一个数据集或一个数据组合总平均值的对象,该对象与数据集中的其他它相去甚远,因此,异常值的出现意味着系统发生问题,需要对此另加分析。
P
模式识别(Pattern Recognition) – 通过算法来识别数据中的模式,并对同一数据源中的新数据作出预测
P字节(PB: Petabytes) – 约等于1000 TB(terabytes), 约等于1百万 GB
(gigabytes)。欧洲核子研究中心(CERN)大型强子对撞机每秒产生的粒子个数就约为1 PB
平台即服务(PaaS: Platform-as-a-Service) – 为云计算解决方案提供所有必需的基础平台的一种服务
预测分析(Predictive analysis) –
大数据分析方法中最有价值的一种分析方法,这种方法有助于预测个人未来(近期)的行为,例如某人很可能会买某些商品,可能会访问某些网站,做某些事情或者产生某种行为。通过使用各种不同的数据集,例如历史数据,事务数据,社交数据,或者客户的个人信息数据,来识别风险和机遇
隐私(Privacy) – 把具有可识别出个人信息的数据与其他数据分离开,以确保用户隐私。
公共数据(Public data) – 由公共基金创建的公共信息或公共数据集。
Q
数字化自我(Quantified Self) – 使用应用程序跟踪用户一天的一举一动,从而更好地理解其相关的行为
查询(Query) – 查找某个问题答案的相关信息
R
再识别(Re-identification) – 将多个数据集合并在一起,从匿名化的数据中识别出个人信息
回归分析(Regression analysis) –
确定两个变量间的依赖关系。这种方法假设两个变量之间存在单向的因果关系(译者注:自变量,因变量,二者不可互换)
RFID – 射频识别; 这种识别技术使用一种无线非接触式射频电磁场传感器来传输数据
实时数据(Real-time data) – 指在几毫秒内被创建、处理、存储、分析并显示的数据
推荐引擎(Recommendation engine) – 推荐引擎算法根据用户之前的购买行为或其他购买行为向用户推荐某种产品
路径分析(Routing analysis) –
针对某种运输方法通过使用多种不同的变量分析从而找到一条最优路径,以达到降低燃料费用,提高效率的目的
S
半结构化数据(Semi-structured data) –
半结构化数据并不具有结构化数据严格的存储结构,但它可以使用标签或其他形式的标记方式以保证数据的层次结构
情感分析(Sentiment Analysis) – 通过算法分析出人们是如何看待某些话题
信号分析(Signal analysis) – 指通过度量随时间或空间变化的物理量来分析产品的性能。特别是使用传感器数据。
相似性搜索(Similarity searches) – 在数据库中查询最相似的对象,这里所说的数据对象可以是任意类型的数据
仿真分析(Simulation analysis) –
仿真是指模拟真实环境中进程或系统的 *** 作。仿真分析可以在仿真时考虑多种不同的变量,确保产品性能达到最优
智能网格(Smart grid) – 是指在能源网中使用传感器实时监控其运行状态,有助于提高效率
软件即服务(SaaS: Software-as-a-Service) – 基于Web的通过浏览器使用的一种应用软件
空间分析(Spatial analysis) – 空间分析法分析地理信息或拓扑信息这类空间数据,从中得出分布在地理空间中的数据的模式和规律
SQL – 在关系型数据库中,用于检索数据的一种编程语言
结构化数据(Structured data)
-可以组织成行列结构,可识别的数据。这类数据通常是一条记录,或者一个文件,或者是被正确标记过的数据中的某一个字段,并且可以被精确地定位到。
T
T字节(TB: Terabytes) – 约等于1000 GB(gigabytes)。1 TB容量可以存储约300小时的高清视频。
时序分析(Time series analysis) –
分析在重复测量时间里获得的定义良好的数据。分析的数据必须是良好定义的,并且要取自相同时间间隔的连续时间点。
拓扑数据分析(Topological Data Analysis) –
拓扑数据分析主要关注三点:复合数据模型、集群的识别、以及数据的统计学意义。
交易数据(Transactional data) – 随时间变化的动态数据
透明性(Transparency) – 消费者想要知道他们的数据有什么作用、被作何处理,而组织机构则把这些信息都透明化了。
U
非结构化数据(Un-structured data) – 非结构化数据一般被认为是大量纯文本数据,其中还可能包含日期,数字和实例。
V
价值(Value) – (译者注:大数据4V特点之一)
所有可用的数据,能为组织机构、社会、消费者创造出巨大的价值。这意味着各大企业及整个产业都将从大数据中获益。
可变性(Variability) – 也就是说,数据的含义总是在(快速)变化的。例如,一个词在相同的推文中可以有完全不同的意思。
多样(Variety) – (译者注:大数据4V特点之一)
数据总是以各种不同的形式呈现,如结构化数据,半结构化数据,非结构化数据,甚至还有复杂结构化数据
高速(Velocity) – (译者注:大数据4V特点之一) 在大数据时代,数据的创建、存储、分析、虚拟化都要求被高速处理。
真实性(Veracity) – 组织机构需要确保数据的真实性,才能保证数据分析的正确性。因此,真实性(Veracity)是指数据的正确性。
可视化(Visualization) –
只有正确的可视化,原始数据才可被投入使用。这里的“可视化”并非普通的图型或饼图,可视化指是的复杂的图表,图表中包含大量的数据信息,但可以被很容易地理解和阅读。
大量(Volume) – (译者注:大数据4V特点之一) 指数据量,范围从Megabytes至Brontobytes
W
天气数据(Weather data) – 是一种重要的开放公共数据来源,如果与其他数据来源合成在一起,可以为相关组织机构提供深入分析的依据
X
XML数据库(XML Databases) –
XML数据库是一种以XML格式存储数据的数据库。XML数据库通常与面向文档型数据库相关联,开发人员可以对XML数据库的数据进行查询,导出以及按指定的格式序列化
Y
Y字节 (Yottabytes) – 约等于1000 ZB (Zettabytes),
约等于250万亿张DVD的数据容量。现今,整个数字化宇宙的数据量为1 YB, 并且将每18年翻一番。
Z
Z字节 (ZB: Zettabytes) – 约等于1000 EB (Exabytes), 约等于1百万
TB。据预测,到2016年全球范围内每天网络上通过的信息大约能达到1 ZB。
附:存储容量单位换算表:
1 Bit(比特) = Binary Digit
8 Bits = 1 Byte(字节)
1,000 Bytes = 1 Kilobyte
1,000 Kilobytes = 1 Megabyte
1,000 Megabytes = 1 Gigabyte
1,000 Gigabytes = 1 Terabyte
1,000 Terabytes = 1 Petabyte
1,000 Petabytes = 1 Exabyte
1,000 Exabytes = 1 Zettabyte
1,000 Zettabytes = 1 Yottabyte
1,000 Yottabytes = 1 Brontobyte
1,000 Brontobytes = 1 GeopbyteTencentOS tiny 提供业界最精简的RTOS内核,最少资源占用为RAM 06 KB,ROM 18 KB。对于复杂的任务管理、实时调度、时间管理、中断管理、内存管理、异常处理等功能,TencentOS tiny都可支持。
腾讯 科技 讯 9月18日消息,腾讯宣布将开源自主研发的轻量级物联网实时 *** 作系统TencentOS tiny。相比市场上其它系统,腾讯TencentOS tiny在资源占用、设备成本、功耗管理以及安全稳定等层面极具竞争力。该系统的开源可大幅降低物联网应用开发成本,提升开发效率,同时支持一键上云,对接云端海量资源。
据权威资料显示,全球物联网市场规模发展迅猛,2018年,仅国内物联网市场容量已经超过1万亿,预计2020年国内物联网市场容量可望超过15万亿。作为物联网整个产业链重要一环,终端侧物联网 *** 作系统由于直接对接底层物联网设备,已经成为构建整个物联网生态的关键。
腾讯物联网团队表示:“将腾讯自主研发的物联网 *** 作系统TencentOS Tiny开源,不仅可以将腾讯在物联网领域的技术和经验和全球开发者分享,还能够汲取全球物联网领域的优秀成果和创新理念,最终推动整体物联网生态的繁荣以及万物智联时代的到来。”
腾讯云构筑起全链条IoT云开发能力
在全面上云的背景下,物联网设备也不例外。借助TencentOS tiny提供的更简单的软件接口,亿级物联网设备上云的门槛降降进一步降低,从而帮助物联网开发者能够更便捷的使用云端海量的计算、存储资源,以及先进的AI和大数据算法模型,有效支撑众多前沿物联网技术在智慧城市、智能家居、智能穿戴、车联网等行业的加速落地。
同时,随着TencentOS tiny的开源,结合腾讯云物联网开发平台IoT Explorer,加上之前已经建设完成的国内最大规模LoRa网络,腾讯云物联网已经彻底打通从芯片通讯开发、网络支撑服务,物理设备定义管理,数据分析和多场景应用开发等一站式、全链条IoT云开发服务能力,物联网开发将变得更为简单、高效。
近年来,腾讯在开源上的步伐不断加快,截至9月,腾讯自主开源项目已达84个,Star数超过24万。在物联网领域,腾讯不仅通过开源和开放持续构建良性的物联网生态体系,在产品易用性和开发效率上,腾讯物联网团队也都做了许多针对性优化。
体积
最小仅18KB
、功耗
最低2微安
TencentOS tiny 提供业界最精简的RTOS内核,最少资源占用为RAM 06 KB,ROM 18 KB。在类似烟感和红外等实际场景下,TencentOS tiny 的资源占用仅为:RAM 269 KB、ROM 1238 KB,极大地降低硬件资源占用。同时,看似“麻雀虽小”,却“五脏俱全”。对于复杂的任务管理、实时调度、时间管理、中断管理、内存管理、异常处理等功能,TencentOS tiny都可支持。
在功耗上,TencentOS tiny还应用了高效功耗管理框架,可以针对不同场景降低功耗。比如TencentOS tiny内部的定时机制在发现业务没有运行的时候,会自动启动休眠状态,有效降低功耗。根据实测的数据显示,TencentOS tiny最低的休眠功耗仅有2微安。开发者也可以根据业务场景选择可参考的低功耗方案,降低设备耗电,延长设备寿命。
独具创意的调试功能,助力开发者快速排障
由于很多物联网的终端设备在实际场景下,位于荒郊野外或者很远的地方,出现问题的时候非常难定位。为了能够减少这个问题,当终端出现问题的时候,TencentOS tiny会把一些故障信息记录下来,当它再重启的时候首先把错误数据上报云端,这个功能极大的方便了开发者查找故障原因。从而远在千里之外,就可以快速排除故障。
另外,TencentOS tiny的内核以及其上层的物联网组件框架,都做了高度解耦,保证和其它模块之间连接的适配。同时,TencentOS tiny 还提供多种编译器快速移植指南和移植工具,帮助开发者向新硬件开发板的一键移植,省时省力,有效提升开发效率。
目前,TencentOS tiny已支持意法半导体、恩智浦、华大半导体、瑞兴恒方、国民技术等主流厂商多种芯片和模组。不一样
ASPNET Core 是一个用于net程序跨平台的框架,在它的基础上会重写NET Framework(windows)、Mono( Linux),以实现所有net程序、网站的跨平台
ASPnet 是一种微软推出的网站开发技术 目前一般分为 aspnet webform、aspnet mvc 两种
ASPNET Core 10 是一个开源跨平台的开发框架,用于构建基于云的现代 Web 应用 。它是从底层开始重新构建来提供性能优良的Web应用开发框架,可以部署在云上或者本地服务器上。另外,它使得 ASPNET 应用更加精简和模块化(可以根据你的应用需要向里面添加其他模块),跨平台(你可以很容易的在 Windows, Mac or Linux 上开发和部署你的应用),云优化(你可以在云上在云上部署和调试你的应用)。
ASPNET又称为ASP+,不仅仅是ASP的简单升级,而是微软公司推出的新一代脚本语言。ASPNET基于NET Framework的Web开发平台,不但吸收了ASP以前版本的最大优点并参照Java、VB语言的开发优势加入了许多新的特色,同时也修正了以前的ASP版本的运行错误。[1-2]
ASPNET具备开发网站应用程序的一切解决方案,包括验证、缓存、状态管理、调试和部署等全部功能。在代码撰写方面特色是将页面逻辑和业务逻辑分开,它分离程序代码与显示的内容,让丰富多彩的网页更容易撰写。同时使程序代码看起来更洁净、更简单你好,一、RT-Thread的定义
RT-Thread,全称是 Real Time-Thread, 是一款主要由中国开源社区主导开发的开源实时 *** 作系统(许可证GPLv2),包含了实时、嵌入式系统相关的各个组件:TCP/IP协议栈、图形用户界面等。
相较于Linux,RT-Thread 具有体积小,成本低,功耗低、启动快速的优势。除此以外,实时性高、占用资源小等特点,使得它也非常适用于各种资源受限(如成本、功耗限制等)的场合。
在物联网设备的应用中,RT-Thread 能使用在线软件包管理工具,配合系统配置工具,实现直观、快速的模块化裁剪、无缝导入丰富的软件功能包,以及类似 Android 的图形界面和触摸滑动、智能语音交互等复杂功能。
RT-Thread 系统完全开源,可以免费在商业产品中使用,并且不需要公开私有代码。
二、RT-Thread的架构
相对于一些传统的RTOS 如 FreeRTOS、uC/OS 等,RT-Thread 架构上最大的区别在于:它是一个物联网 *** 作系统(IoT OS)。
即RT-Thread 除了包含一个实时内核外,还包括如文件系统、图形库等较为完整的中间件组件,是具备低功耗、安全、通信协议支持和云端连接能力的软件平台,如下图所示:
在这里插入描述
具体包括以下部分:
内核层:
① RT-Thread 内核:系统核心部分,包括了内核系统中对象的实现,例如多线程及其调度、消息队列、内存管理等;
② libcpu/BSP(芯片移植相关文件 / 板级支持包):与硬件密切相关,由外设驱动和 CPU 移植构成;
组件与服务层:
组件是基于内核之上的上层软件,例如虚拟文件系统、FinSH 命令行界面、网络框架、设备框架等。采用模块化设计,做到组件内部高内聚,组件之间低耦合;
RT-Thread 软件包:
运行于 RT-Thread 物联网 *** 作系统平台上,面向不同应用领域的通用软件组件,由描述信息、源代码或库文件组成。开发者可依据自身需求,选择、组合不同软件包,打造自己想要的系统。
目前支持的软件包有且不仅有:
① 物联网相关:Paho MQTT、WebClient、mongoose、WebTerminal 等;
② 脚本语言相关:JerryScript、MicroPython ;
③ 多媒体相关:Openmv、mupdf;
④ 系统相关:RTGUI、Persimmon UI、lwext4、partition、SQLite 等。
三、RT-Thread的开发工具
Env 是 RT-Thread 的开发辅助工具,提供编译构建环境、图形化系统配置、软件包管理等功能。主要特性如下:
使用 scons 作为构建工具(根据一定的规则或指令,将源代码编译成可执行的二进制程序),提供编译环境,生成工程;
内置简单易用的配置剪裁工具——menuconfig,可对内核、组件和软件包进行自由裁剪,以搭积木的方式构建系统;
借助由 Kconfig 语法 编写的Kconfig 文件,生成系统配置文件 rtconfigh。rtconfigh 文件,负责在执行 menuconfig 命令时,指导生成 RT-Thread 系统的配置、剪裁界面;
提供多种软件包,可在线下载,各包耦合关联少,具有良好的可维护性。
物联网体系结构分为感知层、网络层和应用层这三层,物联网是指通过各种信息传感设备,实时采集任何需要监控、连接、互动的物体或过程等各种需要的信息,与互联网结合形成的一个巨大网络。
物联网(InternetofThings,缩写:IoT)是基于互联网、传统电信网等信息承载体,让所有能行使独立功能的普通物体实现互联互通的网络。其应用领域主要包括运输和物流、工业制造、健康医疗、智能环境(家庭、办公、工厂)等,具有十分广阔的市场前景。最初在1999年提出:即通过射频识别(RFID)(RFID+互联网)、红外感应器、全球定位系统、激光扫描器、气体感应器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。简而言之,物联网就是“物物相连的互联网”。中国物联网校企联盟将物联网的定义为当下几乎所有技术与计算机、互联网技术的结合,实现物体与物体之间:环境以及状态信息实时的实时共享以及智能化的收集、传递、处理、执行。广义上说,当下涉及到信息技术的应用,都可以纳入物联网的范畴。
物联网四层体系结构及作用
1、感知层
感知层是物联网发展和应用的基础。感知层相当于物联网的皮肤和五官,完成识别物体、采集信息的任务。感知层包括二维码标签和识读器、RFID标签和读/写器、摄像头、GPS、各种传感器、视频摄像头、终端、传感器网络等数据采集设备。也包括数据接入到网关之前的传感器网络。RFID技术、传感和控制技术、短距离无线通信技术是感知层涉及的主要技术。
2、接入层
接入层由末梢节点和接入网关(Access Gateway)组成,完成应用末梢各节点信息的组网控制和信息汇集,或完成向末梢节点下发信息的转发等功能。这些末梢节点构成了末梢网络或传感网(由大量各类传感器节点组成的自治网络)。
3、网络层
网络层相当于物联网的神经中枢和大脑,实现信息传递和处理。网络层包括通信与互联网的融合网络、网络管理中心、信息中心和智能处理中心等,网络层将感知层和接入层获取的信息进行传递和处理。网络层也包括信息存储查询、网络管理等功能。
4、应用层
应用层相当于物联网的“社会分工”,即与行业需求结合,实现广泛智能化。应用层是物联网与行业专业技术的深度融合,与行业需求结合,实现行业智能化,这类似于人的社会分工,最终构成人类社会。
物联网的技术体系框架包括感知层技术、网络层技术、应用层技术和公共技术:1 感知层:数据采集与感知主要用于采集物理世界中发生的物理事件和数据,包括各类物理量、标识、音频、视频数据。物联网的数据采集涉及传感器、RFID、多媒体信息采集、二维码和实时定位等技术。传感器网络组网和协同信息处理技术实现传感器、RFID等数据采集技术所获取数据的短距离传输、自组织组网以及多个传感器对数据的协同信息处理过程。
2 网络层:实现更加广泛的互联功能,能够把感知到的信息无障碍、高可靠性、高安全性地进行传送,需要传感器网络与移动通信技术、互联网技术相融合。经过十余年的快速发展,移动通信、互联网等技术已比较成熟,基本能够满足物联网数据传输的需要。
3应用层:应用层主要包含应用支撑平台子层和应用服务子层。其中应用支撑平台子层用于支撑跨行业、跨应用、跨系统之间的信息协同、共享、互通的功能。应用服务子层包括智能交通、智能医疗、智能家居、智能物流、智能电力等行业应用。
4 公共技术:公共技术不属于物联网技术的某个特定层面,而是与物联网技术架构的三层都有关系,它包括标识与解析、安全技术、网络管理和服务质量(QoS)管理。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)