光电耦合器可以构成各种逻辑电路,由于光电耦合器的抗干扰性能和隔离性能比晶体管好,因此,由它构成的逻辑电路更可靠。
(2) 作为固体开关应用
在开关电路中,往往要求控制电路和开关之间要有很好的电隔离,对于一般的电子开关来说是很难做到的,但用光电耦合器却很容易实现。
(3) 在触发电路上的应用
将光电耦合器用于双稳态输出电路,由于可以把发光二极管分别串入两管发射极回路,可有效地解决输出与负载隔离地问题。
(4) 在脉冲放大电路中的应用
光电耦合器应用于数字电路,可以将脉冲信号进行放大。
(5) 在线性电路上的应用
线性光电耦合器应用于线性电路中,具有较高地线性度以及优良地电隔离性能。
(6) 特殊场合的应用
光电耦合器还可应用于高压控制,取代变压器,代替触点继电器以及用于A/D电路等多种场合。
线性光耦合器的选取原则
在设计光耦反馈式开关电源时必须正确选择线性光耦合器的型号及参数,选取原则如下:
①光耦合器的电流传输比(CTR)的允许范围是50%~200%。这是因为当CTR<50%时,光耦中的LED就需要较大的工作电流 (IF>50mA),才能正常控制单片开关电源IC的占空比,这会增大光耦的功耗。若CTR>200%,在启动电路或者当负载发生突变时,有可能将单片开关电源误触发,影响正常输出。
②推荐采用线性光耦合器,其特点是CTR值能够在一定范围内做线性调整。
③由英国埃索柯姆(Isocom)公司、美国摩托罗拉公司生产的4N××系列(如4N25 、4N26、4N35)光耦合器,目前在国内应用地十分普遍。鉴于此类光耦合器呈现开关特性,其线性度差,适宜传输数字信号(高、低电平),因此不推荐用在开关电源中。
3 线性光耦合器应用举例
多路输出式电源变换器电路如图3所示。其输入电压为36V到90V的准方波电压,三路输出分别为:UO1=+5V(2A),UO2=+15V(017A),UO3=-15V(017A)。现将UO1定为主输出,其电压调整率 SV=±04%;UO2和UO3为辅输出,总电源效率可达75%~80%。电路中采用一片TOP104Y型三端单片开关电源集成电路。主输出绕组电压经过VD2、C2、L1和C3整流滤波后,得到+5V电压。VD2采用MBR735型35V/75A肖特基二极管。两个辅输出绕组及输出电路完全呈对称结构。因为±15V输出电流较小,故整流管VD4和VD5均采用UF4002型100V/1A的超快恢复二极管。由线性光耦CNY17-2和可调式精密并联稳压器TL431C构成光耦反馈式精密开关电源,可以对+5V电压进行精密调整。反馈绕组电压通过VD3、C4整流滤波后,得到12V反馈电压。由 P6KE120型瞬态电压抑制器和UF4002型超快恢复二极管构成的漏极钳位保护电路,能吸收由高频变压器漏感形成的尖峰电压,保护芯片内部的功率场效应管MOSFET不受损坏。
外部误差放大器由TL431C组成。当+5V输出电压升高时,经R3、R4分压后得到的取样电压,就与TL431C中的25V带隙基准电压进行比较,使其阴极电位降低,LED的工作电流IF增大,再通过线性光耦IC2(CNY17-2)使控制端电流IC增大,TOP104Y的输出占空比减小,使UO1维持不变,达到稳压目的。+5V稳压值UO1则由TL431C、光耦中的LED正向压降来设定。R1是LED的限流电阻。误差放大器的频率响应由C5、R2 和C6来决定。C5的作用有三个:滤除控制端上的尖峰电压;决定自动重启动频率;与R2一起对控制回路进行补偿。对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。
模拟信号隔离的一个比较好的选择是使用线形光耦。线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。
市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,CLARE的LOC111等。这里以HCNR200/201为例介绍
2 芯片介绍与原理说明
其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和K2,即
K1与K2一般很小(HCNR200是050%),并且随温度变化较大(HCNR200的变化范围在025%到075%之间),但芯片的设计使得K1和K2相等。在后面可以看到,在合理的外围电路设计中,真正影响输出/输入比值的是二者的比值K3,线性光耦正利用这种特性才能达到满意的线性度的。
HCNR200和HCNR201的内部结构完全相同,差别在于一些指标上。相对于HCNR200,HCNR201提供更高的线性度。
采用HCNR200/201进行隔离的一些指标如下所示:
线性度:HCNR200:025%,HCNR201:005%;
线性系数K3:HCNR200:15%,HCNR201:5%;
温度系数: -65ppm/oC;
隔离电压:1414V;
信号带宽:直流到大于1MHz。
从上面可以看出,和普通光耦一样,线性光耦真正隔离的是电流,要想真正隔离电压,需要在输出和输出处增加运算放大器等辅助电路。下面对HCNR200/201的典型电路进行分析,对电路中如何实现反馈以及电流-电压、电压-电流转换进行推导与说明。
3 典型电路分析
Agilent公司的HCNR200/201的手册上给出了多种实用电路,其中较为典型的一种如下图所示:
图2
设输入端电压为Vin,输出端电压为Vout,光耦保证的两个电流传递系数分别为K1、K2,显然,,和之间的关系取决于和之间的关系。
将前级运放的电路提出来看,如下图所示:
设运放负端的电压为,运放输出端的电压为,在运放不饱和的情况下二者满足下面的关系:
Vo=Voo-GVi (1)
其中是在运放输入差模为0时的输出电压,G为运放的增益,一般比较大。
忽略运放负端的输入电流,可以认为通过R1的电流为IP1,根据R1的欧姆定律得:
通过R3两端的电流为IF,根据欧姆定律得:
其中,为光耦2脚的电压,考虑到LED导通时的电压()基本不变,这里的作为常数对待。
根据光耦的特性,即
K1=IP1/IF (4)
将和的表达式代入上式,可得:
上式经变形可得到:
将的表达式代入(3)式可得:
考虑到G特别大,则可以做以下近似:
这样,输出与输入电压的关系如下:
可见,在上述电路中,输出和输入成正比,并且比例系数只由K3和R1、R2确定。一般选R1=R2,达到只隔离不放大的目的。
4 辅助电路与参数确定
上面的推导都是假定所有电路都是工作在线性范围内的,要想做到这一点需要对运放进行合理选型,并且确定电阻的阻值。
41 运放选型
运放可以是单电源供电或正负电源供电,上面给出的是单电源供电的例子。为了能使输入范围能够从0到VCC,需要运放能够满摆幅工作,另外,运放的工作速度、压摆率不会影响整个电路的性能。TI公司的LMV321单运放电路能够满足以上要求,可以作为HCNR200/201的外围电路。
42 阻值确定
电阻的选型需要考虑运放的线性范围和线性光耦的最大工作电流IFmax。K1已知的情况下,IFmax又确定了IPD1的最大值IPD1max,这样,由于Vo的范围最小可以为0,这样,由于
考虑到IFmax大有利于能量的传输,这样,一般取
另外,由于工作在深度负反馈状态的运放满足虚短特性,因此,考虑IPD1的限制,
这样,
R2的确定可以根据所需要的放大倍数确定,例如如果不需要方法,只需将R2=R1即可。
另外由于光耦会产生一些高频的噪声,通常在R2处并联电容,构成低通滤波器,具体电容的值由输入频率以及噪声频率确定。
43 参数确定实例
假设确定Vcc=5V,输入在0-4V之间,输出等于输入,采用LMV321运放芯片以及上面电路,下面给出参数确定的过程。
确定IFmax:HCNR200/201的手册上推荐器件工作的25mA左右;
确定R3:R3=5V/25mA=200;
确定R1:;
确定R2:R2=R1=32K。
一、光电耦合器的种类较多,但在家电电路中,常见的只有4种结构:
1第一类,为发光二极管与光电晶体管封装的光电耦合器,结构为双列直插4引脚塑封,内部电路见表一,主要用于开关电源电路中。
2第二类,为发光二极管与光电晶体管封装的光电耦合器,主要区别引脚结构不同,结构为双列直插6引脚塑封,内部电路见表一,也用于开关电源电路中。
3第三类,为发光二极管与光电晶体管(附基极端子)封装的光电耦合器,结构为双列直插6引脚塑封,内部电路见表一,主要用于AV转换音频电路中。
4第四类,为发光二极管与光电二极管加晶体管(附基极端子)封装的光电耦合器,结构为双列直插6引脚塑封,内部电路见表一,主要用于AV转换视频电路中。
类别
型 号
内部电路
第
一
类
PC817 PC818 PC810 PC812
PC502 LTV817 TLP521-1
TLP621-1 ON3111 OC617
PS2401-1 GIC5102
第
二
类
TLP632 TLP532 TLP519
TLP509 PC504 PC614 PC714 PS208B PS2009B
PS2018 PS2019
第
三
类
TLP503 TLP508 TLP531
PC613 4N25 4N26 4N27
4N28 4N35 4N36 4N37
TIL111 TIL112 TIL114
TIL115 TIL116 TIL117
TLP631 TLP535
第
四
类
TLP551 TLP651 TLP751
PC618 PS2006B 6N135
6N136前面这个问题,我可以详细回答你。
UPS电源里面一般用到三类光耦:
1,晶体管光耦,例如东芝TLP781,TLP185。实现高低压电气隔离。
2,驱动光耦,例如东芝TLP701,TLP350。驱动功率器件,例如场效应管或者IGBT。
3,IC输出高速光耦。例如东芝TLP109,TLP105,TLP108,TLP112A等。起一定传输和通讯作用。
后面那个就是你们电气工程师考虑的问题了,好好琢磨。光耦并联一个5K电阻,如光耦导通压降Vf=15V,那当signal回路中电路I<03mA,则光耦不导通。
一般情况下回路中干扰小于03mA。如果没有这个电阻,干扰产生的电流都会流过光耦。经过CTR变比到副边。
并联电阻主要是保证光耦的可靠导通。
在输入端与地之间并联一只电容来吸收干扰脉冲,或串联一只金属薄膜电阻来限制流入端口的峰值电流。怕脉冲干扰LED误亮,或是怕上电期间短暂的L使LED亮。
方法:用数字万用表的PN结测量端,红表笔“电池+极”接光耦的“1”端,黑表笔“电池-极”接光耦的“2”端(即使光耦的发光二极管正向导通),用另一电表测量“3”“4”端电阻,断开或接通输入端(发光二极管端),输出端电阻应有大幅度变化,说明改光耦是好的。另发光二极管端万用表可用电池串限流电阻代替。
在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光耦代换。
常用的4脚线性光耦有PC817A----C。PC111 TLP521等常用的六脚线性光耦有:TLP632 TLP532 PC614 PC714 PS2031等。
常用的4N25 4N26 4N35 4N36是不适合用于开关电源中的,因为这4种光耦均属于非线性光耦。
扩展资料:
光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。
非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于开关信号的传输,不适合于传输模拟量。常用的4N系列光耦属于非线性光耦。
线性光耦的电流传输特性曲线接近直线,并且小信号时性能较好,能以线性特性进行隔离控制。常用的线性光耦是PC817A—C系列。
开关电源中常用的光耦是线性光耦。如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。
同时电源带负载能力下降。在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光耦代换。常用的4脚线性光耦有PC817A----C。PC111 TLP521等常用的六脚线性光耦有:LP632 TLP532 PC614 PC714 PS2031等。常用的4N25 4N26 4N35 4N36是不适合用于开关电源中的,因为这4种光耦均属于非线性光耦。
由于光电耦合器的品种和类型非常多,在光电子DATA手册中,其型号超过上千种,通常可以按以下方法进行分类:
⑴按光路径分,可分为外光路光电耦合器(又称光电断续检测器)和内光路光电耦合器。外光路光电耦合器又分为透过型和反射型光电耦合器。
⑵按输出形式分,可分为:
a、光敏器件输出型,其中包括光敏二极管输出型,光敏三极管输出型,光电池输出型,光可控硅输出型等。
b、NPN三极管输出型,其中包括交流输入型,直流输入型,互补输出型等。
c、达林顿三极管输出型,其中包括交流输入型,直流输入型。
d、逻辑门电路输出型,其中包括门电路输出型,施密特触发输出型,三态门电路输出型等。
e、低导通输出型(输出低电平毫伏数量级)。
f、光开关输出型(导通电阻小于10Ω)。
g、功率输出型(IGBT/MOSFET等输出)。
⑶按封装形式分,可分为同轴型,双列直插型,TO封装型,扁平封装型,贴片封装型,以及光纤传输型等。
⑷按传输信号分,可分为数字型光电耦合器(OC门输出型,图腾柱输出型及三态门电路输出型等)和线性光电耦合器(可分为低漂移型,高线性型,宽带型,单电源型,双电源型等)。
⑸按速度分,可分为低速光电耦合器(光敏三极管、光电池等输出型)和高速光电耦合器(光敏二极管带信号处理电路或者光敏集成电路输出型)。
⑹按通道分,可分为单通道,双通道和多通道光电耦合器。
⑺按隔离特性分,可分为普通隔离光电耦合器(一般光学胶灌封低于5000V,空封低于2000V)和高压隔离光电耦合器(可分为10kV,20kV,30kV等)。
⑻按工作电压分,可分为低电源电压型光电耦合器(一般5~15V)和高电源电压型光电耦合器(一般大于30V)。
光耦合器的主要优点是单向传输信号,输入端与输出端完全实现了电气隔离,抗干扰能力强,使用寿命长,传输效率高。它广泛用于电平转换、信号隔离、级间隔离、开关电路、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。
由于光电耦合器的输入阻抗与一般干扰源的阻抗相比较小,因此分压在光电耦合器的输入端的干扰电压较小,它所能提供的电流并不大,不易使半导体二极管发光;由于光电耦合器的外壳是密封的,它不受外部光的影响;光电耦合器的隔离电阻很大(约1012Ω)、隔离电容很小(约几个pF)所以能阻止电路性耦合产生的电磁干扰。
线性方式工作的光电耦合器是在光电耦合器的输入端加控制电压,在输出端会成比例地产生一个用于进一步控制下一级的电路的电压。
线性光电耦合器由发光二极管和光敏三极管组成,当发光二极管接通而发光,光敏三级管导通,光电耦合器是电流驱动型,需要足够大的电流才能使发光二极管导通,如果输入信号太小,发光二极管不会导通,其输出信号将失真。在开关电源,尤其是数字开关电源中。
采用一只光敏三极管的光耦合器,CTR的范围大多为20%~300%(如4N35),而PC817则为80%~160%,达林顿型光耦合器(如4N30)可达100%~5000%。这表明欲获得同样的输出电流,后者只需较小的输入电流。因此,CTR参数与晶体管的hFE有某种相似之处。线性光耦合器与普通光耦合器典型的CTR-IF特性曲线。
普通光耦合器的CTR-IF特性曲线呈非线性,在IF较小时的非线性失真尤为严重,因此它不适合传输模拟信号。线性光耦合器的CTR-IF特性曲线具有良好的线性度,特别是在传输小信号时,其交流电流传输比(ΔCTR=ΔIC/ΔIF)很接近于直流电流传输比CTR值。因此,它适合传输模拟电压或电流信号,能使输出与输入之间呈线性关系。这是其重要特性。
以下为光电耦合器的常用参数:
1 反向电流IR:在被测管两端加规定反向工作电压VR时,二极管中流过的电流。
2 反向击穿电压VBR:被测管通过的反向电流IR为规定值时,在两极间所产生的电压降。
3 正向压降VF:二极管通过的正向电流为规定值时,正负极之间所产生的电压降。
4 正向电流IF:在被测管两端加一定的正向电压时二极管中流过的电流。结电容CJ:在规定偏压下,被测管两端的电容值。
5 反向击穿电压V(BR)CEO:发光二极管开路,集电极电流IC为规定值,集电极与发射集间的电压降。
6 输出饱和压降VCE(sat):发光二极管工作电流IF和集电极电流IC为规定值时,并保持IC/IF≤CTRmin时(CTRmin在被测管技术条件中规定)集电极与发射极之间的电压降。
7 反向截止电流ICEO:发光二极管开路,集电极至发射极间的电压为规定值时,流过集电极的电流为反向截止电流。
8 电流传输比CTR:输出管的工作电压为规定值时,输出电流和发光二极管正向电流之比为电流传输比CTR。
9 脉冲上升时间tr,下降时间tf:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输出脉冲前沿幅度的10%到90%,所需时间为脉冲上升时间tr。从输出脉冲后沿幅度的90%到10%,所需时间为脉冲下降时间tf。
10 传输延迟时间tPHL,tPLH:从输入脉冲前沿幅度的50%到输出脉冲电平下降到15V时所需时间为传输延迟时间tPHL。从输入脉冲后沿幅度的50%到输出脉冲电平上升到15V时所需时间为传输延迟时间tPLH。
11 入出间隔离电容CIO:光耦合器件输入端和输出端之间的电容值。
12 入出间隔离电阻RIO:半导体光耦合器输入端和输出端之间的绝缘电阻值。
13 入出间隔离电压VIO:光耦合器输入端和输出端之间绝缘耐压值
参考资料:
传送纯粹的负电压将LED两端对调就行。
传送有正有负的信号就得将信号平移成一种极性。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)