物联网时代 工业大数据八大应用场景

物联网时代 工业大数据八大应用场景,第1张

物联网时代 工业数据八大应用场景

工业大数据是一个全新的概念,从字面上理解,工业大数据是指在工业领域信息化应用中所产生的大数据。随着信息化与工业化的深度融合,信息技术渗透到了工业企业产业链的各个环节,条形码、二维码、RFID、工业传感器、工业自动控制系统、工业物联网、ERP、CAD/CAM/CAE/CAI等技术在工业企业中得到广泛应用,尤其是互联网、移动互联网、物联网等新一代信息技术在工业领域的应用,工业企业也进入了互联网工业的新的发展阶段,工业企业所拥有的数据也日益丰富。工业企业中生产线处于高速运转,由工业设备所产生、采集和处理的数据量远大于企业中计算机和人工产生的数据,从数据类型看也多是非结构化数据,生产线的高速运转则对数据的实时性要求也更高。因此,工业大数据应用所面临的问题和挑战并不比互联网行业的大数据应用少,某些情况下甚至更为复杂。

工业大数据应用将带来工业企业创新和变革的新时代。通过互联网、移动物联网等带来的低成本感知、高速移动连接、分布式计算和高级分析,信息技术和全球工业系统正在深入融合,给全球工业带来深刻的变革,创新企业的研发、生产、运营、营销和管理方式。这些创新不同行业的工业企业带来了更快的速度、更高的效率和更高的洞察力。工业大数据的典型应用包括产品创新、产品故障诊断与预测、工业生产线物联网分析、工业企业供应链优化和产品精准营销等诸多方面。

1加速产品创新

客户与工业企业之间的交互和交易行为将产生大量数据,挖掘和分析这些客户动态数据,能够帮助客户参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。福特公司是这方面的表率,他们将大数据技术应用到了福特福克斯电动车的产品创新和优化中,这款车成为了一款名副其实的“大数据电动车”。第一代福特福克斯电动车在驾驶和停车时产生大量数据。在行驶中,司机持续地更新车辆的加速度、刹车、电池充电和位置信息。这对于司机很有用,但数据也传回福特工程师那里,以了解客户的驾驶习惯,包括如何、何时以及何处充电。即使车辆处于静止状态,它也会持续将车辆胎压和电池系统的数据传送给最近的智能电话。

这种以客户为中心的大数据应用场景具有多方面的好处,因为大数据实现了宝贵的新型产品创新和协作方式。司机获得有用的最新信息,而位于底特律的工程师汇总关于驾驶行为的信息,以了解客户,制订产品改进计划,并实施新产品创新。而且,电力公司和其他第三方供应商也可以分析数百万英里的驾驶数据,以决定在何处建立新的充电站,以及如何防止脆弱的电网超负荷运转。

2产品故障诊断与预测

这可以被用于产品售后服务与产品改进。无所不在的传感器、互联网技术的引入使得产品故障实时诊断变为现实,大数据应用、建模与仿真技术则使得预测动态性成为可能。在马航MH370失联客机搜寻过程中,波音公司获取的发动机运转数据对于确定飞机的失联路径起到了关键作用。我们就拿波音公司飞机系统作为案例,看看大数据应用在产品故障诊断中如何发挥作用。在波音的飞机上,发动机、燃油系统、液压和电力系统等数以百计的变量组成了在航状态,这些数据不到几微秒就被测量和发送一次。以波音737为例,发动机在飞行中每30分钟就能产生10TB数据。

这些数据不仅仅是未来某个时间点能够分析的工程遥测数据,而且还促进了实时自适应控制、燃油使用、零件故障预测和飞行员通报,能有效实现故障诊断和预测。再看一个通用电气(GE)的例子,位于美国亚特兰大的GE能源监测和诊断(M&D)中心,收集全球50多个国家上千台GE燃气轮机的数据,每天就能为客户收集10G的数据,通过分析来自系统内的传感器振动和温度信号的恒定大数据流,这些大数据分析将为GE公司对燃气轮机故障诊断和预警提供支撑。风力涡轮机制造商Vestas也通过对天气数据及期涡轮仪表数据进行交叉分析,从而对风力涡轮机布局进行改善,由此增加了风力涡轮机的电力输出水平并延长了服务寿命。

3工业物联网生产线的大数据应用

现代化工业制造生产线安装有数以千计的小型传感器,来探测温度、压力、热能、振动和噪声。因为每隔几秒就收集一次数据,利用这些数据可以实现很多形式的分析,包括设备诊断、用电量分析、能耗分析、质量事故分析(包括违反生产规定、零部件故障)等。首先,在生产工艺改进方面,在生产过程中使用这些大数据,就能分析整个生产流程,了解每个环节是如何执行的。一旦有某个流程偏离了标准工艺,就会产生一个报警信号,能更快速地发现错误或者瓶颈所在,也就能更容易解决问题。利用大数据技术,还可以对工业产品的生产过程建立虚拟模型,仿真并优化生产流程,当所有流程和绩效数据都能在系统中重建时,这种透明度将有助于制造商改进其生产流程。再如,在能耗分析方面,在设备生产过程中利用传感器集中监控所有的生产流程,能够发现能耗的异常或峰值情形,由此便可在生产过程中优化能源的消耗,对所有流程进行分析将会大大降低能耗。

4工业供应链的分析和优化

当前,大数据分析已经是很多电子商务企业提升供应链竞争力的重要手段。例如,电子商务企业京东商城,通过大数据提前分析和预测各地商品需求量,从而提高配送和仓储的效能,保证了次日货到的客户体验。RFID等产品电子标识技术、物联网技术以及移动互联网技术能帮助工业企业获得完整的产品供应链的大数据,利用这些数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降。

互联网大数据营销专家罗百辉表示,工业制造企业利用销售数据、产品的传感器数据和出自供应商数据库的数据,可准确地预测全球不同区域的需求。由于可以跟踪库存和销售价格,可以在价格下跌时买进,所以制造企业便可节约大量的成本。如果再利用产品中传感器所产生的数据,知道产品出了什么故障,哪里需要配件,他们还可以预测何处以及何时需要零件。这将会极大地减少库存,优化供应链。以海尔公司为例,海尔公司供应链体系很完善,它以市场链为纽带,以订单信息流为中心,带动物流和资金流的运动,整合全球供应链资源和全球用户资源。在海尔供应链的各个环节,客户数据、企业内部数据、供应商数据被汇总到供应链体系中,通过供应链上的大数据采集和分析,海尔公司能够持续进行供应链改进和优化,保证了海尔对客户的敏捷响应。美国较大的OEM供应商超过千家,为制造企业提供超过1万种不同的产品,每家厂商都依靠市场预测和其他不同的变量,如销售数据、市场信息、展会、新闻、竞争对手的数据,甚至天气预报等来销售自己的产品。

5产品销售预测与需求管理

通过大数据来分析当前需求变化和组合形式。大数据是一个很好的销售分析工具,通过历史数据的多维度组合,可以看出区域性需求占比和变化、产品品类的市场受欢迎程度以及最常见的组合形式、消费者的层次等,以此来调整产品策略和铺货策略。在某些分析中我们可以发现,在开学季高校较多的城市对文具的需求会高很多,这样我们可以加大对这些城市经销商的促销,吸引他们在开学季多订货,同时在开学季之前一两个月开始产能规划,以满足促销需求。对产品开发方面,通过消费人群的关注点进行产品功能、性能的调整,如几年前大家喜欢用音乐手机,而现在大家更倾向于用手机上网、拍照分享等,手机的拍照功能提升就是一个趋势,4G手机也占据更大的市场份额。通过大数据对一些市场细节的分析,可以找到更多的潜在销售机会。

6生产计划与排程

制造业面对多品种小批量的生产模式,数据的精细化自动及时方便的采集(MES/DCS)及多变性导致数据剧烈增大,再加上十几年的信息化的历史数据,对于需要快速响应的APS来说,是一个巨大的挑战。大数据可以给予我们更详细的数据信息,发现历史预测与实际的偏差概率,考虑产能约束、人员技能约束、物料可用约束、工装模具约束,通过智能的优化算法,制定预计划排产,并监控计划与现场实际的偏差,动态的调整计划排产。帮我们规避“画像”的缺陷,直接将群体特征直接强加给个体(工作中心数据直接改变为具体一个设备、人员、模具等数据)。通过数据的关联分析并监控它,我们就能计划未来。虽然,大数据略有瑕疵,只要得到合理的应用,大数据会变成我们强大的武器。当年,福特问大数据的客户需求是什么?而回答是“一匹更快的马”,而不是现在已经普及的汽车。所以,在大数据的世界里,创意、直觉、冒险精神和知识野心尤为重要。

7产品质量管理与分析

传统的制造业正面临着大数据的冲击,在产品研发、工艺设计、质量管理、生产运营等各方面都迫切期待着有创新方法的诞生,来应对工业背景下的大数据挑战。例如在半导体行业,芯片在生产过程中会经历许多次掺杂、增层、光刻和热处理等复杂的工艺制程,每一步都必须达到极其苛刻的物理特性要求,高度自动化的设备在加工产品的同时,也同步生成了庞大的检测结果。这些海量数据究竟是企业的包袱,还是企业的金矿呢?如果说是后者的话,那么又该如何快速地拨云见日,从“金矿”中准确地发现产品良率波动的关键原因呢?这是一个已经困扰半导体工程师们多年的技术难题。

某半导体科技公司生产的晶圆在经过测试环节后,每天都会产生包含一百多个测试项目、长度达几百万行测试记录的数据集。按照质量管理的基本要求,一个必不可少的工作就是需要针对这些技术规格要求各异的一百多个测试项目分别进行一次过程能力分析。如果按照传统的工作模式,我们需要按部就班地分别计算一百多个过程能力指数,对各项质量特性一一考核。这里暂且不论工作量的庞大与繁琐,哪怕有人能够解决了计算量的问题,但也很难从这一百多个过程能力指数中看出它们之间的关联性,更难对产品的总体质量性能有一个全面的认识与总结。然而,如果我们利用大数据质量管理分析平台,除了可以快速地得到一个长长的传统单一指标的过程能力分析报表之外,更重要的是,还可以从同样的大数据集中得到很多崭新的分析结果。

8工业污染与环保检测

《穹顶之下》令人印象深刻的一点是通过可视化报表,柴静团队向观众传递雾霾问题的严峻性、雾霾的成因等等。

这给我们带来的一个启示,即大数据对环保具有巨大价值。《穹顶之下》图表的原生数据哪里来的呢?其实并非都是凭借高层关系获取,不少数据都是公开可查,在中国政府网、各部委网站、中石油中石化官网、环保组织官网以及一些特殊机构,可查询的公益环保数据越来越多,包括全国空气、水文等数据,气象数据,工厂分布及污染排放达标情况等数据等等。只不过这些数据太分散、太专业、缺少分析、没有可视化,普通人看不懂。如果能够看懂并保持关注,大数据将成为社会监督环保的重要手段。近日百度上线《全国污染监测地图》就是一个很好的方式,结合开放的环保大数据,百度地图加入了污染检测图层,任何人都可以通过它查看全国及自己所在区域省市,所有的在环保局监控之下的排放机构(包括各类火电厂、国控工业企业和污水处理厂等)的位置信息、机构名称、排放污染源的种类,最近一次环保局公布的污染排放达标情况等。可查看距离自己最近的污染源,出现提醒,该监测点检测项目,哪些超标,超标多少倍。这些信息可以实时分享到社交媒体平台,告知好友,提醒大家一同注意污染源情况及个人安全健康。

工业大数据应用的价值潜力巨大。但是,实现这些价值还有很多工作要做。一个是大数据意识建立的问题。过去,也有这些大数据,但由于没有大数据的意识,数据分析手段也不足,很多实时数据被丢弃或束之高阁,大量数据的潜在价值被埋没。还有一个重要问题是数据孤岛的问题。很多工业企业的数据分布于企业中的各个孤岛中,特别是在大型跨国公司内,要想在整个企业内提取这些数据相当困难。因此,工业大数据应用一个重要议题是集成应用。

以上是小编为大家分享的关于物联网时代 工业大数据八大应用场景的相关内容,更多信息可以关注环球青藤分享更多干货

如今,超过250亿台“物体”连接到互联网上,预计到2025年,这个数字将翻一番。工业物联网(IIoT)以一种爆炸式的方式迅速发展。工业物联网(IIoT)设备、标准和通信协议的激增,使得对IIoT的有效管理变得非常具有挑战性。

如何定义工业物联网 (IIoT) 平台?

工业物联网平台 是一种工业物联网软件,它使组织能够安全地管理工业物联网生态系统中所有连接的人、系统和对象。

在界定工业物联网平台时,我们应该认识到,物联网已经创造了一个新的整合水平。随着成千上万的工业物联网设备接入网络,企业需要管理比以往更多的端点。然而,这不是一个简单的设备问题,工业物联网实际上是一个由人、系统和对象组成的数字生态系统。这就需要一个工业物联网平台来安全有效地管理生态系统的每一个元素。

工业物联网平台有哪些不同类型?

虽然工业物联网平台研发的初衷是对工业物联网的设备和数据进行管理和控制,但为了适应不同的用例,已经开发了许多不同类型的平台。事实上,工业物联网平台很难分类,反而工业物联网平台供应商正在改进其平台产品,以满足客户需求和特定的业务需求。

工业物联网平台将提供不同的功能组合,包括工业物联网的端点管理和连接、物联网数据的采集、接收和处理、数据的可视化和分析,以及将物联网数据集成到业务流程和工作流中。在比较不同类型的平台时,应根据组织的业务需求和特定的IT基础设施,并将其与工业物联网的解决方案相匹配。

工业物联网平台应该具备哪些特点?

因此,最好的工业物联网平台因组织而异,单个平台功能集无法为每个用例提供足够的解决方案。但是,任何一个工业物联网平台都应该具备以下特点:

安全

安全性是工业物联网平台的核心,它不仅可以保护所有物联网端点免受外部网络攻击,还可以处理来自组织内部的潜在恶意活动。

连接性

每一个工业物联网设备都必须快速、安全地进行配置,并对其生命周期的所有阶段进行管理,包括在设备配置、注册、激活、挂起、未挂起、删除和按需重置时对其进行跟踪和授权。

集成

集成是工业物联网面临的最大挑战之一。工业物联网平台允许物联网设备与不同的企业应用、云服务、移动应用和传统系统无缝、安全地连接和共享信息。

识别

工业物联网平台可以支持最广泛的物联网设备。无论在工业物联网架构中的任何地方,都能自动感知物联网设备的存在,建立安全连接,并能快速建立设备凭据,或在需要时自动分配。

分析

物联网设备大大增加了组织中的数据量。分析工业物联网应该是工业物联网平台最强大的功能之一。它可以对工业物联网数据进行适当的可视化和分析,为改进数据驱动的决策提供实际的见解。

管理多个工业物联网传感器很简单,但如今,企业拥有数十万台工业物联网设备来执行遍及组织内部的众多任务。工业物联网设备有多种形状和尺寸,没有通用的工业物联网标准或连接方式。管理一个工业物联网网络意味着能够监控一系列异构的工业物联网设备。

如今,工业物联网(IIoT)平台为工业物联网在几乎所有行业的快速发展提供了解决方案。工业物联网平台能够将设备和企业应用软件完美融合,使数据在互联的人、系统和对象之间无缝、安全地流动。

随着新一轮工业革命的推进,制造业的智能化转型正在让现实与虚拟世界之间的界限变得越来越模糊,带有IP地址的网络设备正在快速大面积覆盖智能化工厂。当生产过程和信息合二为一,呼唤新的运营模式,要求IT和OT进一步深度融合,形成了一个贯穿整个制造企业的技术架构。IT和OT的融合会帮助制造企业改善业务系统以及各部门之间的整体的信息流动,从而提升企业的运营水平。

OT 被认为是现代智能工厂的支柱。它控制着工厂的基础设施,并使工厂生产线正常运转。随着更多的机器和组件相互连接,OT 的重要性得到了增强。通过提供工厂车间的实时信息,物联网 (IoT)正在模糊办公室和车间工厂之间的界限。

对所有智能企业,IT 都是必不可少的。从客户关系管理,到管理信息系统到电子邮件,一切都是在IT 基础架构上运行的。自现代制造业开始以来,IT 和OT 就一直共存,但往往彼此独立。然而,随着工业物联网 (IIoT)的出现,将网络传感器和相关软件与复杂的物理机械结合在一起,IT 和OT 之间的鸿沟正在迅速消散。

IT 与OT 的融合

从OT领域生产厂商角度看,传统工业自动化公司纷纷延伸其产品的IT 能力,包括联合软件公司拓展的软件实力,如西门子收购PLM,布局数字化双胞胎;ABB 联手微软,部署“物联网+”新战略;施耐德并购英维思,推出“能效+”;也有一些自动化公司部署基础的IoT集成、Web 技术的融合方面的产品与技术,如贝加莱、罗克韦尔自动化等,期望通过搭建软硬件平台帮助其用户快速实现Digital Transformation。

IT领域也在不断向OT领域渗透,利用其自身掌握的先进技术以及广阔的市场阵地,紧盯OT领域的“互联、互通、互享”需求,推出带有明显OT特征的产品和技术。如对于现场总线、安全网关甚至人机等设备。

制造企业重构IT/OT部门,试图通过双方在同一个项目开发或者生产流程中彼此协作,让数据从设备层-控制层-信息层直至云端无缝对接,从而在输出中充分体现IT&OT融合的特性。

从IT 与OT 的实施中学习

技术的进步不断改进着IT 和OT 的实施,制造企业可以从中学到很多宝贵的经验,包括:实施规模: 过去,同时连接数十亿台设备是一项重大技术挑战。但该问题在十年前得到了解决,IPv6 就能同时连接和 *** 作万亿台设备。

生产制造工厂还要将数以千计或数以万计规模的资产连接在一起。这是IT 实施者给管理OT者上的第一堂课。多年来,企业IT 的实现已经成熟,并测试了运行基础结构,其中包括数以千计具有不同功能、相互连接的设备,可在网络中7X24 小时连续地处理通信。可以连接分布在不同区域的装置,并将此连接扩展到数以万计的资产。

安全性: 实施网络并让它们以尽可能高的安全性运行。毕竟, 考虑到黑客所获得的回报,给他们带来的安全威胁可能是最严重的。例如,当资金从任何一家银行的位于任何国家的任意一台ATM 机中取出,它都会在一个可预测的时间内分配资金。

系统以高度可预测的方式执行这些活动。成千上万的交易日复一日地以安全的方式不断发生。这就是工业物联网(IIoT)的功能;互联网正在连接配置不同网络安全措施的诸多不同设备。基础结构的稳定性: 企业IT 已经存在几十年了,广泛应用于各个行业,可以从质量和时间方面做出可预测的响应,并由个人或企业的日常经验来验证。这主要是基础设施的稳定性。这就是架构开始发挥作用的地方。

稳定性有其自身的挑战,如采用和更改技术、不断变化的标准、专有产品和标准、软件、法规遵从性和管理方面的挑战等等。当公司或用户需要采用或评估新的技术或标准时,可以学到最大的经验教训。硬件平台的体系结构、连接性基础结构、需要购买或构建的应用程序和软件,主要负责结构的稳定性。

在这种情况下,指导原则必须是可扩展的、模块化的、具有互 *** 作性和易于管理的体系结构。更重要的是,体系结构应允许构建或提供组件的合作伙伴和供应商能够轻松地将其集成到体系结构中,并根据优先级和复杂性定义路线图。解决方案架构与硬件和网络基础架构之间的相互作用,将有助于使这一进程更加顺畅。

融合的关键挑战

IT 与OT 有不同的背景,但它们融合的适用性源自IIoT。双方都面临着关键的挑战,包括系统的自持控制、机器和员工安全。好的解决方案应就位并具备以下功能:

识别和验证所有设备和机器: 系统内的所有设备,无论是在工厂内还是在现场,都应得到确认。只有经过批准的设备和系统才能相互通信。这将减少黑客攻击、将不受信任的设备插入网络以及减少对任何系统或机器的不受信控制等风险。

安全性: 加密IT 与OT 设备之间的所有通信,将确保中继数据的保密性。

数据完整性: 确保从这些系统生成的数据的完整性,是一个高度优先事项。虽然智能分析是采用IIoT 的主要驱动因素,但如果数据不准确,这些都是毫无价值的。启用这些软件和固件的远程升级将有助于确保它们的完整性。

IT 与OT 融合的未来

随着越来越多的设备开始加入IIoT 网络,有很多机会向前发展。IT 与OT 的融合将为工厂自动化、资产管理和生产制造执行系统提供开箱即用的集成解决方案,其中包括企业级的供应链和企业资源规划 (ERP)应用程序,并提供更有价值的数据分析。如果按目前的趋势发展下去, IT 与OT 之间的界限将逐渐消失,直到成为一个或相同的系统为止。

工业物联网是一种:数字时代先进生产模式,通过将感知技术、通信技术、传输技术、数据处理技术、控制技术,运用到生产、配料、仓储等所有阶段,实现生产及控制的数字化、智能化、网络化,提高制造效率,改善产品质量,降低产品成本和资源消耗,最终实现将传统工业提升到智能化的新阶段。同时,通过云服务平台,面向工业客户,融合云计算、大数据能力,助力传统工业企业转型。

物联网、工业40等概念既有交集也有差异。随着工业化与信息化的深度融合,企业内部互联互通的需求渐增,通过接入网络进而达到提高产品质量和运营效率的需求更为强烈,工业物联网应运而生。

工业物联网是物联网领域重头戏,规模占比接近百分之二十

物联网在工业的应用,是物联网最重要的领域之一。目前,工业物联网在物联网领域占比最高,达到近20%的份额。展望未来,工业物联网也是物联网应用推广最主要的动力。预计,到 2020 年,工业物联网在整体物联网产业中的占比将达到 25%。

受政策、应用双推动,工业物联网产业规模快速增长

“中国制造 2025”、“智能制造”、“互联网+”等战略规划,“中国智造”已经成为未来制造企业的发展方向,而工业物联网正是实现“中国智造”的基础。

根据物联网在工业领域的产值贡献率来测算,2014年,国内物联网在工业领域需求规模为1260亿元;2016年,国内物联网在工业领域需求规模为1804亿元。2017年,国内物联网在工业领域需求规模约为2354亿元。预计在政策推动以及应用需求带动下,到 2020 年,工业物联网规模将突破 4500 亿元。

——以上数据来源参考前瞻产业研究院发布的《中国物联网行业细分市场需求与投资机会分析报告》。

2016年大家的焦点都放在工业40,智能制造,中国已跻身世界制造大国,供给侧改革,两化融合是目前工业遇到的最大瓶颈。但毫无疑问,在工业化的进程中,必然要经历经济发展、资源利用和环境保护之间的失衡,德国从90年代起的一系列节能政策和节能技术的不断发展,已经形成较为成熟和健康的工业40发展模式。
对以工业为核心生产力的中国来说,能源消耗、污染排放的严重后果近几年已不断凸显,单位产品能耗高于世界先进水平,单位产值造成的污染更是远超发达国家。节能减排作为长期目标,必须要做到可持续改善,从根源上提升制造水平。在过去的2015-2016年,工业物联网正在飞速发展,从小型制造企业到国际制造巨头,都依靠工业物联网逐渐蜕变,这不仅仅是“制造业+互联网”的体现,是人们开始掌控生产制造,不再只关注产出,一步步从关注“数量”过渡到关注“质量”。
中国的能源现状导致煤炭成为工业黑金,在能源消费结构中占比巨大。煤改油、煤改电也非常考验国内的制造工艺,更多的企业开始关注节能技术,通过互联网的手段进行科学管理,优化能源配置,迈开工业节能的第一步。
节能减排边际难度高,企业何去何从
过去的几年里,国内响应节能减排的企业大多是从“减排”下手,一方面不影响自己的生产进度控制成本,一方面可以自由的周旋于政府监督部门之间。节能减排如果不能让企业看到转化成果,只是一味的减产降排,那么最终也只能是一场“闹剧”。随着新方案的发布,工业节能的大风向已走向明朗,会有更多的政策和投资助推节能技术及节能产品的落地。
相较于世界其他国家,国内物联网技术起步较早,发展速度快,目前已经是国际物联网标准研究组的重要一员。物联网技术相比于传统的节能减排技术,具有泛在感知、数据采集精准灵活、可实时监控、预警模型、数据分析等优势。工业物联网的出现为企业变革带来了非常有利的机遇,从传统能源消耗的“减排”中脱身而出,利用虚拟网络技术完成产业整合、制造升级。不仅可以帮助企业实现效益和节能的双重改善,而且是未来市场竞争的有利先机条件。
工业物联网如何助推工业节能
对于信息和数据的运用是企业进步价值的最好体现:
1节能减排工作中对资源的循环利用提出了很高的要求,制造企业可以通过传感设备获取生产环节的所有详细信息,包括排放物的污染指数、去向、处理结果等。平台管理和配置流程合理分配资源投入,通过反馈的数据进行调整,通过与节能技术的结合科学的管理制造生产的全过程。
2精细化管理生产消耗及产出,通过工业物网系统我们可以实时监控所有设备的工作数据,包括电流、电压、功耗、状态。通过数据差异识别主要能耗设备,针对性的进行节能改造,对比改造前后的数据评估节能改造效果。
3高效能源管理:16年智物联帮很多企业实现了合同能源管理,在顺应企业向“互联网+”管理模式转变,工业物联网无疑成为了企业的最佳选择。通过“数字化管理平台”不仅可以综合管理生产中各个环节的协同,提高生产效率;而且准确掌握生产资源数据、市场使用数据、租赁数据等等,使能源管理成为有机的整体,提升企业受益。
4工业物联网与节能减排的有机结合将是未来十年的巨大机会,我们期待在“中国制造2025”目标指引下,通过物联网应用帮助中国工业实现真正的节能提效。
工业物联网任重而道远
就制造业而言,16年我们服务的很多企业问题都聚焦在工厂生产,设备使用效率低,工艺和制造成本之间矛盾巨大。随着工业化和信息化的深度融合,我们可以借助工业物联网平台,收集和分析生产能耗信息、识别问题、合理调度管理和改善生产效能低下环节,实现对生产的科学管理。
在这个过程中,我们还需要不断的探索新的应用,解决工业生产中的实际问题,让企业从节能改造中整体受益。
以上由物联传媒转载,如有侵权联系删除

工业物联网是工业领域的物联网技术。
工业物联网是将具有感知、监控能力的各类采集、控制传感器或控制器,以及移动通信、智能分析等技术不断融入到工业生产过程各个环节,从而大幅提高制造效率,改善产品质量,降低产品成本和资源消耗,最终实现将传统工业提升到智能化的新阶段。从应用形式上,工业物联网的应用具有实时性、自动化、嵌入式(软件)、安全性、和信息互通互联性等特点。

扩展资料:


物联网的基本特征从通信对象和过程来看,物与物、人与物之间的信息交互是物联网的核心。物联网的基本特征可概括为整体感知、可靠传输和智能处理。
1、整体感知—可以利用射频识别、二维码、智能传感器等感知设备感知获取物体的各类信息。
2、可靠传输—通过对互联网、无线网络的融合,将物体的信息实时、准确地传送,以便信息交流、分享。
3、智能处理—使用各种智能技术,对感知和传送到的数据、信息进行分析处理,实现监测与控制的智能化。根据物联网的以上特征,结合信息科学的观点,围绕信息的流动过程,可以归纳出物联网处理信息的功能:


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13274160.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-05
下一篇 2023-07-05

发表评论

登录后才能评论

评论列表(0条)

保存